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Conditions for 90° Phase-Invariant Block-Coded QAM
Werner Henkel

Abstract—Based on Zinoviev’s generalized concatenated codes,
conditions for the construction of 90° phase-invariant QAM are
derived. Furthermore, a proposal for the necessary differential
en/decoding is made. The conditions for phase invariance are
specialized for the case of Reed—Muller codes as outer codes of
the generalized concatenation.

I. INTRODUCTION

OR coded phase-shift keying, several measures have been
developed to improve its behavior in the presence of
phase instabilities. One possibility is to periodically insert
subsets of the modulation alphabet into the sequence of coded
symbols, denoted by time-variant or hybrid coded modulation
[1], [2). In the case of coded 8-PSK, this means the insertion
of QPSK, doubling the hold range of the phase loop compared
with 8-PSK. This first measure leads to a reduced probability
of so-called cycle slips and of the resulting error bursts.
Another possibility is to ensure that after a cycle slip, another
stable working point is reached immediately, shortening the
corresponding bursts. This is achieved by a phase invariance
in the coded modulation. Such phase-invariant schemes have
been proposed for coded M-PSK in [3]-[11]. Of course, the
best performance is achieved if both strategies are combined.
Not too much work has been done concerning phase-
invariant coded quadrature amplitude modulation (QAM).
Proposals for cross QAM such as 32-QAM based on nonlinear
convolutional codes can be found in [12], and recently, in
[13] a solution has been presented by encoding I and Q
independently with convolutional codes. This obviously is a
suboptimal approach, but nevertheless noteworthy.

This contribution specifies conditions for 90° phase-
invariant block-coded QAM. The conditions will be derived
in two steps. First, phase invariance of the code will be
ensured. This does not guarantee invariance according to the
coded information symbols. This is achieved in a second step,
considering the necessary differential en/decoding. The two
steps will be denoted by “phase invariance” and “differential
invariance.” Both steps lead to conditions that each have to be
fulfilled. However, the conditions will turn out not to be very
stringent. Several different codes may be chosen. In the case
of Reed—Muller codes, conditions for their orders are derived.

To begin with, the structure of the considered coded modu-
lation is explained. The following sections are devoted to the
phase invariance of the codes and the necessary differential
coding.
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II. COoDED QAM BASED ON ZINOVIEV’S
GENERALIZED CONCATENATED CODES

For simplicity, the structure of the block-encoded QAM is
explained by means of the special case 16-QAM.

The set partitions of 16-QAM are given in Fig. 1. According
to Zinoviev’s GCC [14]-[16], the points of the 16-QAM are
regarded as an inner code. Four binary outer codes are needed
to encode the four partitions of 16-QAM given in Fig. 1, each
of the same length n. Written in matrix form

n (1)

alV ay a3 00\ — e A
A3 A= a® — a(12)7 a’g)v te ,ag) —ec A®
a® a® 0P ... o® | — e A®
a® a®, al? ... P ) — € A
@)

The rows are codewords of the outer codes A1), A A®),
and AM., The columns select the corresponding points of
the 16-QAM. The first component determines the 8-“QAM”
subset, the second a 4-“QAM” subset of the 8-“QAM” set, the
third a 2-“QAM?” subset of the 4-“QAM?” set, and the fourth
component decides which point of the 2-“QAM” set will be
taken. Fig. 1 illustrates the procedure. The minimum squared
Euclidean distance of two such schemes is known to be

dg,, > min{d} -4} @
7

where d(é) is the minimum Hamming distance of the jth outer
code and dg) is the minimum squared Euclidean distance
between the corresponding 2(4~%)-“QAM” subsets.

The described code construction is often referred to as
multilevel coding (see, e.g., [6], [7]). The term GCC is cho-
sen because it is more general, and multilevel codes in the
Euclidean space are a special case.

A generalization to 2°-QAM is straightforward. The only
thing that should be noted is that the numbering (a&,ﬁ), e ag))
inside the subsets corresponding to (ag),ag)) has to be
chosen as rotated versions of one of the subsets (see Fig. 1).

The partitions of 32-cross QAM and the numbering for
64-QAM are given in Figs. 2 and 3, respectively.

The following section derives the necessary and sufficient
conditions for 90° phase invariance.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR PHASE
INVARIANCE WITH RESPECT TO MULTIPLES OF 7 /2

The signal space code is rotationally invariant with respect
to multiples of 7 /2 if and only if it is invariant with respect
to a m/2 rotation. Therefore, we need to consider only the
rotation by /2.
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Fig. 1. Set partitions of 16-QAM. Fig. 2. Set partitions of 32-cross QAM.

For illustration, Table I shows the effect of a 90° shift in
the case of 16-QAM.

Because of our particular numbering of the QAM points,
only the components of oY) and a® are changed accord-
ing to

[elele=]=

o)

ol = (1,---,1) + a®
a® = o 4 o

o =gl j=3... 3)

Combining the binary numbers (a,(z), as,ll)) to obtain a repre-
sentation of a mod-4 number, we may describe the 90° shift
by an addition of

i-2
——
\(170’...,())T,(Loy...’(])T,...’(1’0,...,0)7"
i-2
o —
mod(4,2,---,2)T @

where T denotes transposition and mod(4,2,---,2) stands
for (mod 4, mod 2, - - -, mod 2). This corresponds to Massey’s
ring code formulation for M-PSK [8]. Thus, to achieve 90°
invariance, we demand the code construction to be invariant
against the addition of the term in (4) mod(4,2, -, 2).
Regarding (3) and presuming linearity, we obtain the fol-
lowing necessary and sufficient conditions for phase invariance

o o] [ J O
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o ® o] @
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[ o] [ 4 o]
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Fig. 3. Numbering according to the set partitions of 64-QAM.

with respect to multiples of /2:

1,1,
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TABLE I
+ 90°

0000 — 0001
0001 — 0010
0010 — 0011
0011 — 0000
0100 — 0101
0101 — 0110
0110 — 0111
0111 — 0100
1000 — 1001
1001 — 1010
1010 — 1011
1011 — 1000
1100 — 1101
1101 — 1110
1110 — 1111
1111 — 1100

mod-4 adder
nT

16-QAM mapping
nT
+
serial coded
input seesococo :: 16-QAM
— ——

GCC encoder

Fig. 4. Differential encoding for 90° phase-invariant block-coded 16-QAM.

With this result, only the invariance of the code against
phase shifts is ensured, not the invariance of the information
part itself. A differential en- and decoding is necessary.
The following section describes this differential coding, and
additionally, resulting conditions for the code construction.

IV. DIFFERENTIAL CODING FOR 90° PHASE-INVARIANT
BLOCK-CODED 2:-QAM

The differential coding described here is similar to those
proposed by Oerder and Meyr in [3] and the author in
[10], [11]. 1t consists of a differential encoding mod 4 for
(a®,a)) over a modulation interval of block length n after
the GCC encoder (see Fig. 4). To avoid a 3 dB loss, the dif-
ferential decoder has to be positioned after the GCC decoding
(see Fig. 5). Thus, the GCC schemes must additionally be
invariant against differential encoding mod 4.

In order to find out which additional conditions are imposed,
we consider the addition of the first two GCC codewords in
their mod-4 representation. We have to ensure closure with
respect to addition. Then, the differential encoding yields
a valid codeword, allowing the differential decoding to be
performed after GCC decoding.

Let AV, AP € AD AD AP ¢ A® . The addition of
(Agz),Ail)) and (Agz), Agl)) mod 4 is given by

2- (AP + AP + (a() + A) 6)
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extraction
GCC mod-4  of information part
decoder subtractor from the GCC scheme
received serial
16-QAM - | output
i
Fig. 5. Differential decoding.
TABLE 11

(7) | (n,k,dn) [ RM(r,m) | dg | dy-dg | dy - dg/2/dB| R=TkD/En®)

1] 844 | (13 |1] 4 3

2 | @2 | @3 |[2]| 4 3 27/32=0.84375

3| (8,81) | (33 |4 4 3 >3/4

4 | (8,8,1) (3,3) 8 8 (6)

1] (16,58 | (14 [1] 8 6

2 las,11,4)] (24) |2] 8 6 47/64=0.734375

3 |@as, 152 @4 4] 8 6 <3/4

4 |@6,16,1)| (44 |[8] s 6

1 (32,16,8) | (25 | 1] 38 6

2 | (32,26,4) (3,5) 2 8 6 105/128=0.820312

3 |(32,3,2)| (45 |4 8 6 >3/4

4 |(32,32,1)| (55 |8]| s 6

where (AECZ),AS)) denotes the binary components of the
mod-4 numbers. Assuming linearity, we first realize that, of
course, (A" + A8) € A® mod 2. A carry occurs in
positions where both A(ll) and Agl) have ones or, equivalently,
where the componentwise product A(ll) -Agl) yields ones. Thus,
products of codewords from A() have to be in A®),

AP € AV, AW € AW o AW AP € AD| (7

If we choose the block codes in the GCC scheme to be
Reed—Muller codes [17], [10], [11], the conditions for the
codes turn into conditions for the orders (%) of the RM codes
of length n = 2™:

1) Phase invariance of A: D >y, @ =y
2) Differential invariance: r® > 2. 70 v 72 = oy, 8)

The second condition includes the first one.

Three simple examples with RM codes yielding asymptotic
coding gains of 3—6 dB may conclude these considerations.
See Table II.

The overall asymptotic coding gain is given by (dg,,, +
2)dB = 10 log,, min;{(d$ - d¥))/2}, where 2 in the de-
nominator is the squared Euclidean distance of the uncoded
8-“QAM?” in the form given in Fig. 1. This 8-“QAM” con-
stellation has been chosen to obtain integer-valued distances.
In any case, even the configuration of Fig. 6 has a squared
Euclidean distance that is only by a factor of 1.0567 above that
of the chosen 8-“QAM?” subset (same signal energy presumed).

Rates greater than 3/4 enable us to provide additional outer
codes, e.g., Reed—Solomon codes, to come to an overall
code rate of 3/4. This leads to a further increase in coding
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Fig. 6. 8-QAM signal set similar to CCITT V.29.

Parallel input (5) = (1)...(4) mapping

Fig. 7. Modified differential encoding for 90°-phase invariant block-coded
16-QAM.

gain. The last example of the table would allow us to use
an RS code with a redundancy of 8.6%. This concatenated
scheme is surely comparable with the best known nonphase-
invariant modulation codes. Furthermore, it is not necessary to
increase the transmission rate to compensate for the introduced
redundancy, as has been proposed in {13].

One may have realized that the third example does not
fulfill the second condition in (8). Indeed, another differential
encoder is necessary to free us from the second condition
(differential invariance). By placing the differential encoder
modulo 4 between the encoder stages of the codes (1) and
(2), the differential encoder operates only in the information
part (assuming systematic codes) of code (2), not on the whole
codeword (see Fig. 7). This means that the information part
is correctly regenerated by the chain of differential encoder
and decoder. However, after differential decoding, the parity
symbols may not belong to a valid codeword, unless the second
condition is fulfilled, too. Of course, this is no disadvantage
because after decoding, parity symbols are omitted anyway.

The decoding of GCC may be performed by means of
multistage soft-decision decoding, utilizing results of the trellis
structure of RM codes by Forney [18]. Recent publications on
similar schemes [19) show that the complexity of decoding is
comparable with conventional trellis decoding.

V. CONCLUSIONS

Based on binary set partitions of 2'-QAM, conditions for the
construction of 90° phase-invariant block-coded modulation
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together with the necessary differential en/decoding have been
specified. The corresponding ring-code description proposed
by Massey for M-PSK has also been stated for QAM. Further-
more, the conditions have been applied to Reed —Muller codes,
yielding simple conditions for their orders. Some examples are
given that show that the coding gain achieved is comparable
to that of the best known codes.
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