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An Extended Berlekamp—Massey Algorithm for the
Inversion of Toeplitz Matrices

Werner Henkel

Abstract— Utilizing a new explanation [1], the Berlekamp -
Massey algorithm (BMA) which solves special Toeplitz systems of
linear equations is extended to an algorithm for inverting Toeplitz
matrices. The usual BMA itself already leads to one row of the
inverse of the corresponding Toeplitz matrix. The other rows are
derived by additionally using the same operations that are central
to the original BMA, too. Two alternatives for the extended BMA
are presented where the first includes the usual BMA without
any changes and the second simplifies the structure by some
modifications also in the original BMA part. Both versions follow
a tree-like structure. If the branches of the tree are implemented
in parallel, the time demand would be nearly the same as for
the usual BMA. In contrast to other Toeplitz algorithms, like
Levinson’s and Trench’s, only slight modifications are to be
incorporated to handle singular submatrices.

I. INTRODUCTION

OEPLITZ systems of equations arise in the manifold ap-
Tplications, such as the decoding of Reed—Solomon codes,
linear prediction and parameter estimation. Several algorithms
have been developed and refined to solve such systems of lin-
ear equation or to invert Toeplitz matrices. The most important
are the ones by Levinson—Durbin [2]-[4] Berlekamp—Massey
[5]-[7], and Trench (8], [9] where the second has mostly
been used in decoding of Reed—Solomon, BCH and similar
codes. Indeed there seems to be no application outside coding.
Similarly, the other two methods were never used there. This
may be reasoned by the fact, that the original algorithms by
Levinson and Trench fail when singular submatrices arise.
This typically occurs in the decoding of RS codes, but not
only there. For this reason, especially Levinson’s algorithm
has been modified in various ways to bridge singularities,
not realizing that Berlekamp’s algorithm tolerates singularities
without any changes. Some of that refinements of the Levinson
algorithm should be mentioned shortly. Delsarte, Genin, and
Kamp [10] developed a method for Hermitian Toeplitz systems
that leads to a triangular Toeplitz system to be solved when
coming across a singularity. Ciliz and Krishna [11] further
specialized this method for real-symmetric Toeplitz systems
applying the so called “split Levinson algorithm,” a version
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with reduced number of multiplications. Pombra, Lev-Ari,
and Kailath [12] published a modification based on a ‘three
term recursion’ leading to some polynomial equations to
be solved when a singularity is reached. Toeplitz matrix
inversion from Levinsons algorithm is described by, e.g.,
the Gohberg—Semencul formula mentioned in [10] or the
extension given in [13].

As has been stated, in the case of Berlekamp’s algorithm
no additional measures have to be taken to handle singular
submatrices. Furthermore, its use is not restricted to problems
over finite fields (Galois fields) like coding (see [14], [15]).

In this contribution an extension for the inversion of Toeplitz
matrices is derived following a new description by the author
published in [1]. In some respect, this explanation of the BMA
discloses the structure more clearly than Massey’s illustration
as shift register synthesis [6]. Basically, it consists of the
finding which two operations on the intermediately determined
vectors are central to the method. These operations are also
used to extend the algorithm to accomplish the inversion of
Toeplitz matrices.

The contents of this paper may be summarized as follows.
First of all, the new matrix description of the BMA has to
be outlined. For further details the reader is referred to [1].
A treatment of the nonsingular case follows. The extension
of the BMA for Toeplitz matrices with nonsingular minors
is somewhat more regular. This is the reason for explaining
this case beforehand. Two versions of the extended BMA
are derived. Then the last section will show that with a
minor modification of the extended BMA, singularities can
be handled as well. But first, as indicated above, the main
operations of the original BMA are pointed out.

II. THE MAIN OPERATIONS OF THE BMA
The BMA recursively solves a Toeplitz system of the form
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where the length of the vector C should be as small as possible.

The main operations of the method are formed simply by the
adding of zeros to the left or right of intermediately resulting
vectors, together with an enlargement of the corresponding
Toeplitz matrix. Furthermore, the updated intermediate result
is derived by combining the current vector, extended by zeros
to the right, and the one before “the last length change,”
extended by zeros to the left.

To simplify the explanation, operators for the extensions
with zeros are introduced.

R stands for right-hand zero extension:

R(1,C1,Ca,--+,C1) = 1,C1,Ca,- -+, C1,0),
L stands for left-hand zero extension:

£(1,Cy,Cs,---,Cp) = (0,1,C41,Cs,- -+, C1).
Assuming an intermediate result to be given as

S Sai

(17C11029""7Cl)~ =(00»01»927"'7Pl)7

So S

the two operations combined with an enlargement of the
corresponding sub-Toeplitz matrix have the following effects
on the right side of the system of linear equations.

R: The right-hand side vector is shifted to the left by one
step and two new components are added at the rightmost
location.

Si41 Sa(i+1)
R(1,C1,Ca,---,C1). )
So Si41
Si1 So141)
:(1,(]1,02,-~-,C,,0). .
So Si41
= (p1,p2, > p1, [P1as, Pi12] )

£: The first [ + 1 components of the right-hand side vector
are left unchanged and one new component is added at the
rightmost location.

Si1 Sa(i+1)
£(1,C1,Cs,--+,C1). .
So Si+1
Si41 Sa(+1)
2(0,1,01,02,~",Cl). .
So Si41

= (PO»PIaP?v"'7P17 )

These two operations together with linear combinations con-
stitute the original BMA. For further details of the original
algorithm the reader is referred to [1]. The way the operations
are used will also become clear from the examples below.

For the first version of the extended algorithm in addition
to the original BMA only the £-operation together with linear
combinations are needed.
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Fig. 1. The extended Berlekamp algorithm, version 1.

S

IS
w
-

1
)
R ¢

2 (*“*)/(*1*)
0.

\*) *0)

TN

(k%) (O%4)  (%0,%)

'S

- 1
0,0, | ©%0 (%00
R L \\

o

3

(0, % % %) (0,0, %,%) (0,% 0,%) (x0,0,%)

%———J
(0,0,0,%) | (0,0,%,0) (0,%0,0) (x9,0,0)

Fig. 2. The extended Berlekamp algorithm, version 2.

e =

III. THE EXTENDED BMA FOR TOEPLITZ INVERSION

For reasons of clarity, the case of nonsingular submatrices is
treated first. Using the new matrix description given in [1], one
realizes that, every second recursion, the BMA generates the
last row of the inverse of the submatrix under “consideration”
(see Fig. 1). To be precise, a right side is formed, with only
the rightmost component being different from zero. After
normalizing to that component, the aforementioned last row
of the inverse follows.

The left of Fig. 1 shows the recursively appearing right
sides in the usual BMA. The diagram is highly schematic
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and should only give a raw impression of the intermediate
results of the original algorithm and the way they are used
for the extension. The right side of Fig. 1—the extension—is
constituted by linear combinations, characterized by arrows
with a “+” and L-operations. Stars symbolize components
that may be unequal to zero. The linear combinations on
the right are always used to force the rightmost component
to zero, leading to unnormalized rows of the inverse of
the corresponding sub-Toeplitz matrix as intermediate results.
(Unnormalized rows of the identity matrix are given in the
scheme). A short pseudoprogram for the extension may be
given as follows (nomenclature partly based on that of [6]):

Pseudoprogram of the Extended BMA—Version 1

DO:=1,n
Ci =C;
Ch=Ci- ZCi
DO j=3,:
; degizt
Ci=LCZ] - di-‘ 4
END DO
END DO
n Order of the whole system (n x n).
i Order of the subsystem (i x i).
j Counter for the columns in Fig.1.
C;Z One row vector of the i x i-inverse—not
normalized.
c: Intermediately resulting vector out of the BMA
after the last length change.
Ci Intermediately resulting vector out of the BMA
before the next length change.
di Discrepancy before the next length change.
d: Next discrepancy that would result from an
unaltered C}
d,ci-1 Rightmost new component of the right side
i—-1

when applying £C; ] to the i x i-sub-Toeplitz
matrix.

An example showing the inversion of a 4 x 4-matrix can
be obtained from the author. For reasons of space limitations
it cannot be included here.

A more regular algorithm is given in Fig. 2. There, only
the two main operations of the usual BMA are used, too,
but the original part of the algorithm has also been modified.
Nevertheless, the structure of the left column is very similar.
Only, to reduce complexity, the L-operations of the extension
have been utilized for the conventional BMA-part. Again, a
pseudoprogram for the whole scheme is given:

(Note that the counter “s” has another meaning than before:
it counts the rows of the scheme in Fig. 2, not directly the
order of the subsystem. Again C; ; is the intermediate result

| weomom e
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vector and r; ; is the corresponding right side symbolized in
Fig. 2.)

Pseudoprogram of the Extended BMA —Version 2

DOi=1,2n-1
IF ¢ mod 2 = 0 THEN
Cip=RCi_1,
DO j=2,i/2+1
Cij=LCi—151
END DO
ELSE
ri-1,1(18/2] -1
Cii=Ci_11— ﬁ——% Ci-1,3
ri—1,1(17/2]) Ciits
ri12(li/2]) T
DO j =2, |i/2] +1
ri-1,;(1i/2] +1)

Cij=Ci_1; - SNIES)) Ci
END DO
END IF
END DO

Example 1 shows the inversion of a 4 X 4-matrix.

The structure especially of the second version of the ex-
tended BMA is seen to be comparatively simple. In the next
section the occurrence of singularities will also turn out to be
only slightly more complicated.

IV. A POSSIBILITY OF HANDLING SINGULAR SUBMATRICES

Most Toeplitz algorithms, except the BMA and some modi-
fications of the Levinson—Durbin algorithm, lead to difficulties
when singular submatrices occur. In the sequel, it will be
shown that the extended BMA in the form of Fig. 2 with only
slight changes can overcome singularities.

The necessary modifications will be pointed out by exam-
ining Example 2. There, two submatrices are chosen to be
singular, the 2 x 2-matrix and the 3 x 3-matrix. The first
variation to be noticed is that, of course, linear combinations
with C;; are suppressed, if the corresponding right side equals
zero (see 1) in Example 2). Anyhow, such combinations
would not have altered the other right sides in that row.
At the position marked with x5 other linear combinations
have been performed than proposed in Fig. 2. These are
determined by the structure of the appearing right sides. With
the operations under *, the singularity is overcome. Compared
to the nonsingular case the rows of the 4 x 4-inverse are given
in a permuted order. At %3 the arrangement is restored and
from that position on the extended BMA could again proceed
according to Fig. 2 if the following submatrices (of a greater
matrix) are nonsingular.
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Example 1:

GF(11), primitive element: 6

2 174 .
PO ) L IR (R &(z )
1 2
1j1i2|2

iy 1 [2 [3 [

115 =)

2 [(1,0)-8 =(1,2) (0,1)- 8 =(1,1)

(1,0) - 10,1) = (1,10) | (0,1)— $(1,10) = (10,2)

3 [(1,10)- 8, =(0,1) (10,2)- 5 = (1,0)

4 (1,10,0)- S5 = (1,0,10)  |(0,1,10)- 55 =(0,1,0) (0,10,2) - 83=(1,0,2)
(1,10,0) - }(0,10,2) (0,1,10) - §(1,0,9) = (0,10,2) - 3(1,0,9) =
-2(0,1,10) = (1,0,9) =(0,1,10) = (8,10,8)

5 1(1,0,9): 85 =(0,0,8) (0,1,10)- 85 = (0,1,0) (8,10,8) - 55 = (1,0,0)

6 [(1,0,9,0)-§=(0832) [(0,1,0,9)-$=(0,083 [(01,10)-5=(01,0,10) |(0,8108)-2=(10,05)
(1,0,9,0) - 2(0,0,1,10) | (0,1,0,9) -1, 1,1,6)=| (0,0,1,10) - R(L1,1,6)=| (0,5810,8)-3(11L16)=
-(0,1,0,9) = (1,1,1,6) | = (4,5,4,0) =(6,6,7,2) =(3,0,2,4)

7 [(1,1,1,6)-8=(0,0,0,2) | (4,540 5=(0,080 [(6672) $=(0,10,0) (3,0,2,4) - 8 = (1,0,0,0)

3 0 2 4
A ls 6 7 2
= 57=| g 53 48 0/8
12 172 1/2 62

Example 1.

Example 2:

GF(11), primitive element: 6

21 8
721
472
7 47
[ Is
1)-&=4) c
2 ((1,0)- 5 =(7,4) (0,1)- 8 =(4.7)
c
(1,00 - $(0,1) = (1,1) —— - 4/4 4f4 2/t 6/4 /4
sy 8- 00t 8/4 2/4 T/4 6/4 8/4
1,1)- 85 = (0, = 57 = | 6/9 9/9 3/9 7/9 10/9
1 5/9 2/9 9/9 2/9 9/9
4 {(1,1,0)- 55, =(0,0,9) 0,1,1)- 85 =(0,0,0) (0,0,1)- 85 = (4,7,4) 1/6 1/6 4/6 9/6 6/6
(0,0,1) - 4(1,1,0)
c =(2,2,1)
c
5 \ Qz.x)»&:(mmc\
6 [(1,1,0,0)- 5, =(0,9,3,9) 0,1,1,0)- 5, =(0,0,9,3) (0,0,1,1) 5, = (0,0,0,9) }0.2,2,1) - 84 = (4,7,0,2)
1| (1,1,0,00-30,1,8,7) (0,1,1,0) - 3(0,0,1,1) (0,2,2,1) - 5(1,8,0,4)
% | =-3(0,0,1,1) =(0,1,8,7) -3(0,0,1,1)
1| =1,80,4) =(9.8,3,5)
7 [(1,8,0,4)- 8, =(0,9,0,0) (0,1,8,7) - 84 = (0,0,9,0) (0,0,1,1)- 5, = (0,0,0,9) (9,8,3,5) - 84 = (4,0,0,0)
c c c c
8 |(1,8,0,4,0)- S5 = (9,0,0,7,2) [(0,1,8,0,4) - 55 = (0,9,0,0,7) 0,0,1,8,7) - & = (0,0,9,0,8) 1(0,0,0,1,1) - S5 = (0,0,0,9,3) [40,9,8,3,5) - S5 = (4,0,0,0,9)
(1,8,0,4,0) — £(0,0,0,1,1) | (0,1,8,0,4)~ 1(1,7,4,9.6) | (0,0.1,8,7) — §(1,7,4,9,6) (0,0,0,1,1) — 2(1,7,4,9,6) | (0,9,8,3,5) - 3(1,7,4,9,6)
-%00,9,8,3,5) =(8,2,7,6,8) =(6,9,3,7,10) =(5,2,9,2,9) =(4,4,2,6,7)
=(1,7,4,9,6)
9 [(1,7,4,9,6) - S, = (0,0,0,0,6) | (8,2,7.6,8) - S5 = (0,9,0,0,0) 16,9.3,7,10) - 5, = (0,0,9,0,0) | (5,2,9,2,9) - 55 = (0,0,0,9,0) (4,4,2,6,7) - S5 = (4,0,0,0,0)
|
. ><
| =1 —
10 (,7,4,9,6) 5. = (0,0,0,0,6) | (5.2,9,2,9) -3 = (0,0,0,9,0) | (6,9,3,7,10) - 55 = (0,0,8,0,0) (8,2,7,6,8) - 85 = (0,9,0,0,0 [ (4,4,2,6,7) - §5 = (4,0,0,0,0)

Example 2.

Thus, linear combinations during a singularity are performed  are not used for combinations. After the singularity has been
to generate as much zeros on the right side as possible, as long  passed a permutation may be performed to restore the arrange-
as they do not lead to linear dependencies. All-zero right sides ment of appearing rows of the intermediate and final inverses.
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