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1 Introduction

In order to account for carrier phase instabilities especially on
satellite or mobile links, several proposals have been made to de-
fine rotationally invariant coded modulation. They were based on
multidimensional or nonlinear convolutional codes, on separate en-
coding of the I- and @-coordinates, or on multilevel block codes,
especially with Reed-Muller codes as component codes.

This contribution describes a semi-algebraic approach with mul-
tilevel convolutional codes that leads to schemes with consider-
ably low complexity. The construction guarantees 90°-invariance
of the code, not yet of the information symbols itself. Hereto, a
special differential en/decoder structure has been developed.

2 Conditions for the binary convolutional com-
ponent codes

Assuming a binary set partitioning of the 2™-QAM, with a la-
belling that is chosen to be 90°-invariant from the third partition
label on, one obtains the following conditions:

I The all-ones sequence must be a valid code sequence of code (1).
(.., 1,1,...,1,...) € AV

IT All valid code sequences of code (1) must be valid code sequences
of code (2), too. AD C AP

IIT No conditions for AY), =3, ...

3 Differential en- and decoding

The modulo-4 differential decoder is located after the multistage
convolutional decoder. Otherwise the noise power would be dou-
bled at the input of the differential decoder, significantly reducing
the achievable coding gain.

The modulo-4 differential encoder is located between the encoding
stages one and two (see Fig.). It can be shown that this demands
for a systematic second-level code.

4 The semi-algebraic construction

As outlined in section 2, the all-ones sequence has to be a valid
code sequence of code (1). For k¥ = 1 a code with all genera-
tors having an odd weight obviously fulfills this condition.! For
E® > 1, the all-ones code sequence can be obtained, if there is
the possibility of creating odd weighted generators by combining
some rows (by means of the information sequence) of the Forney
matrix of code (1). This, e.g., is fulfilled, if one row consists only
of odd weighted generator polynomials or if the whole code is only
composed of odd weighted generators.

To ensure rotational invariance for code (2), as a necessary and suf-
ficient condition, one has to ensure that every valid code sequence
AW of code (1) is also belonging to the set of code sequences A®

140); pumber of info bits per frame, coderate RVU) = E,;Jl

of code (2).
V1w 35 AQ = 1. @ = T M) = A

(I9): Info series, GY): Forney generator matrix)

As this equation has to be fulfilled for arbitrary I®, I® appears
as a function of M. A possible approach for the construction of
code (2) is to define the components of T2 = (11(2),12(2), s gz)))
as shifted versions of /() (assuming k() = 1):

1D =10 .pir (K0 =1,h=1,...,k®, j, € {0,...,LY —1}).

L) is the constraint length of code (§) (not multiplied with &()).
D is a time delay factor (27! of the Z-transform).

There has to be at least one I,(lz) = IO, ie j, =0, in order to
express the low-order term D? = 1, appearing in G, by means
of G®. Furthermore, one j, has to equal j; = L() — L(?), This is
necessary as the term pHr=1 appearing in GO has to be expressed
by G with the maximum exponent L® — 1. For reasons of
decoding complexity it is useful to have L(® < L®), because
is usually greater than ). This can be achieved by the proposed
construction leading to a considerably low decoding complexity.

Some results are given subsequently. A coding scheme with an
asymptotic coding gain of 6 dB, e.g., has a complexity of 4 states
for the first stage and 8 states for the second (and, maybe, ad-
ditionally the Wagner decoding of a parity-check code as a third
stage).

Code (1) Code (2)
Gen. non-rec. (4,7,7) | (10,13,15), (16,13,15)
RO, IO d) | 1,3,6 2,3
Gain / dB 4.7
Gen. non-rec. [ (15,15,13) (51,61,73)
RO L0 49 [ 14,9 23,5
Gain / dB 6.5
Gen. non-rec. || (1,2,7,7) (46,52,61,73)
RO, L0 4P | 1,38 3,2,4
Gain / dB 6
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