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Abstract—Tremendous efforts have been made to analyze and
discern the digital information content of the DNA ever since
the introduction of the Watson-Crick model, later fueled by the
availability of genomic data. However, there is also an analog type
of information which is related to the physicochemical properties
of the DNA, manifested in structural and topological variations
of the chromosome. Hence, investigating the relationship between
digital information contained in the sequence of bases and the
analog parameters associated with it is very important to the
general understanding of the coding structure in the DNA. In
this paper, we represented analog information by thermodynamic
stability and compare it with digital information using Shannon
and Gibbs entropy measures on the complete genome sequence
of the bacteria Escherichia coli (E. coli). Furthermore, the link to
the broader classes of functional gene groups (anabolic, catabolic,
aerobic, and anaerobic) is examined. In most regions of the
genome, the Shannon and Gibbs entropies are anti-correlated.
Around the terminus, there is an almost perfect anti-correlation
with high Shannon and low Gibbs entropies, meaning that the
sequence is more random and at the same time less stable. The
other core finding is the very high similarity in the profiles of
entropies and the distribution of anabolic genes.

Index Terms—Biological Sequence Analysis, DNA, Functional
classes of Genes, Thermodynamic Stability

I. INTRODUCTION

The information contained in the DNA is inscribed by the
sequence of the four bases Adenine (A), Thymine (T), Cyto-
sine (C), and Guanine (G). The average information content
of the genome can be measured using Shannon entropy [1].
So far, researchers have extensively applied this information
theoretic measure for studying a wide variety of topics in
molecular biology and bioinformatics, including DNA pat-
tern recognition, gene prediction, sequence alignment, and
comparative genomics [2]–[9]. We applied Shannon’s entropy
for identifying an underlying coding structure in a complete
genome of an organism. However, we believe that solely look-
ing at the base or codon composition in nucleotide sequences
will not show the complete picture of the underlying coding
structure in the DNA. In addition to the digital information,
there is also an “analog” information present, which is due
to physicochemical properties of the DNA [10] [11]. The
three-dimensional analog information is a result of dynamic
structural and topological variations of chromosomes (e.g.
shape and stiffness) to facilitate and regulate activities such
as gene expression, chromosome compaction, replication, and

transcription [12]–[14]. Hence, looking into both the digital
information in the nucleotide sequence and the analog coding
counterpart jointly is very important.

Stacking between adjacent base pairs and pairing between
complimentary bases determine the thermodynamic stability of
the DNA [15] [16]. It is asserted that the relative stability of
the DNA duplex structure relies on the identity and orientation
of successive base steps [17] [18]. In bacteria, the physico-
chemical properties, including DNA thermodynamic stability,
supercoiling, and mechanical stiffness, are dictated by inter-
actions between neighboring bases and are central properties
which, for example, determine the gene expression [12]. Since
the stability of the DNA is a very decisive factor and due
to the availability of thermodynamic parameters to describe
DNA stability, such as Santalucia’s unified nearest-neighbor
(NN) thermodynamic stability parameters (free energies) of
Watson-Crick base pairs in 1 M NaCl [19], we would associate
analog information to be a measure of relative thermodynamic
stability. However, we did not include sequence-independent
effects of stability.

In this study, we will base our analysis and observations
on the 4641652 bp long genome sequence of the E. coli K-
12 MG1655 strain (accession number: [GenBank: U00096.3]).
Shannon’s block entropy is used to measure the digital infor-
mation, whereas Gibbs’ entropy is employed to measure the
thermodynamic stability after the probability distribution is
properly adapted to represent stability. To further relate the
two forms of information with a functional meaning, we will
also incorporate spatial distributions of the wide classes of
anabolic, catabolic, aerobic, and anaerobic functional genes.
By doing so, we hope to see connections between thermody-
namic stability and digital information as well as functional
meanings it might provide.

II. METHODS

First, the genome sequence is rearranged to start at the
origin (OriC) of replication. Then, the entropy of chunks of
the DNA sequence is computed by scanning the complete
genome with a sliding window. Within a window, all possible
words of the given block size (N ) are counted. To account
for all adjacent base interactions, neighboring base pairs are
considered. That is, if the nucleotide sequence is “AGCTAG”
and the block size is 3 base pairs (bp), AGC, GCT, CTA, and



TAG are counted. In this paper, only a block size of three
(N = 3) is considered (i.e. codons).

The Shannon entropy quantifies the average information
content of the sequence from the distribution of symbols
(words) of the source [20]. It is mathematically given as

HN = −
64∑
i=1

Ps(i) logPs(i) , (1)

where Ps(i) is the probability (relative frequency) to observe
the ith codon. The Shannon entropy is maximal when all
words occur at equal probabilities, and it is zero when one
of the symbols occurs with probability one.

Ledwig Boltzmann was the first to give a statistical ex-
planation of the physical (thermodynamic) entropy by relat-
ing it to the number of possible arrangements of molecules
(microstates) belonging to a macrostate [21]. The celebrated
formula reads

SB = kB ln Ω . (2)

kB is the Boltzmann constant which gives this entropy a
thermodynamic unit of measure, kB = 1.38 × 10−23J/K,
and Ω is the number of accessible microstates. Boltzmann’s
entropy is defined for a system based on a microcanonical
ensemble in which the macrostate is of a fixed number of
particles, volume, and energy. All states are accessed equally
likely with the same energy [22]. Later, Gibbs devised a
generic entropy definition over the more general probability
distribution of the possible states (canonical ensemble). The
Gibbs entropy is defined as

SG = −kB
∑
i

PG(i) lnPG(i) , (3)

where the sum is over all microstates and PG(i) is the
probability that the molecule is in the ith state. It can easily
be seen that for a uniform distribution of states, the Gibbs
entropy reduces to the Boltzmann entropy.

Gibbs’ entropy has a similar form as Shannon’s entropy
except for the Boltzmann constant. Nevertheless, unlike the
Shannon case where the probability Ps is defined according to
the frequency of occurrence, we will associate the probability
distribution with thermodynamic stability quantified by the
nearest-neighbor free energy parameters. We used Santalucia’s
unified free energy parameters for di-nucleotide steps at 370C
in [19], presented here in Table 1. For block sizes greater
than two, the energies are computed by adding the involved
di-nucleotides. For instance, if the block size is three and
the sequence is AGC, the energies of AG and GC will
be added. This way, we have a list of codons with their
corresponding energies, providing 64 energy states denoted
by E(i). Assuming a random process behind the construction
of the DNA, with a certain probability, one would obtain
molecules with certain energies. If there are ni codons in the
ith energy state, we assumed that the probability for having a
certain energy state follows the Boltzmann distribution given
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Fig. 1. Shannon and Gibbs entropies for binary input sequence

by

PG(i) =
nie

− E(i)
kBT∑64

j=1 nje
− E(j)

kBT

. (4)

T is the temperature in Kelvin. Although we are aware that the
Boltzmann distribution gives the most probable distribution of
energy (the one pertaining to the equilibrium state) for states
having a random distribution of energies (e.g. ideal gas), which
is not the case here, we just used it to have a representation
of stability (energy) in an entropy-like expression.

To see how the Gibbs entropy captures the stability, let us
consider the binary case where there are only two possible
entries, AT and GC. One representing the AT-richness and
the other GC-richness. If the probability of GC is p, the
probability of AT will be 1−p. We use the energies of AT and
GC from the table and compute both entropies by changing
the GC richness p from 0 % to 100 %, stepwise. Ignoring
the Boltzmann constant and using the same logarithmic base,
the result is shown in Fig. 1. The binary Shannon entropy
function is symmetric with the maximum at 50 %. It tells
us how random the sequence is. By comparing it with the
maximum value, we can tell how diverse the sequence is, but it
does not distinguish between AT and GC. However, the Gibbs
entropy curve is uniformly related to the GC content (except
for extremely large values of p, which is not feasible because
the GC content of organisms typically cannot be greater than
80 %). The higher the Gibbs entropy, the higher the GC
content. Hence, it measures stability.

The functional gene groups were taken from the Gene
Ontology (GO) branches provided by the RegulonDB
database. Anabolic genes: biosynthesis of macromolecules
(GID000000120); catabolic genes: degradation of macro-
molecules (GID000000057); aerobic genes: aerobic respira-
tion (GID000000068); anaerobic genes: anaerobic respiration
(GID000000069). In 500 kbp sliding windows of 4 kbp
shift, the corresponding functional groups where counted. The
window size was chosen to have a significant number of genes
to obtain a smooth curve.



TABLE I
UNIFIED NEAREST-NEIGHBOR FREE ENERGY PARAMETERS OF WATSON-CRICK BASE PAIRS IN 1 M NACL AT 370C [19].

Sequence AA|TT AT TA CA|TG GT|AC CT|AG GA|TC CG GC GG|CC
∆G(Kcal/mol) -1.00 -0.88 -0.58 -1.45 -1.44 -1.28 -1.30 -2.17 -2.24 -1.84
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Fig. 2. Shannon and Gibbs entropies per codon for window size of 100 kb

III. RESULTS AND DISCUSSION

Our first aim was to compare the “analog” information,
quantifying relative stability and measured with the Gibbs
entropy (applying Boltzmann statistics to convert the stacking
or melting energies to probabilities), with the digital Shannon
information. To do so, a sliding window is shifted 4 kb at
a time along the complete genome starting from the origin
(OriC) as the center of the first window. To support our quali-
tative statements of comparisons, region-wise cross-correlation
coefficients are incorporated in the figures. The Shannon and
Gibbs entropies are plotted together for window sizes of 100
kb, 250 kb, and 500 kb in figures 2 to 4. Since the nucleotide
sequence is rearranged to start at the origin of replication
(OriC), the terminus region will be exactly in the middle. This
is also evidently visible from the shape of Gibbs entropy curve
in which the lowest point is around the terminus, attributed to
the AT-richness. Smaller windows lead to high fluctuations
and are not easy to compare. Likewise, a very large window
will hinder the visibility of the differences as a result of the
smoothing effect it creates. However, the general shapes of
the curves are not affected by a change in window size. The
positions of the troughs and crests are preserved.

The two entropies are mostly anti-correlated, with a stronger
magnitude around the terminus. The terminus region is charac-
terized by high Shannon entropy and low Gibbs entropy, more
random and less stable. This means, the codon composition
of the sequence has become slightly more balanced, which
is due to an increase in AT-rich codons. Similarly, there are
also positions where the Shannon entropy is relatively low and
the Gibbs entropy is higher (e.g. in Fig. 3 around positions
0.8 Mbp and 3.4 Mbp) which means a codon bias towards
being more GC-rich. In general, the interpretation for a block
size of 3 bp should go as follows. If both entropies increase,
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Fig. 3. Shannon and Gibbs entropies per codon for window size of 250 kb
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Fig. 4. Shannon and Gibbs entropies per codon for window size of 500 kb

it means that both the GC content and the randomness has
increased, the sequence is stabilized by the usage of more GC-
rich codons. However, if there is a decrease in Gibbs entropy
while Shannon entropy is higher, the sequence has become less
stable (AT-rich) and more random as a result of an increase
in AT-rich codons usage.

To see what functional meaning resides in the corresponding
chromosomal regions, we further compared the Shannon and
Gibbs entropies with the distribution of the four classes of
functional genes, namely anabolic, catabolic, aerobic, and
anaerobic. We used a 500 kb window and counted the
number of genes of the corresponding functional group. The
distribution of the four classes of genes are plotted along
with the Gibbs entropy. The results are presented in Fig. 5.
Interestingly, from the figure, we observe that the shape of
Gibbs entropy and the distributions of anabolic genes are
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Fig. 5. Distribution of functional classes of genes and Gibbs entropy in 500
kb sliding window

strongly related. In a nutshell, the trends for the Gibbs entropy
and the number of anabolic genes are decreasing as we move
from the origin to the terminus along the chromosome. From
the region-wise correlation values, it can be seen that a high
cross correlation exists, especially in the right replichore. The
global cross-correlation coefficient between Gibbs entropy and
the presence of anabolic genes is around 0.64, which is also
a high correlation considering the length of the genome. The
distribution of the aerobic genes has also the same increasing
and decreasing patterns as the Gibbs entropy, except for the
quantization effects resulting from a very low number of genes.
The dependency of the catabolic and anaerobic genes with the
entropies is not so uniform and obvious to see as for anabolic
and aerobic genes. However, there are relationships in distinct
regions of the chromosome. Overall, the plots yield qualitative
relations between digital and analog quantities or properties
and gene functions at specific sites on the chromosome.

IV. CONCLUSION

Analyzing the thermodynamic stability and digital informa-
tions jointly not only provides an additional angle to interpret-
ing and understanding the genome sequence but also provides
a way to incorporate the structural and functional implications
as well. We have shown the connection between the digital
information of the sequence, the relative thermodynamic sta-
bility, and the functional meaning of genes. The region-wise
cross-correlation coefficients show that Shannon and Gibbs
entropies are mostly anti-correlated in the E. coli genome.
Especially, the two entropies are almost exactly opposite
around the terminus, which is a justification of the low stability
and more uniform distribution of codons. The other core
finding is the relation between the distribution of anabolic and
aerobic genes to the Gibbs entropy. The observed patterns are
very similar, implying the clear connection between gene types
and stability and, due to the correlation between entropies, also
to statistical properties, i.e., the information content.
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