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Abstract—Large arrays of acoustical sensors are very common
for all kinds of sonars, used to navigate and detect the obstacles
in the underwater environment. The large volume of data,
generated by such an array has to be transmitted and stored,
giving a great motivation for applying compression methods. This
paper concentrates on source coding, based on the well-known
linear predictive coding methods, optimized for such sources. In
particular, the natural time and space correlations of a passive
sonar are taken into account by applying the multichannel linear
prediction. One fixed variable-length universal code, namely
the subexponential code, is found to perform better than the
typical Golomb-Rice codes, used in audio applications. Its average
redundancy is comparable to an optimum Huffman code, with
much less implementation complexity.

I. INTRODUCTION

The non-transmitting passive sonar arrays play an impor-
tant role in localization of sources under water. Particularly in
the submarine context, different passive sonars are for tactical
reasons the only sources of information during a mission.
In general an array consists of multiple sensors, arranged
in a certain way to build the array structure. Most common
geometries include linear, circular, and planar (rectangular
grid) arrays.

The discrete samples, generated by a hydrophone, may
have natural time and space correlations, such that this digital
data is expected to be redundant. The source coding process
removes the redundancy of the original data, reducing the
binary representation size of the compressed data either in
a lossless way (the original data can be fully recovered),
or discarding some information, generally denoted as lossy
compression.

Most of the existing approaches for the reduction of amount
of data, produced by a sonar, consider the final image after the
signal processing is done and thus concentrate on image com-
pression techniques, such as based on wavelet transform [1],
discrete cosine transform [2], or even inspired by compressive
sensing [3]. There are only a few examples for using the well-
established compression methods for the raw sonar data [4],
[5].

These lossy image compression methods can be considered
feature extraction methods, as they try to keep only the
relevant source information. They clearly depend on the array
processing being used and cannot provide the unaltered raw
data for alternative processing (e.g. adaptive beamforming).
This is only possible with lossless source coding, which maps
the discrete source symbols into codewords in a fully reversible
manner.

A well-known assumption of independence and identical
distribution (i.i.d.) for a given source is theoretically comfort-
able, but usually not applicable to the sonar data. The statistical
dependencies of the input signal are difficult to exploit in an
entropy encoder for sources with memory in practice [6]. One
of the concepts allowing a rather low complexity solution to
this problem is predictive coding.

II. LINEAR PREDICTIVE CODING

The basic idea behind the predictive coding (Fig. 1) is to
guess the value of the next symbol and to apply an entropy
encoding to the difference (also called residual or error) e(k)
between the input samples x(k) and their prediction x̂(k)

e(k) = x(k)− x̂(k) . (1)

The measure of the effectiveness of a prediction is the

Fig. 1: Basic structure of lossless predictive coding

prediction gain, defined as

GP =
σ2
x

σ2
e

. (2)

A. Linear Prediction

Linear prediction (LP) is a widely used subclass of pre-
dictors, which uses a linear combination of the past values
x(k− i), i ∈ [1, L] to predict the current sample x(k) [7]. The
forward linear predictor of an order L is given by

x̂(k) =

L∑
i=1

aL,ix(k − i) , (3)

= aTLx(k − 1) ,

where aL = [aL,1 aL,2 ... aL,L]
T is a vector, containing

L predictor coefficients and x(k − 1) = [x(k − 1) x(k −
2) ... x(k − L)]T are the past samples. An optimum linear
predictor minimizes the mean-squared error

MSE(aL) = E{e2(k)} = E{(x(k)− x̂(k))2} (4)
= E{(x(k)− aTLx(k − 1))2} .



Such a minimization problem can be solved, setting the partial
derivatives of the expression in Eq. (4) to zero and obtaining a
system of linear equations (called normal or Yule-Walker eq.)

RLaL = rL , (5)

with rL and RL defining correlation vector and matrix, re-
spectively, which contain the autocorrelation coefficients Rxx
of the input signal x(k)

rL = [Rxx(1) Rxx(2) ... Rxx(L)]
T ,

RL =


Rxx(0) Rxx(1) · · · Rxx(L− 1)
Rxx(1) Rxx(0) · · · Rxx(L− 2)

...
...

. . .
...

Rxx(L− 1) Rxx(L− 2) · · · Rxx(0)

 .

If the input signal is stationary or locally stationary and not
fully deterministic – a valid assumption in sonar signal pro-
cessing – the correlation matrix is nonsingular (or invertible)
and the optimal linear predictor coefficients can be finally
determined as

aL = R−1L rL , (6)

The complexity of the direct method of Eq. (6) can be reduced
by exploiting a very regular structure of the correlation matrix
RL, which is in fact a Toeplitz matrix. Robinson, Levinson,
and finally Durbin proposed a recursive procedure, which can
be found in e.g., [7].

B. Multichannel Linear Prediction

A sonar array is a great example of an application with mul-
tiple, possibly highly correlated, channels. The multichannel
data can be viewed as a two-dimensional array – with one time
and one spatial dimension. It is possible to apply the previously
described linear prediction to both dimensions independently.
A better way to take the inter-channel correlation into account
is, however, to use the multichannel linear prediction (MLP)
[8].

Adapting Eq. (3) from the previous section, the linear
prediction residual vector of order L in a multichannel case
with M channels is given by

x̂M (k) =

L∑
i=1

AL,ixM (k − i) , (7)

= AT
LxML(k − 1) ,

where

xM (k) = [x1(k) x2(k) ... xM (k)]
T
,

xML(k − 1) =
[
xT (k − 1) xT (k − 2) ... xT (k − L)

]T
,

AL = [AL,1 AL,2 ... AL,L]
T
.

Following the derivations resulting in equations (4) and (5), the
multichannel version of the normal equations can be shown to
be

RMLAL = R1/L , (8)

with the inter-correlation matrix R1/L and block-Toeplitz
covariance matrix RML defined as

R1/L = [Rxy(1) Rxy(2) ... Rxy(L)]
T ,

RML =


Rxy(0) Rxy(1) · · · Rxy(L− 1)
Rxy(1) Rxy(0) · · · Rxy(L− 2)

...
...

. . .
...

Rxy(L− 1) Rxy(L− 2) · · · Rxy(0)

 .

The main building block of these matrices is a cross-correlation
matrix Rxy(i), which contains autocorrelation coefficients
along the main diagonal and generally might not be symmet-
rical

Rxy(i) =


Rx1x1

(i) Rx1x2
(i) · · · Rx1xM (i)

Rx2x1
(i) Rx2x2

(i) · · · Rx2xM (i)
...

...
. . .

...
RxMx1

(i) RxMx2
(i) · · · RxMxM (i)

 .

Similar to Eq. (6), the predictor matrix AL of size ML×M
can be directly calculated, if the matrix RML is nonsingular.
It is also possible to reduce the computation cost by applying
a generalization of the Levinson-Durbin algorithm to the
multichannel case [8].

C. Universal Entropy Codes

Besides a predictor, an entropy encoding, shown in Fig. 1,
is another key component of the (linear) predictive coding.
The basic idea behind any entropy encoding is to map fixed-
length input symbols to variable-length codewords, such that
the most probable source symbols become the shortest codes.
The Huffman code is a classical example of an asymptotically
optimum entropy code. This variable-length code is used
in many applications (e.g. JPEG or MP3), especially if no
assumptions about the probability distribution can be made.
The PMF of the source is then either estimated once or block-
by-block (adaptive) in the first coding step, followed by the
Huffman codeword tree generation, based on the estimated
symbol frequencies. More details about Huffman codes and
another very popular form of entropy coding – arithmetic
coding – can be found in [9] or [10].

In contrast to Huffman or arithmetic coding, universal
codes can be used without the exact knowledge of the PMF, if
the ranking of symbols’ priorities is non-increasing and known
a priori. A universal code assumes some fixed probability
distribution, such that encoding and decoding complexities are
quite low. However, the code is only optimum, if the assumed
distribution matches the actual one of the source symbols.

The compression ratio is an ultimate performance measure
for the final application, which also takes the overhead into
account, introduced by the LN (normalized order) LP coeffi-
cients of length bLP bits and variable number of source coding
parameters P (P ≥ 0) of the length bpar bits. Essentially, this
is a ratio of the compressed block size to its original size BLP ,
defined as

CRC(S) =

∑
s∈S lC(s) + LN · bLP + P · bpar

BLP
, (9)

where S is the source sequence of an arbitrary size BLP bits.



1) Golomb-Rice Codes: The original Golomb family of
universal codes was proposed for sources with a geometric
distribution [11] and uses a single parameter m to better match
the actual distribution of the source. In the Golomb code
a source symbol s (a non-negative integer) is mapped to a
bit-valued codeword CG(s,m) in two steps, corresponding to
prefix and suffix parts:

• The prefix part of a Golomb code is the value of the
quotient

q =
⌊ s
m

⌋
,

encoded in the unary fashion as a q+1 bits long CU (q)

• The suffix part consists of the remainder

r = s−mq ,
coded as an unsigned integer in binary representation
(denoted here as a beta code Cβ(r)) with a bit-length
lCβ depending on the value of m. If m is a power of
2, then the remainder will always be represented by
log2(m) bits and has a constant length lCβ = log2(m).
Otherwise the encoding (and decoding) is more com-
plicated and codeword length depends on the value of
r. Let c = dlog2me bits, which would be the upper
bound to accommodate all possible values of r. It is
possible, though, to use one bit less for the values of
r between 0 and 2c−m (corresponding to the binary
range of blog2mc bits), such that

lCβ(r) = c− 1, r ∈ [0, 2c −m] ;

lCβ(r) = c, r ∈ [2c −m+ 1, 2c − 1] .

A final m-parameter Golomb codeword for a symbol s is
the concatenation of prefix and suffix parts CG(s,m) =
{CU (q), Cβ(r)}. Obviously, a great simplification of the orig-
inal Golomb code can be achieved by choosing the parameter
m = 2k for some non-negative k. In this case the second
part of the Golomb code, Cβ(r), does not need any additional
calculations, it is simply the k least significant bits of the
binary representation of s. This was recognized by Rice in
[12], who developed an algorithm for such codes, now known
as Golomb-power-of-2 (GPO2), Golomb-Rice, or simply Rice
codes. Because of its implementation simplicity, this kind of
codes is widely used in various applications (e.g. JPEG-LS),
but even more frequently for audio compression (Shorten,
FLAC, and MPEG-4 ALS to name a few).

2) Exp-Golomb Codes: The Golomb codes as well as the
Rice codes provide quite effective low redundancy coding
for geometric (e.g. Laplace) distribution sources. However,
changes in the source distribution can lead to a very quick re-
dundancy growth. The more robust parametrized Exp-Golomb
codes (also called Elias-Teuhola [13]) have a very similar
structure to the Golomb codes and supposed to better fit
exponential sources:

• The variable-length prefix part is a unary code of

d =
⌊
log2

(
1 +

s

2k

)⌋
.

• The suffix part of the length d+ k bits is the binary
representation of

r = s− 2k
(
2d − 1

)
, r ∈

[
0, 2d+k

]
.

This part has constant length if d does not change.
Similar to the suffix of the Golomb-Rice code, it repre-
sents the ”rest” information (remainder), not included
in d.

The length of a codeword CEG(s, 2
k) = {CU (d), Cβ(r)}

is given by lCEG(s,2k) = 1 + k + 2
⌊
log2

(
1 + s

2k

)⌋
. Due

to truncation of the logarithm, the length increases by 2
(logarithmically) each time s is a power of 2.

3) Subexponential Codes: The subexponential codes may
seem to be just another set of Rice codes. They also depend
on a non-negative parameter k and consist of two parts. In
contrast to the previous codes, all integer symbols with values
smaller than 2k are coded in binary and mapped to fixed-length
codewords of length lCSE(s,k) = k+ 1. For larger values of s
the code length increases logarithmically, similar to the Exp-
Golomb code.

• The variable-length prefix part is either zero, if s <
2k, or otherwise a unary code of d

d =
⌊
log2

( s

2k−1

)⌋
, s ≥ 2k .

• The suffix part has the same dependency on the value
of s as the prefix: it is either the k bits long binary
representation of s if s < 2k, or d + k − 1 bits long
remainder r:

r = s−
(
2d+k−1

)
, s ≥ 2k .

Similar to the Exp-Golomb code, this remainder has
constant length if d does not change.

Hence, the structure of the codewords is slightly more com-
plicated, than the previous codes and depends on the value of
s:

CSE(s,k) = {′0′, Cβ(s)} , s < 2k ;

CSE(s,k) = {CU (d), Cβ(r)} , s ≥ 2k .

Consequently, the codeword lengths are then given by

lCSE(s,k) = k + 1 , s < 2k ;

lCSE(s,k) = 2d+ k , s ≥ 2k .

As a consequence of this two-fold structure, also the optimal
source distribution consists of two parts: the uniform part for
the sample values smaller than 2k corresponds to the uniform
distribution due to the fixed length of the codewords; the
exponential part for the s ≥ 2k behaves exactly like the Exp-
Golomb codes.

III. SIMULATIONS

Within the scope of this work two sonar datasets have
been used. Both resulted from simulating different scenarios
of a submarine mission with multiple moving targets, very
close, but not identical to the real world classified data. Each
set contains 2 hours of raw data from 96 single hydrophones
of a flank array, sampled at T = 7.8125 kHz and uniformly
quantized at 16 bit.

Compared to the underwater survey data in, e.g., [4] or
typical speech data [14], the empirical probability distribution
of the source in Fig. 2, based on the above described datasets



-2 -1 0 1 2

Sample value #104

0

5

10

15

P
M

F
#10!5

Raw data
LP output
Residual

Fig. 2: Probability mass functions for the fixed LP order (16)
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Fig. 3: Autocorrelation function of residual signal of the first
sensor before and after applying linear prediction of order 16

(assuming the ergodicity of the random process), tends to
be very close to an ideal normal distribution. Despite a
slight difference in probability distribution between the original
data and the prediction, applying linear prediction of rather
moderate orders (up to 32) results in significant reduction of
the time-domain correlation of the acoustic data, received by
a sonar. The autocorrelation function of the residuals in Fig. 3
has a single peak at the origin, meaning the absent periodicity
in the noise-alike residual sequence.

A. Linear Prediction

The optimum prediction parameters, satisfying Eq. (6) can
be calculated either for the whole data set, assuming the ideal
stationarity of the source or for the blocks of data. The latter
approach was used here, as real sources are seldom perfectly
stationary and are better modeled as locally block-stationary
processes.

The dependency of the prediction gain on different block
sizes BLP , predictor order, and number of channels M is
shown in figures 4 and 5. A more pronounced dependency
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Fig. 4: Mean prediction gain for MLP with M = 2
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Fig. 5: Mean prediction gain for MLP with M = 8

on the block size with increasing M – smaller blocks are
better – can be explained as a direct consequence of non-
stationarity. It has a very limited influence on the single-
dimensional prediction gain for the provided acoustical data.

The mean prediction gain in Fig. 6, calculated as the
average over gains for all channels and blocks, approaches the
flat region (the upper bound is known as asymptotic prediction
gain, given in e.g., [6]) at the LP order of roughly 25, getting
as high as 4 dB for the single-dimensional prediction. An ad-
ditional dimension (M > 1) clearly improves the performance
of the linear prediction (1 dB gain improvement for M = 16).
However, the total number of coefficients, given by L ·M2,
also increases noticeably.

B. Optimal Code for Residual Compression

The PMFs of the codes, with parameters best-fitted to
the distributions of LP residuals of the available data sets,
are shown in Fig. 7. The residuals were first mapped to
nonnegative integers by bijection [15], which first multiplies
the absolute value of input by a factor of two and then adds one
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to the output, if the input was a positive integer. Calculation
of the optimum parameters of the Golomb-Rice (GR), Exp-
Golomb (EG), and subexponential (SE) codes can be found in
[16] and [17].

In general, the subexponential code achieves the closest
match to the source PMF. Its structure has a very useful
property for the given source distributions – the code PMF
can be divided into uniform and exponential parts. The uniform
part is in fact the best fit for the source PMFs up to the sample
values of roughly 3000. The tendency of the residual PMF to
form two peaks with increasing predictor order, as discussed
in the previous section, is handled quite well by this code: at
low values of predictor order it is close to optimum and the
redundancy at higher values is rather low, compared to other
codes, which all assume a non-increasing PMF.

The compression ratio, calculated by eq. (9), is smaller
and thus the performance is better, when larger block sizes
are used, as shown in Fig. 8. Obviously, this is due to the
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variable-length entropy codes
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Fig. 9: Mean compression ratio of the subexponential code,
used with the multichannel (M = 16) linear predictor

overhead of transmitting the LP coefficients. As a function
of the predictor order, the ratios will have a single minimum
(which is also the global optimum) not necessarily at the
highest value of order. Not surprisingly, the subexponential
code performs best, because of the better PMF match of the
source, and is used in the following simulations. The acoustical
signal, sampled by a sonar, is generated in a very noisy
environment and hence has less potential for lossless source
coding, compared to to the best examples of text or speech
coding. Nevertheless, roughly 15% data rate reduction is a
welcomed improvement.

Even better performance in terms of compression ratio can
be achieved by applying multichannel linear prediction, as can
be seen in Fig. 9. The number of the coefficients, and thus the
overhead, grows faster with L for M -LPC, which results in a
low performance at high values of L and small block sizes.
As the block size increases, M -LPC outperforms LPC by a
small margin. Increasing L does not automatically decreases
the minimum ratio, such that the optimum value is around 10.
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Compression method block size max. compression ratio
ZIP n.a. 0.932
BZIP2 100 kbit 0.908
BZIP2 900 kbit 0.888
FLAC 130 kbit 0.859
FLAC 1 Mbit 0.858
LP+SE 130 kbit 0.841
LP+SE 1 Mbit 0.840
4-MLP+SE 130 kbit 0.839
16-MLP+SE 130 kbit 0.838
16-MLP+SE 1 Mbit 0.837

TABLE I: Mean compression ratios of different source codes

Reducing the number of channels in M -LPC (see Fig. 10)
results in a slightly increased compression ratio. Although the
best performance can only be achieved with more channels,
using less channels for M -LPC has an advantage of lower
implementation complexity and higher flexibility in terms of
the block size. It is usually limited in practice by memory
or initial delay requirements. It can be seen in Fig. 10 that
reducing the block size for M = 4 does not increase the ratio
by a large margin, as it is the case for M = 16. Still, compared
to the single channel LPC, the 4-channel M -LPC performs
noticeably better.

The comparison of different source codes, including pop-
ular dictionary methods (e.g. ZIP and BZIP2) and the lossless
audio-codec FLAC [15], given in Table I, clearly indicates that
the combination of linear prediction and subexponential codes
has an application potential in sonar data transmission. The
multichannel prediction shows a better performance in absolute
numbers, but this fact is rather of theoretical interest, as the
implementation complexity would outweigh its advantages in
practice.

IV. CONCLUSION

The source data, generated by the acoustical sensors, was
shown to be redundant. Using the methods of (audio) lossless
compression, particularly linear prediction coding, a source
coding scheme was introduced. The single channel linear

predictor case was extended to cope with the multi-channel
data, resulting from the physically combined sensors. A subex-
ponential code was proven to be the most efficient universal
variable-length code for both cases. It provides better matching
of the probability distribution of the residuals, generated by
the linear prediction, than the other codes. The new methods
were shown to be more effective than the existing compression
schemes and can achieve an average lossless compression
ratio of roughly 15 % for this particular type of data. Further
compression can be achieved by lossy compression methods,
but this requires adaptation to the signal processing algorithms
(e.g., direction-of-arrival estimation) used.
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