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Another Application for Trellis Shaping: PAR Reduction for DMT (OFDM)
Werner Henkel, Member, IEEE,and Björn Wagner

Abstract—A bound for the possible reduction of the peak-to-av-
erage ratio (PAR) dependent on the rate as well as possible prac-
tical procedures are presented. The idea of trellis shaping, orig-
inally used to minimize average transmit power in single-carrier
systems, is applied to the problem of PAR reduction in multicar-
rier transmission. Its impact, as a function of code rate, as well as
design practicability is considered using metrics in both time and
frequency domain.

Index Terms—Crest factor, DMT, OFDM, PAR, peak-to-average
ratio, shaping.

I. INTRODUCTION

A CCORDING to the central limit theorem, the superpo-
sition of many carriers in multitone signaling leads to a

Gaussian-like density with a high peak-to-average ratio (PAR).
Here, we investigate the impact of trellis shaping on the PAR.
We first determine the symbol-error rate due to clipping (depen-
dent on the clipping level and the size of the modulation signal
set) and derive theoretical limits for the achievable PAR depen-
dent on the rate. While we concentrate on discrete multitone
(DMT), i.e., on real time-domain signals, the method can be ap-
plied to orthogonal frequency-division multiplexing (OFDM),
as well.

Due to space limitations, we reference only a few alternative
approaches. A pure time-domain method for PAR reduction has
been proposed in [1], which seems to yield good performance at
moderate complexity. It is based on iteratively subtracting im-
pulse-like functions in time domain at the positions where high
peak values occur. The functions are defined using reserved car-
riers. Maybe one direct algebraic coding approach in [2] should
also be mentioned that uses Golay sequences and describes them
as cosets of Reed–Muller codes. Unfortunately, the code rate
there is quite low. During the reviewing process of this paper, a
new procedure has been developed using so-called analog codes
to correct the effects of clipping at the receiver [3].

To obtain a first estimate of the impact of clipping on the error
rate, we simplify the problem by idealizing the density to be
exactly Gaussian.
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For the calculation of the symbol-error probability, let us as-
sume an ideal Gaussian i.i.d. density of the time-domain signal
samples. The average powerof a QAM signal constellation
with points is known to be

(1)

with denoting the minimum Euclidean distance between
points.

Choosing a definition of the discrete Fourier transform (DFT)
such that the average power in time and transform domain is
identical (factor for both transforms), the variance of the
Gaussian time-domain signal equals. Let the clipping level be

and the ratio of the clipping level over the root mean square
(rms) value be . We obtain the clipping noise
power1

(2)

Assuming a Gaussian (i.i.d.) noise density, the probability
of crossing the half distance between two neighboring QAM
signal points is

(3)

The symbol-error probability for an inner QAM-constellation
point is

(4)

Following the derivation in (1)–(4), in Fig. 1, we obtain re-
sults for the symbol-error probability in relation to the bit
allocation and the ratio of the clipping level over the rms
value. Although we used a quite simplified model for the ampli-
tude density of the time-domain samples which may be consid-
ered to be not too exact for small fast Fourier transform (FFT)
sizes and , we can observe that there is a demand for only a
slightly higher A/D and D/A resolution. This is of less practical
importance compared to the increased power consumption, the
nonlinear echoes, and the out-of-band power that are not treated
in here.

Now, we are presenting a theoretical limit for the achievable
PAR dependent on the code rateor, equivalently, the redun-
dancy offered for PAR reduction. We still do this based
on the simplifying assumption of a Gaussian i.i.d. time-domain
density. After this theoretical treatment, we will present simu-
lation results, too.

1For a closed-form solution, see [4].
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Fig. 1. Symbol-error probabilityP as a function of the number of bits per
carrierm and the clipping ratioL = ŝ=

p
P under idealizing Gaussian i.i.d.

assumptions.

Let again be the voltage limit. The average power belonging
to a limited Gaussian density is given by

(5)

The probability of an amplitude lower than is
. The probability that this is the case

for all time-domain samples is .
The code rate follows to be2

(6)
constant being the ratio of the number of DFT com-

ponents relative to the number of independently usable carriers
( for baseband transmission due to conjugacy con-
straints). Note that the rateis dependent on , i.e., the number
of bits per carrier, not on . A parametric plot using (5) and
(6) of the principal achievable PAR at a certain rate

is shown in Fig. 2. Although the derivation was based on
some simplification, the results give the indication that a quite
low percentage or redundancy (2%) should be sufficient to re-
duce the PAR to the value of single-carrier QAM (or carrier-
less AM/PM [CAP]) covering the same frequency band. How-
ever, this does not tell how the reduction can be achieved. Note
that the lower limit of the PAR is 3. This is the PAR of a rect-
angular distribution, which is the approximation of the clipped
Gaussian density for very low limit.3 In Fig. 2, simulation
results for and , respec-

2For a treatment of the complex OFDM case, see [5] and [6].
3Derivations of the PAR for single-carrier modulation and for a rectangular

density can be obtained from the authors or by visiting http://www.ftw.at

Fig. 2. Achievable peak-to-average ratio (PAR, linear scale) at a certain code
rateR with 16-QAM (m = 4) on the carriers (theoretical and simulation
results).

tively, have been included; they are almost identical and hence
indistinguishable. In the simulations, we also limit the voltage
at a certain level and computed the PAR and corresponding
rate when discarding sequences with peaks above. We see
that the theoretical results due to the idealistic assumptions are
somewhat far from the outcome of the simulations. Neverthe-
less, important properties like the independence ofcould be
confirmed. Although the simulations have only been carried out
down to around 0.8, the lower PAR limit of 3 seems to hold
for the simulation outcomes as well. Especially, the statement
still holds that only a very low redundancy should be required
to achieve a PAR below the one of single-carrier QAM.

We did not consider oversampling or interpolation between
the time-domain samples resulting from the-point IDFT,
which may lead to an increase in the PAR values, resulting
in some degradation in the PAR() relation of Fig. 2. For a
discussion of the effect of, e.g., a Lagrange interpolation, the
reader is referred to [7].

II. TRELLIS SHAPING FORPEAK LIMITATION

We first give a short introduction to trellis shaping. For a de-
tailed treatment, the reader is referred to Forney’s paper [8].

In trellis shaping, a valid code sequence of a convolutional
code is added (modulo 2) to a data sequence (see Fig. 3). The
code sequence is chosen according to some criteria using a
Viterbi algorithm. In the original application described by
Forney, e.g., the optimization criterion was the average power.

Let be the parity-check matrix (syndrome former) of the
convolutional code. Then, together with a valid code sequence
, we obtain . This allows to eliminate the superim-

posed code sequence at the receiver side. However, hereto it is
necessary to preprocess the information sequencewith the left
inverse of the syndrome former . With this, the
information can be retrieved

(7)

Unlike Forney’s proposal for trellis shaping, according to Fig. 3,
we apply a multidimensional shaper that sequentially influences
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Fig. 3. Multidimensional trellis shaping.

the last partition in a binary partition tree. For the multitone ap-
plication, a DFT framing has to be introduced after the QAM
mapping. The principal structures of the one- and multidimen-
sional shapers are quite the same. However, the matrix dimen-
sions of the syndrome former and its inverse are different. In-
stead of 2 1 and 1 2, we have and for

and , respectively. We apply the shaping in the last
partition since this is the bit position with the biggest possible
change in the signal-point location in a -QAM or -PSK
alphabet.

The well-known code may serve as an example for
a possible shaping code. The corresponding matrices are

(8)

Two possible inverse syndrome formers have been given. We
also checked codes with construction principles other than the
maximum free Hamming distance, but did not see better results.

For the desired application, we subdivide the DFT vector into
blocks4 of length . The rate of the convolutional code is chosen
to be , which means an overall redundancy of

.

4A method called “partial transmit sequences” described in [5] and [9] and
the iterative method described in [10] also use some block structure.

As an optimization criteria inside the Viterbi algorithm, we
could think of metrics in time or DFT domain. We describe pos-
sible approaches in the following two sections.

A. Metric in Time Domain

As a possible metric, let us consider the peak power itself.
This metric, however, does not fulfil the typical requirement for
a metric inside the Viterbi algorithm, namely to be additive.

The time-domain peak power has to be determined for every
path segment in the trellis and the time-domain vector needs to
be updated for every additional block according to

(9)

The terms in brackets are for baseband transmission. Con-
jugacy constraints have to be fulfilled in order to obtain a real
time-domain signal. For a four-state -rate shaping code this
means that in total eight DFT’s (42 trellis paths) instead of
only one FFT have to be computed which means a relatively
high complexity. There may, however, be a chance to reexpress
the DFT/FFT as has been mentioned in [5] to reduce the com-
plexity. Despite the high complexity, the procedure may still
be of interest for broadcast applications because then the com-
plexity has to be installed only once at the transmitter side. The
additional complexity due to trellis shaping at the receiver side
can be neglected. Results of trellis shaping with the peak power
in time domain as the Viterbi metric are given in Fig. 4. The
strong limiting effect of the shaping becomes obvious. The PAR
results are nearly as good as for QAM/CAP, having a PAR of 6
( ). The dashed vertical lines at are valid for
the shaping-code rate 1/3. Note that the total redundancy for the
shaping is the shaping-code rate divided by the number of bits
of the signal sets , i.e., for 16-QAM, Fig. 4 shows results with
redundancies of 1/8, 1/12, 1/16, and 1/32 (code rates 1/2, 1/3,
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Fig. 4. Histogram for shaping with the time-domain metric (16-QAM,N =

512; shaping-code rates1=n).

1/4, 1/8). The results do not take any interpolation filter into ac-
count. One should note, however, that overshooting caused by
the filter will worsen the PAR.

B. Metric in DFT Domain

In DFT domain, we have the problem that unlike Parseval’s
formula for the average power, there is no simple expression for
the peak power that would relate time and DFT domain.

As a simple indication for a high voltage peak in time domain,
however, one may at first sight concentrate on cases where the
phases of the carrier symbols are nearly a linear
function of the frequency and would eliminate the phase term
inside the IDFT . A large variance
from an estimated linear function (and also from parallels at
a distance of ) would then be some indication for low peak
values. However, practical investigations show that estimating
the peak position by, e.g., linear regression is too unreliable.

Another procedure, which works at least for small signal sets
and small carrier numbers is based on the tabulation of block-
transition metrics in DFT domain. There, we separately inves-
tigate the influence of two (equal-sized) segments of the DFT
frame on the time-domain signal, setting remaining components
of the DFT frame to zero. We speak of “block-transitions” since
the relation of the contents of the segments to one another is of
importance for the time-domain amplitudes. For example, re-
peating the pattern of one segment in the other segment will
often cause higher amplitudes in time domain than independent
choices. When subdividing the DFT block into equal-sized seg-
ments, the time-domain samples may be computed by adding
the per-segment DFT’s. This means that the influence of the
segments on the time-domain result is additive. For defining
a shaping metric, as has already been mentioned, we consider
pairs of segments, which may lead to counting segments mul-
tiply, but still the relation to the time-domain result is addi-
tive. With four segments, we may, e.g., consider the combina-
tions 1 : 2, 2 : 3, 3 : 4, and 4 : 1, which would mean taking all the
segments twice. When using the Viterbi algorithm and starting
from the first segment of the DFT frame, we may have different
counts of using the different segments. For example, when

Fig. 5. Block transitions.

Fig. 6. Block-transition metrics for blocks of length 2 with 4-QAM signal sets.

considering only neighboring segments for the metric computa-
tion (1 : 2, 2 : 3, and 3 : 4) the border segments are only counted
once, while the others appear twice. This will not be taken into
account.

As metric we actually choose the absolute value of the time-
domain peak voltage.5 Ignoring that the time-domain peaks that
correspond to different segments may have different positions
and signs, we still define this to be an additive metric. This ad-
ditive metric can easily be used inside the Viterbi algorithm.

To conclude, the metrics are determined as the time-domain
peak amplitude resulting from certain block transitions, setting
the remaining components of the DFT frame to zero. All such
possible block transitions together with the corresponding (nor-
malized) peak amplitudes are tabulated.

The normalized peak amplitude can either be used directly as
a metric inside the Viterbi algorithm, meaning that only the cur-
rent transition (neighboring segments) is considered, or linear
combinations of transition metrics may be used (see Fig. 5).
For example, for a decision upon block, all transitions ,

, , could be incorporated. A part of a nor-
malized metric table for one transition is shown in Table I.

Fig. 6 shows all the ( : block size) normalized
metrics of one transition for , . The size of the
table is determined by the signal-set size and the segment size
(times 2), which has to grow with to obtain a significant PAR
reduction. The use of the procedure is thus restricted to only
small alphabets and small carrier numbers.

For illustration, we show a few steps of the Viterbi algorithm
in Fig. 7. The underlying modulation alphabet is 4-QAM and as
a shaping code, we use the code. As an inverse syndrome
former, we have chosen one with leading zeros. This leads to
zeros in the first position of the lower line segments, which is
the line to be modified by the shaping sequence. The trellis paths
are labeled by the coder input (irrelevant for shaping purposes),

5Using the time-domain peak power, instead, leads to only slightly worse re-
sults.
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Fig. 7. Example of the metric computations carried out by the Viterbi algorithm of the trellis shaper.

TABLE I
TRANSITION METRIC TABLE FOR ONESINGLE BLOCK TRANSITION FOR

BLOCKS OFSIZE 2 AND 4-QAM (NUMBERED 0–3)AS SIGNAL SET

the coded binary sequence, and the QAM outcomes of the addi-
tion of the lower line output of the inverse syndrome former and
the components of the binary shaping code sequence. After the
first segment (DC component is zero, anyway), the metric is ini-
tialized with zero. Then, for the next segment, we use the metric
table with transitions between segments 1 and 2. Correspond-
ingly, for the next segment, the table with transitions between
segments 2 and 3 is chosen. In this example, we have only used
tables for neighboring segments, i.e., no linear combination of
different transition metrics has been applied.

The advantage of the procedure is that the complexity for
this block-transition shaping is extremely small because only
a Viterbi algorithm for a four-state trellis needs to be computed
( add-compare-select operations) and no ad-
ditional FFT or DFT is required.

The accumulated DFT-domain metrics are not in a direct
simple algebraic relation to the peak power in time domain, but
can offer some “evidence” about the peak value. Thus, as ex-
pected, the results (see Fig. 8) are a little worse than using direct
transforms into time domain.

Fig. 8. Histogram for shaping with the DFT-domain metric (4-QAM,N =

64; shaping-code rate1=3).

One referee pointed us to some further possibilities for a
DFT-domain metric described in [11]–[13], which may be
worth studying.

III. CONCLUSIONS

It has been outlined that trellis shaping is in principal ap-
plicable to reduce the PAR of a multitone signal. A time-do-
main metric yielded quite good results with relatively high com-
plexity. A DFT-domain metric was shown to be a worthwhile
alternative with low complexity for small signal sets and car-
rier numbers. We showed results with shaping redundancies be-
tween 3% and 12.5%.
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