A WIDE-BAND IMPULSE-NOISE SURVEY
ON SUBSCRIBER LINES AND INTER-OFFICE TRUNKS
— MODELING AND SIMULATION —

Werner Henkel, Thomas Kessler

Research Center of Deutsche Telekom
D-64276 Darmstadt, Germany
EMAIL: henkel@fz.telekom.de, kessler@. ..

Abstract — Alternatives of a simulation model for impulse
noise on subscriber lines are proposed and their statistical prop-
erties are outlined. Several pseudo-noise generators are com-
bined with spectral shaping operations to approximate the de-
sired statistics of the non-stationary disturbance. Although the
considerations are based on the special statistical properties of
impulse noise, the applied methods may as well be applicable
to other modeling purposes. Especially, a proposal that allows
to generate samples that fulfill the required amplitude statistics
and bring forth a prescribed power density spectrum may be
suitable elsewhere, too.

[. INTRODUCTION

In [1, 2, 3], three statistical properties of impulse noise on
telephone lines are described: voltage, length, and inter-
arrival time densities. Furthermore, the mean power dens-
ity spectrum (PDS) and the typical group delay (phase
difference) function are outlined. Exemplarily, the relation
between the length and the energy of impulses is addition-
ally presented here (Fig. 4). The goal of a simulation
model is to meet as much of these properties as possible,
while minimizing the realization effort. Principal simula-
tion methods are:

1. representative impulse

2. data bank access with sampled impulses

3. Markov model

4. generator model
A representative impulse like the one by British Telecom
(Cook, [4]) that has also been included in the ANSI and
ETSI standards or even the one shown in our papers [2, 3]
cannot represent any density functions. Thus, they are not
very suitable for our modeling purposes. Often, they are
also used with some chosen fixed inter-arrival time. Using
a generator with the real inter-arrival time statistics would
bring this method a little nearer to reality.

The data bank access with real measured impulses triggered
by a stochastic inter-arrival time generator works quite well,
but is dependent on the data bank, which may not be gen-
erally available. Furthermore, it demands for high storage
capacities.

The Markov model is not very handy, because too many
states would be needed, leading to a large number of free
parameters, whose meaning may not be very obvious.
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This paper describes a generator model, where the stat-
istics are represented by pseudo-noise generators. Other
components (filtering, etc.) ensure the spectral and phase
properties. This approach corresponds directly to the de-
termined statistics and the number of free parameters is not
too high. No collection of data is needed. The disadvantage
1s that it is very hard to find a configuration that delivers
samples that, at least, approximately comply with all the
desired statistics. This is due to the quite large number of
statistical properties that are considered. Therefore, based
on one principal structure, alternatives will be described,
that are in favor of some of the properties, while others can-
not be obtained as well. The choice between them depends
on the application.

Before describing the structure and its alternative realiz-
ations in some detail, generators for the three statistical
properties, voltage, length, and inter-arrival time density,
will be presented. Then, the inclusion of spectral properties
in the form of the mean PDS are discussed. Finally, simula-
tion schemes with and without the desired phase properties
are compared.

II. GENERATOR REALIZATIONS FOR THE
STATISTICS OF IMPULSE NOISE

A. Generators with the described impulse-noise statistics

We shall describe possible realizations of pseudo-noise gen-
erators for computer simulation that will follow the impulse-
noise densities (voltage, inter-arrival time, length). The
generators utilize well-known principal methods or vari-
ations thereof — ‘transform method’; ‘rejection method’,
‘strip method’.

The transform method utilizes the density change when ap-
plying a function g(z) to a random variable. The density
1s modified according to

dg(z)
dz
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uses the rejection method (see [5], pp. 203-206 or {6], pp.
120-121). Herein, one selects a function k- fn(z) according
to the condition

k-fa(z) 2 fi(z), kelR. ®3)

This function should be easily integrable. Additionally,
Fq(z) = ffoo Ja(n)dn should also be easily invertible. The
procedure works as follows: z is obtained by applying ¢ =
F71(€) to some uniform (0,1) random number €. This can
be seen as an application of the tra?sform method, because
fn(e) = Fa(FH(©)) = Fo(6)/ | L2 2] = 1. |52
Then, fn(z) is multiplied with a constant k, such that con-
dition (3) is fulfilled. A second uniform (0, k fa(z)) gener-
ator determines, if z is taken as output or being rejected.
Rejection takes place, when the second uniformly distrib-
uted random number is greater than f;(z). The exact value
of k does not influence the out-coming distribution, but the
speed of the random number generation. The farer k fn(z)
is apart from the desired f;(z), the higher the percentage
of rejected values. Figure la describes the procedure.

For the voltage-generator application, we selected kfa(x)

and kFn(z) to be

kfa(z) =k and

kFn(z) = k(arc tan(cz) + n/2)/7 . “)

The constants k& and ¢ are chosen such that condition (3)
is fulfilled in a certain range, kfn(0) = fi(0), and kfn(z)
is as small as possible.

The generator for the inter-arrival times with the
density

ay i (lo810(=)—an)
fd(l‘) = _1_0___1‘.114—110—m—:;a2 810 3 (5)

In(10)
(2 = t/100 ns) is based on a modified strip method. In its
original form (see, e.g., (7], pp. 359-368, [6], pp. 118-122)
the PDF is divided into Ng strips and the corresponding
probabilities p*), 0 < v < Ng — 1, to obtain a value within
a strip, are determined. p*) equals the area of a strip
v. A special random number generator is used to select
the strips according to the p(*) and afterwards any other
procedure is taken to approximate the exact shape of the
density within one strip.

For our application, we employ exponentially spaced bound-
aries (see, Fig. 1b) in order to divide the PDF into strips,
which again are divided into rectangular regions (probabil-
ity pg')) always below the PDF and triangular ones (prob-
ability pg/)), featuring a piecewise linear approximation of
" the PDF. The strips (regions) are chosen by a random num-
ber generator due to Walker [8] (see, below). If a rectan-
gular strip is met, a uniform number generator is used to
generate the actual output between the strip boundaries,
whereas in the case of a triangular strip, additionally, the
transform method with z(£) = /€ is applied.
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Maybe, a sketch of Walker’s method should be given shortly,
too. First, the desired discrete probabilities (p(")) are com-
pared with a uniform distribution (1/Ng). The greatest
negative (C) and positive differences (D) between p(*) and
1/Ngs are searched. For the position v = v¢ of the greatest
negative difference, an ‘alias’ value vp is stored, which is
output as an alternative to the original value that corres-
ponds to a certain probability. The greatest negative dif-
ference is added to the positive one, thereby reducing this
difference. Additionally, a threshold, defined by 1 — CNg,
is stored. As 1 — CNg = N(1/Ng — C), this threshold
corresponds to the difference C. Now, the difference C at
position v¢ is reduced to zero. The search for greatest neg-
ative (C) and positive differences (D) is repeated until all
negative differences have been processed (at most Ng — 1
times).

Walker’s generator itself is based on some sort of rejection
method, in the sense that it accepts values from a uniformly
distributed discrete generator, if a second uniformly dis-
tributed continuous generator delivers values less than the
threshold. If the threshold is exceeded, the ‘alias’ value is
output. For a Fortran routine, see [8].

The realization of the generator for the impulse lengths
with the density

1
—— In? (t/t1)
ft)= By o 2 1+ (6)
—— In?(t/t
(- Bgy o 28 (t/12)

is based on a normal (0,1) generator with the density f(z)
(e.g., polar method by Box, Muller et al.; see [6], pp. 117-
118) together with an exponential function in the transform
method:

2
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dt/dz = s, -1,
applying (1):

) (4) = 1 w7 (/)

h ®) V2ms,t ’
The addition of two log-normal densities (Eqn. (6)) is
taken into account by choosing the two parameter sets (¢,
s,) randomly with the probabilities B and 1 — B, respect-

ively.

v=12. (7)

B. Incorporating spectral properties

A simple way to ensure spectral properties is to use the
noise generators described in the previous section followed
by an FIR filter, or equivalently, by an FFT and a multi-
plication in frequency domain. The coeflicients of the FIR
filter are determined from the square root of the mean PDS
of a certain location or of an approximation thereof. About
200 coefficients are necessary.



Since the voltage density is changed by the FIR filter, a
PDF fi1(u) at the input must be searched that yields the
desired PDF f;(u) at the output. The PDF foy:(u) at the
output of an FIR filter can be derived as follows:

A multiplication with one coefficient k, changes the density
according to
f 1(u/k
fitw) = Bk )
kv |
The addition of n, e.g., n = 200, random processes results

in the convolution of their densities, which would lead to
n — 1 such convolutions

fout(u) = mf TRy A
() o (o) gy (i)

ki1
w3,
f] ( Zk'II ) d171 dnz...dr)n_l . (9)

This corresponds to a multiplication of the corresponding
characteristic functions (the Fourier transforms) F;(k,w)

Fout(w) = 1:[ Fi(kow) . (10)

Although (10) is a simplification of (9), it is not possible
to construct any analytic expression for f;, applying this
equation. A feasible solution is the superposition of a Dirac
onto the PDF of the input process. In our case, the Dirac
approximately regenerates the desired PDF. The PDF at
the input of the filter is changed according to

fi(u) = €efi(u) + (1 — €)d(u) € €1[0.01,0.1]

(11)
Note that the convolution of a Dirac with an arbitrary func-
tion yields the function itself. Assuming a dominant Dirac
component as defined in (11), a convolution of two such
functions (transformed with k,) results in a sum of four
components: a Dirac multiplied with (1—¢)?, the two func-
tions 1—%%’;"2 themselves, each multiplied with ¢(1—¢), and

a mixed convolution of the two functions f—’ﬂ%ﬂfﬂ multiplied

with €2. n such convolutions reduce the pure Dirac com-
ponent by a factor of (1 — €)”™. The characteristic function
corresponding to (11) is given by

Fi(w) =cF(w)+(1—¢). (12)
Inserting (12) into (10), yields

n

Four() =) [ (1 =) e

v=0

> I[Akgw |,

(€15, ¢u)ECE p=1
(13)

where C]} denotes the set of all combinations of v elements
out of a set of n elements. The pure Dirac component
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corresponds to the constant term for v = 0. Aside from the
fact that the Dirac is reduced by the n-fold convolutions,
it is quite difficult to prove that the shape of the density at
the output of the filter foy:(u) is nearly equal to the one of
fi(u) after n convolutions. Only for small n, e.g., n = 2,3,
one still sees the dominance of the terms fi(u) compared
with convolution products thereof.

After all, the regeneration effect is due to the special shape
of the density f;(z) and the special set of filter coeflicients
k,. Thus, the insertion of a Dirac into a density is not a
generally applicable method.

Note that the coefficient ‘ugy’ will be different for the input
and output densities. Hence, the corresponding coefficients
at the input for a desired output density have to be determ-
ined in advance. Resulting frequency distributions will be
shown in the next section.

For other principal approaches to include spectral proper-
ties, see [9].

Phase properties which have been described in [2, 3], can
be ensured by setting the phase according to that function
after an FFT and after the multiplication of the frequency
response that corresponds to the mean PDS.

III. POSSIBLE SIMULATION SCHEMES

The basic structure of the simulation schemes is shown in
Fig. 2. The inter-arrival time generator triggers the length
generator! which activates the voltage generator during the
length I. A further windowing with the same length [
may be applied at the output. The voltage samples are
transformed with an FFT. Then a multiplication with the
square-root of the PDS ensures the spectral properties. Op-
tionally, the resulting phase may be changed to the de-
sired phase function. An IFFT yields the corresponding
time function. In principal, different results are obtained
if phase setting is applied or not.

The output windowing forces the output impulse to at most
the length that is delivered from the length generator. If
this windowing is used, one could also think of setting the
activation of the voltage generator to some constant, quite
long, time. Thus, six alternatives follow from Fig. 2:

stochastic stochastic constant
activation activation activation
with without with
windowing | windowing | windowing
without phase setting | sw s cw
with phase setting spw S$p cpw

The different possibilities are subsequently denoted with
the given short-form notation.

All alternatives have in common that the mean PDS equals
the desired PDS (slightly smoothed, if windowing is ap-
plied) and the voltage density can approximately be de-

!During the activation length, the length generator cannot be re-
triggered. .



scribed by (2). The voltage frequency distribution for the
case ’s’ is given in Fig. 3. Only the cases with window-
ing have a more dominant spike at zero, thereby reducing
portions with low amplitudes near zero. This can be con-
sidered as a minor change.

More crucial are the length distribution and the length-
energy relation.

Now, the influence of the phase setting will be outlined
in some more detail. One effect is that the voltage histo-
gram becomes slightly non-symmetric which can easily be
avoided by alternating the polarity of the impulses. More
important is that setting the phase to prescribed values
means that all impulse events are also more or less forced
to a certain pulse shape similar to the representative im-
pulse shown in [2, 3]. This is due to the fact, that unlike real
impulses, no variation in the multiplied PDS is provided
(we use the mean PDS), because this would complicate the
model significantly. In reality, also the group delay func-
tion has a slight variation around the typical function. This
can be modeled by adding a Gaussian random variable to
the samples of the group delay function. This results in
some variations of the impulse shape and looks a little more
realistic. However, without a phase setting the generated
impulses do not look like real impulses. Nevertheless, as
we shall see, they have advantages in some of the statistical
properties. The effect of phase setting especially becomes
clear when looking at the length-energy relation in Fig.
5 (case ‘spw’). It reveals a limitation of the energy with
increasing length. This corresponds to the fact that the
impulse shape is concentrated to the length of the repres-
entative impulse, which means that a length change from a
certain value (20 ps) on, does not have a significant effect
on the impulse energy. Longer impulse events are also only
encountered, if the inspection level of the impulse is rather
low. This means that the length is determined by quite low
amplitudes, not belonging to the main portion of the im-
pulse. With such a low level, even the length distribution
looks like the desired one (especially, when windowing is
applied). However, the amplitudes that are output at posi-
tions around instant ! after the beginning of the impulse are
insignificantly small. Hence, a phase setting should only be
applied, if the impulses should look like real impulses and
the length distribution and the length-energy relation are
not important.

Without phase setting a nearly linear length-energy rela-
tion is obtained (see, Fig. 5, case ‘sw’). If additionally a
length-dependent amplification is applied, even more com-
plicated length-energy relations like the one in Fig. 4 can
be realized. This may change the voltage density, though.
The length-distribution, however, is still the most critical
aspect. Due to the shape of the impulse response that cor-
responds to v/PDS, the length histogram has some discrete
maxima at short lengths (see, e.g., Fig. 6, case ‘s’). The
shape is slightly improved by additional windowing (Fig. 7,
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case ‘sw’). For longer impulses the length histogram looks
similar to the desired distribution. Although the length dis-
tribution cannot be regenerated exactly, one should bear in
mind that anyway, in reality the length distribution showed
the most variations dependent on the measurement loca-
tion. Thus, the resulting length distribution is not totally
unrealistic.

IV. CONCLUSIONS

A generator realization for non-stationary impulse-noise
simulation has been proposed. It is based on distinctive
pseudo-noise generators for the voltages, the lengths, and
the inter-arrival times. Special measures have been taken
to model spectral properties as well. Furthermore, an op-
tional setting of the phase to a desired phase function was
studied. We conclude that a phase setting is only suited,
if the shape of impulses is of importance. Otherwise, in
order to come to more realistic length-energy relations and
length distributions, one should not include this operation.
A good approximation was achieved for the voltage dens-
ity, the mean power-density spectrum, and, of course, the
inter-arrival time. Achieving the desired frequency distri-
bution of the length remains critical, but nevertheless, the
one obtained from a configuration with stochastic activa-
tion of the voltage generator together with windowing at
the output seems to be acceptable.
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Figure 1: a) Rejection method  b) Modified strip method
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Figure 2: Block diagram of an impulse-noise generator
(switches for different alternatives)
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Figure 3: Voltage density, case ‘s’
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