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Abstract—In this work, we investigate a physical-layer key rec-
onciliation protocol for a reciprocal, flat fading channel between
two legitimate users. We consider the scenario when the n bits
of the secret key are measured independently by Alice and Bob
without a transmission over the channel. Due to reciprocity, the
generated keys are identical except for noise at both ends. We
assume Gaussian noise and ignore non-ideal behavior of circuitry
and alike. Redundancy information required to reconciliate the
key is transmitted from one legitimate user to the other. LDPC
codes are employed for the reconciliation procedure. The main
focus of this work lies in designing the code structure through
density evolution for a multi-edge-type description.

I. INTRODUCTION

In a wireless scenario with two legitimate users, Alice and

Bob, and an eavesdropper Eve, properties of the channel can be

used to provide security options to the legitimate users through

generating shared secret keys. We consider a reciprocal channel

between Alice and Bob, ideally ensuring identical amplitude

and phase properties. The secret key is obtained directly

via channel measurements, the information theoretic limits

of the described system are given in [1]. Independent noise

components originating from synchronization and quantization

errors, for example, might lead to key disagreement between

the users. Thus, to ensure that identical keys are obtained

on both sides, reconciliation procedures that require additional

side information to be transmitted need to be employed. More

details on the exact measurements, correlation between the

legitimate channels and eavesdroppers channel as a function of

the separation between the antennas relative to the wavelength

have been investigated in [1], [4]–[6]. Independent measure-

ments conducted in an indoor environment, for the purpose

of key generation, are described in [7]. For the purpose of

this work we assume that the eavesdropper is located further

away than the minimum coherence distance λ/2, resulting in

uncorrelated channels between the legitimate users and the

eavesdropper. In recent works, such as [7], this assumption has

been shown not to be very accurate and up to 10% of the

information can leak to Eve. However, coupled with privacy

amplification, such a problem is resolved, and thus, not the

focus of our contribution here.

⋄ A. Filip is now with DLR, Oberpfaffenhofen, Germany.

In previous works, [2], [3], the reconciliation bits were sent

over a noiseless channel which is not realistic and in here,

we now address the case where the side information is made

available over a noisy channel.

While the secret-key agreement idea is based on the wiretap

channel model [8], we do not use the main channel by utilizing

SNR advantage based methods to transmit messages like in [9],

rather the fluctuating channel state is exploited to generate the

keys. In case of a line-of-sight channel, either movements or

reconfigurable antenna arrays allow to provide the necessary

randomization. Hence, the secret-key can be generated by

observing the channel state information (CSI) at Alice and Bob

[1].

The key generation technique discussed here would in gen-

eral use the Linde-Buzo-Gray or Lloyd-Max vector quantizers.

When assuming a Gaussian channel distribution, obtained,

e.g., by a large reconfigurable (RECAP) antenna array, the

quantization can easily be precomputed and results in a simple

cut in the middle of the distribution for the binary case. For

clearness of presentation, this conference paper will focus

on this binary case, only. For reconciliation, a Slepian-Wolf

[2] based method is employed using LDPC codes due to

their capacity approaching performance. Further details about

channel data, quantization aspects and results, as well as the

Slepian-Wolf LDPC scheme which was used, are provided in

[1], [11], [12].

Moreover, since the secret key is not transmitted over the

wiretap channel, but results from independant measurements,

the intrinsic log-likelihood ratio (LLR) calculation required for

the LDPC decoder is more involved and resulting message

densities are non-Gaussian and non-consistent. The main con-

tribution of this paper lies in designing the LDPC code through

density evolution for such a system.

The paper is structured as follows. In Section II, the system

description is provided and code design aspects are discussed.

In Section III, the intrinsic LLR is derived and the properties

of this function are discussed. In Section IV and V, density

evolution steps for the system and the linear program for

designing the code are presented, respectively. Section VI

provides BER simulation results.
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Fig. 1: Channel density for 24 REs.
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Fig. 2: Binary codebook. (note that we chose −1 to be on the

right, which has implications for the following figure)

II. SYSTEM DESCRIPTION

For our investigation in this paper, we consider an ideal

Gaussian channel. In case of stationary users, the randomized

Gaussian channel can almost perfectly be obtained by large

RECAP antenna arrays; a corresponding channel density is

shown in Fig. 1.

At Alice, a parasitic RECAP array with 5× 5 elements, i.e.,

24 reconfigurable elements and a center feed element, is used

and at Bob, a single dipole antenna. The binary quantization is

presented in Fig. 2.

Alice and Bob estimate the channel in neighboring time slots

(TDD system) to generate the key. On Alice’s side, the analog

measurement data is then quantized and the key is generated.

We take Alice’s quantized result to be the correct key symbol.

Due to CSI differences arising from independent noise on Bob’s

side, his quantized results would be erroneous with respect to

Alice’s “correct” results. Hence, we require some reconciliation

procedure. Reconciliation is performed based on Bob’s analog

measurements through soft decoding.

A. Key Generation and Reconciliation: Slepian-Wolf Coding

For key reconciliation, Alice sends parity bits to Bob. We

notice two channels in the scheme at this point. First, there

is the channel which is measured by Alice and Bob, no data

is transmitted over this channel, which we will refer to as

the virtual measurement channel. There is also a transmission

channel over which Alice sends parity bits.

We have assumed the variance of the channel distribution

Alice and Bob encounter are identical. This assumption is

practical given that, in the time interval within which the CSI

measurements are made and the parity bits sent, the channel

distribution remains stationary, i.e., it is a quasi-static chan-

nel. Additionally, there is independent, identically distributed,

circular-symmetric Gaussian noise at Alice’s and Bob’s ends,

ignoring other effects due to hardware imperfections and alike.

Although we have formally defined two channels in our system,

the noise power on both channels (from Bob’s perspective) is

assumed to be the same i.i.d. AWGN.

As key reconciliation procedure, we use Slepian-Wolf coding

[2] based on LDPC codes. Since the key estimates at Alice and

Bob can be seen as correlated information due to the channel

reciprocity, Bob can decode his data using ’side-information’

or ’redundancy’ from Alice, hence Slepian-Wolf is a suitable

choice. The lower bound M for this is given in (1), where

H(x|y) is the conditional entropy of ’Alice’ given ’Bob’.

M = H(x|y) bit. (1)

For an n bit key, the number of reconciliation bits Mp are [12]

Mp ≥ nM = nH(x|y) bit. (2)

Here, of the two variants of Slepian-Wolf coding, parity and

syndrome, we chose the syndrome method for our implemen-

tation.

For the syndrome approach, the reconciliation information is

computed as the syndrome of the length n source vector x. A

syndrome s is defined as

s = HxT , (3)

where H is the parity-check matrix. From (2), we know that

the reconciliation information should have length nH(x|y) bit.
The reconciliation information s is sent over the physical

channel and thus is subject to eavesdropping. To protect against

eavesdropping, at most twice the number of reconciliation bits

are needed. The procedure is termed privacy amplification [10],

however, we do not discuss this aspect in here further.

B. LDPC Code Construction

The Mp reconciliation bits (Slepian-Wolf syndrome ap-

proach) which are necessary for Bob to successfully decode

to Alice’s key are sent to Bob over the transmission channel

and must be error-protected due to the noisy channel. Hence,

the final code design has two sets of codes. The first code Cm
with generator and parity-check matrices Gm and Hm are used

to generate the syndrome for reconciliation by

s = Hm,n−k×nx
T
1×n , x = Alice′s key (4)

The length of syndrome s must satisfy (2). The second code is

used to protect the reconciliation bits obtained from (4). The

syndrome s is the information vector for the second code Cs



with generator and parity-check matrices Gs and Hs. The final

codeword v for the overall parity bits is then

v = sTGs = xHT
mGs . (5)

The length of v is Mp(1 + β) where β is the fraction of rec-

onciliation bits required as additional redundancy for forward

error correction. Since there is a direct relationship between

Alice’s measured vector x and and the final codeword v, we

can think of a single LDPC code with equivalent generator

matrix G = [In×n HT
mGs] which encodes x systematically

for the information part and also computes the redundancies

(5) to be sent over the channel.

The rate of the code is given by

R =
n

n+Mp(1 + β)
. (6)

We use a multi-edge-type description due to the two channels

in our system, which is described in detail in [12]. Although

the noise power on both the channels is the same, the intrinsic

channel information (Lch,i) calculation for the measured key

bits and received parity bits are different at Bob’s end.

III. INTRINSIC CHANNEL INFORMATION DERIVATION

The channel between Alice and Bob is characterized by

AWGN noise with standard deviation σb. So the log-likelihood

ratio Lchv
for the parity bits is straightforward assuming a

Gaussian pdf. For a received bit y given that Alice transmitted

x, the probability density function is

p(y|x = ±1) =
1

√

2πσ2
b

e
−(y∓1)2

2σ2
b , (7)

Hence, the LLR is

Lchv
= ln







e
− (y−1)2

2σ2
b

e
− (y+1)2

2σ2
b






=

2y

σ2
b

. (8)

The intrinsic LLR calculation for the information bits, i.e., the

estimated key bits, is more complicated since the measurement

data is obtained by Bob and no information about Alice’s

quantization values is available to him, yet the LLR formulation

is

Lch,i(b) = ln

(

P (b|a = +1)

P (b|a = −1)

)

, (9)

where b refers to Bob’s analog measured value, and a denotes

Alice’s quantized value. Some steps of the derivation are

presented here, the complete description can be found in [13].

Since for the binary quantization we use, the decision boundary

is parallel to the imaginary axis, Lch,i values are dependent on

one dimension only.

For the 1-D case, a point cx
1 from the channel distribution

is measured as ax and bx by Alice and Bob, respectively, with

variances σ2
ax

and σ2
bx

, while the channel variance is σ2
chx

.

p(cx) =
1√

2πσchx

exp

[

− c2x
2σ2

chx

]

, (10)

1The subscript x is used to address 1-D values of the complex distribution.

p(bx|cx) =
1√

2πσbx

exp

[

− (bx − cx)
2

2σ2
bx

]

, (11)

p(ax|cx) =
1√

2πσax

exp

[

− (ax − cx)
2

2σ2
ax

]

, (12)

Applying Bayes’ rule to (11) and (12), this yields

p(cx|bx) =
1√

2πσbx

exp

[

− (bx − cx)
2

2σ2
bx

]

· p(cx)
p(bx)

, (13)

p(cx|ax) =
1√

2πσax

exp

[

− (ax − cx)
2

2σ2
ax

]

· p(cx)
p(ax)

. (14)

Determining the probability of what Alice may have quantized

to,

P (ax = +1|bx) =
∫

R+

∫

R

p(ax|cx) · p(cx|bx) dcx dax , (15)

P (ax = −1|bx) =
∫

R−

∫

R

p(ax|cx) · p(cx|bx) dcx dax . (16)

Applying Bayes’ rule to (15) and (16), we finally obtain (17)

and (18), and use in (9) to obtain the required intrinsic LLR.

Note that, due to equal probability assumption P (ax = +1) =
P (ax = −1) = 0.5.

In Fig. 3, the Lch,i values for the quantization presented in

Fig. 2 are shown. The CSI measurements were mapped to a

two-dimensional discrete grid from [−3.5 to 3.5] on both axes

in increments of 0.005. Here, σ2
ax

= σ2
bx

, some values of which

are provided in Table I. The SNR is defined as 10 log10(
σ2
chx

σ2
ax

),

where σ2
chx

= 0.4203. As expected, the Lch,i function is

TABLE I: Variance values

SNR [dB] σ2
ax

= σ2
bx

10 0.0420
12 0.0265
14 0.0167
16 0.0106
18 0.0067

symmetric (odd). Additionally, we see that with increasing SNR

the magnitudes of the LLRs increase as expected.

A. Properties of the Intrinsic Log-likelihood Ratio Function

We first describe the consistency property of densities. A

density of probability f(x) is said to be consistent (i.e. with

exponential symmetry) if

f(x) = ex · f(−x) , ∀x ∈ R . (19)

Consistent densities have the property that

µ =
σ2

2
. (20)

For the design of an LDPC soft decoder, it is necessary to

differentiate between consistent and inconsistent LLR message

densities, as this property dictates the exact equations to be used

in Density Evolution for calculating the mutual information

[15].



p(bx|ax = +1) =
1

2πσ2
ax

1√
2πσchx

∫

R+

∫

R

exp

[

− (ax − cx)
2

2σ2
ax

− (bx − cx)
2

2σ2
bx

− c2x
2σ2

ch

]

dcx dax · 1

0.5
, (17)

p(bx|ax = −1) =
1

2πσ2
ax

1√
2πσchx

∫

R−

∫

R

exp

[

− (ax − cx)
2

2σ2
ax

− (bx − cx)
2

2σ2
bx

− c2x
2σ2

ch

]

dcx dxa ·
1

0.5
. (18)
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The Lch,i function for the binary case is a function of bx.

Using the density functions of bx, we obtain the densities of the

Lch,i functions. The density of bx is a Gaussian with variance,

σ2
1 = σ2

chx
+ σ2

bx
, (21)

where, σ2
bx

decreases with an increase in SNR. The density

functions p(Lch,i) are plotted in Fig. 4 for SNRs of 10 to 19

dB. We now take a look at the (onesided) mean µ and variance

of the distribution in Table II and conclude that the density is

not consistent.

TABLE II: Mean (µLch,i
) and variance (σ2

Lch,i
) of the Lch,i

density

SNR [dB] µLch,i
σ2
Lch,i

10 2.7477 8.6574
12 3.5939 18.1611
14 4.7448 38.8921
16 6.3941 86.6083
18 8.7090 193.8784

IV. DENSITY EVOLUTION STEPS FOR LDPC CODE DESIGN

The LDPC code design is done through a linear optimization

algorithm based on a rate maximization criterion and uses

density evolution at both sets of nodes to check the convergence

through mutual information calculations. Hence, we take a look

at the Belief - Propagation (BP) decoding updates at the check

and variable nodes, respectively,

L(l)
vicj

= Lch,i +
∑

k 6=j

L(l−1)
ckvi

, (22)

L(l)
civj

= 2 tanh−1





∏

k 6=j

tanh

(

L
(l)
vkcj

2

)



 . (23)

The subscript vc denotes an edge from variable-to-check node

and cv denotes a check-to-variable node edge.

At the variable node side, the outgoing message from node vi
to cj in the lth iteration is the sum of the incoming messages

from the remaining check nodes from the (l−1)th iteration and

the channel intrinsic information, Lch,i. In order to calculate

the mutual information xvicj , we need the density of message

Lvicj . Lch,i is represented by f(Lch,i). The addition of LLR

values to be passed along the edge connecting vi and cj leads

to a convolution of the contributing PDFs. Hence,

L(l)
vicj

: 2f(Ll−1
cv ) ⋆ f(Lch,i) = f(Ll

vicj
) . (24)

Equation (24) requires some modification. We know, in general,

the LLR for a bit value xi given a received vector y is given

by (25).

From (25), it becomes clear that the ax = +1 and ax =
−1 probabilities are treated separately (i.e. under the ax =
±1 conditions, only probabilities under the same condition are

2This density relates to the sum
∑

k 6=j L
(l−1)
ckvi

from (22), the same applies

to (26) and (27).



ln
P (xi = +1|y)

P (xi = −1|y)
= ln

P (y|xi = +1)

P (y|xi = −1)
+ ln

P (xi = +1)

P (xi = −1)

= ln
P (yi|xi = +1)

P (yi|xi = −1)
︸ ︷︷ ︸

Lintrinsic

+ ln
P (y\i|xi = +1)

P (y\i|xi = −1)
︸ ︷︷ ︸

Lextrinsic

+ ln
P (xi = +1)

P (xi = −1)
︸ ︷︷ ︸

La−priori

, (25)

multiplied) and thus, in density domain, they are convolved

separately, too. Hence, following (24), we define

f(L(l)
vicj

|ax = +1)=f(Ll−1
cv |ax = +1) ⋆f(Lch,i|ax = +1),

(26)

f(L(l)
vicj

|ax = −1)=f(Ll−1
cv |ax = −1) ⋆f(Lch,i|ax = −1) .

(27)

We now write (28), used to calculate the mutual information

on the variable node side, using (26) and (27).

information nodes parity nodes

check nodes

Fig. 5: Density evolution steps at variable nodes. The dotted

incoming lines at a variable node represent the constituent

densities of the incoming channel intrinsic information.

We now focus on the check-node side, in order to find the

message densities required for the aforementioned convolution.

From (23), we see that the outgoing message from check

node i to variable node j in the lth iteration is a non-linear

combination of the lth iteration messages from variable nodes

vk, k 6=j to node ci. From [14], a general assumption can be

made that allows us to treat the outgoing message from a

check-node as having a Gaussian distribution due to the central

limit theorem, since there are many messages being combined.

Additionally, there we assume the messages to be consistent,

and thus, we employ a simplified version of (28) which makes

use of the exponential symmetry from (19) by using the mean

m of a consistent density, z ∼ N (m, 2m), and delivers the

mutual information xz [15]–[17].

J(m) = 1− 1√
4πm

∫

R

e−
(z−m)2

4m log2(1+e−z)dz = xz . (29)

J(m) is a continuous and strictly monotonous function, so J−1

exists and allows for computing the mean m of the LLR from

the mutual information xz .

Since all messages Lcv are considered consistent Gaussians,

in order to obtain f(Ll−1
cv |ax = +1) used in (26), we need only

add the means of the individual messages. J−1 is used to obtain

the means m and then added, due to consistency, the variance

can be calculated and the resultant message represented. Due

to symmetry, the mean has to be mirrored only, to obtain

f(Ll−1
cv |ax = −1) used in (27).

Now, we derive f(Lch,i|ax = +1) and f(Lch,i|ax = −1),
also used in (26, 27). However, let us first explain the LLR

random variable of the form (L|ax = ±1). L is a log-likelihood

ratio and thus already compares the probabilities of p(bx|ax =
+1) and p(bx|ax = −1). Further requiring the density of this

random variable under the conditions ax = +1 and ax = −1
may seem counterintuitive at first sight, however, the LLR is a

value dependent on bx and we only then consider the ax = ±1
range, i.e., we consider the values of bx as they result from the

ax = +1 or the ax = −1 ranges.

f(Lch,i|ax = +1) =
∑

bx:K−1(Lch,i)=bx

fbx|ax=+1(bx)

| d
d(bx)

Lch,i(bx)|
, (30)

f(Lch,i|ax = −1) =
∑

bx:K−1(Lch,i)=bx

fbx|ax=−1(bx)

| d
d(bx)

Lch,i(bx)|
. (31)

Where, K(bx) = Lch,i is shown in Fig. 3.

V. LINEAR OPTIMIZATION

After deriving the density evolution steps for our case, we

now present the linear programming algorithm for finding the

optimized degree distributions in Algorithm 1. The subscript j
is used to distinguish the two classes of variable nodes, j = 1
refers to information nodes, while j = 2 is for parity nodes. The

presented proportion distribution constraints are discussed in

detail in [12]. The densities required for convergence conditions

for variable nodes dealing with information estimates were

discussed in Section IV. Equations (41) and (43), the mutual

information updates at variable nodes for parity bits and check

nodes, respectively, follow from [17].

Note the check node side update step (43). We notice, within

the summation, the J−1 function is applied to (1 − xvc), i.e.,

addresses the mutual information on an outgoing edge of a vari-

able node. We know, in order to use the J−1 function, we need

the density of the LLR random variable to be consistent but

f(Lvc) is not since it is obtained by convolving with f(Lch,i)
at every iteration, which is not consistent. We however keep

this assumption on the check node side, for now. Under this

assumption, the linear optimization algorithm still converges.

We will address the more exact treatment of the incoming and

outgoing messages at the check node side in future realizations.

Density evolution can be summarized as a function of the

degree distributions, densities of the messages, and the mutual

information from the previous iterations. In order to assure

convergence, we require the mutual information to increase

after every iteration, as shown in (36). λ and ρ are the degree

distribution polynomials for the variable and check nodes,

respectively. We provide the results of the linear optimization

for 50 iterations. The routine delivers the fraction (1 + β)
of reconciliation bits (MP reconciliation bits mentioned in

(2), according to entropy calculations at the specified SNR

[11]) required as total redundancy for maximizing the rate



xl
vc =

∫

R

f(L(l)
vicj

|ax = +1) log2

(

2f(L
(l)
vicj |ax = +1)

f(L
(l)
vicj |ax = +1) + f(L

(l)
vicj |ax = −1)

)

d(Lvicj ) . (28)

Optimize
min
β∈R+

(1 + β) , (32)

subject to

1) Proportion distribution constraints [12]

1.1
2∑

j=1

dvmaxj∑

i=2

λ
(j)
i = 1 (33)

1.2
dvmax2∑

i=2

λ
(2)
i

i
=

dcmax∑

i=2

ρi

i
(34)

1.3

Mp

n
(1 + β)

dvmax1∑

i=2

λ
(1)
i

i
=

dcmax∑

i=2

ρi

i
, β ≥ 0 (35)

2. Convergence condition

F
(

λ,ρ, x
(l)
vc

)

> x
(l−1)
vc with , (36)

x
(l)
vcj−1

= 0; (37)

for i = 2 : dvmaxj , j = 1: information bits,

f(L
(l)
vc |ax = +1) =

f
(Ll−1

cv |ax=+1)
((i− 1)m) ⋆ f(Lintrinsic|ax = +1) , (38)

f(L
(l)
vc |ax = −1) =

f
(Ll−1

cv |ax=−1)
((i− 1)m) ⋆ f(Lintrinsic|ax = −1) , (39)

m = mean of the Gaussian densities.

x
(l)
vcj=1

= x
(l)
vcj=1

+ λ
(j=1)
i

∫

R
f(L

(l)
vc |ax = +1)...

log2

(

2f(L
(l)
vc |ax = +1)

f(L
(l)
vc |ax = +1) + f(L

(l)
vc |ax = −1)

)

d(Lvc) . (40)

end for.

x
(l)
vcj=2

=

dvmaxj=2∑

i=2

λ
(j=2)
i J

(

2

σ2
b

+ (i− 1) J−1
(

x
(l−1)
cv

)
)

, (41)

x
(l)
vc =

2∑

j=1

x
(l)
vcj (42)

x
(l−1)
cv = 1−

dcmax∑

h=2

ρhJ
(

(h− 1) J−1
(

1− x
(l−1)
vc

))

. (43)

Algorithm 1: Linear programming algorithm

and the optimized degree distributions. The check node degree

distribution was fixed to be

ρ(x) = 0.98x9 + 0.02x10 . (44)

The maximum variable node degrees for the two classes were

chosen as dvmax1 = 15 and dvmax2 = 15. The length of the

information word is n = 210 = 1024. Mp(1 + β) is the total

required redundancy.

The results are illustrated in Fig. 6 and Table III. As ex-
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Fig. 6: Redundancy requirements delivered by the linear pro-

gram

pected, with increasing SNR, the total required redundancy

decreases. The corresponding rates of the codes are also shown

in Table III. There is a lower bound for Mp(1 + β) derived in

TABLE III: Redundancy and rate results

SNR [dB] Mp (1 + β) Mp(1 + β) Rate

11 419 1.4446 605 0.6286
13 335 1.6475 552 0.6496
15 273 1.8669 510 0.6675
17 222 2.1377 475 0.6831
19 181 2.4750 448 0.6957

[12] which explains the somewhat surprising behavior of the

growth of 1+β, making up for the decrease in the conditional

entropy with growing SNR.

VI. BER SIMULATION

The BER simulation was performed to check the perfor-

mance of the code. Note that the BER is an indicator for

the key agreement rate as it measures the mismatch between

Alice’s measured bits and Bob’s decoded bits, i.e., the binaries

of the secret key. Figure 7 shows the BER against SNR plot

for the code designed at 11 dB. The BER ratio for the un-

reconciled case is also provided for comparison purposes.

Degree distributions are provided in Table IV. No error floor

is visible.

TABLE IV: Variable node sub-degree distributions

SNR (1 + β) λ(1)(x) λ(2)(x)

11 dB 1.4446
λ2 = 0.1147 λ3 = 0.1574 λ2 = 0.2218
λ4 = 0.1938 λ8 = 0.1266
λ13 = 0.0417 λ14 = 0.1441
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Fig. 7: BER results

VII. CONCLUSION

In this paper we considered a physical-layer key reconcilia-

tion scheme between two legitimate users of a reciprocal chan-

nel. The LDPC code designed for the reconciliation procedure

is obtained via density evolution. From the simulation results,

we conclude that the final design of the LDPC code delivers

promising BER results for the key reconciliation procedure

when the secret-key is generated by CSI measurements at Alice

and Bob. Extensions of this work would focus on exact density

evolution treatment on the check node side. The stability

conditions of the optimization have to be formulated for our

case, too.
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