
Quantization for Physical Layer Security
Oana Graur, Nazia Islam, and Werner Henkel

Jacobs University Bremen
Electrical Engineering and Computer Science

Bremen, Germany
Emails: {o.graur, n.islam}@jacobs-university.de, werner.henkel@ieee.org

Abstract—We propose a multi-level CSI quantization and
key reconciliation scheme for physical layer security. The noisy
wireless channel estimates obtained by the users first run through
a transformation, prior to the quantization step. This enables the
definition of guard bands around the quantization boundaries,
tailored for a specific efficiency and not compromising the uni-
formity required at the output of the quantizer. Our construction
results in an better key disagreement and initial key generation
rate trade-off when compared to other level-crossing quantization
methods.

I. INTRODUCTION AND MOTIVATION

Due to the inherently random nature of the broadcast
wireless channel, extensive research efforts have been directed,
over the last decade, towards the generation of encryption
keys at the physical layer. As opposed to cryptographic
security that relies on limited computational resources of
potential eavesdroppers, as well as a key exchange mechanism,
physical layer security aims at providing users sharing a
wireless channel with symmetric keys that can be used for
encryption/decryption, without relying on a preexistent key
distribution infrastructure. The original principle dates back to
the one-time pad, described by Vernam [1] in 1926, where
a plaintext is encrypted with a previously known secret key
through modular addition. If the key is truly random and
as long as the plaintext message, an eavesdropper without
access to the key cannot decrypt the message. Shannon, later
on, formulated this finding in information-theoretic terms [2],
i.e., the availability of the ciphertext at the eavesdropper does
not provide any aid in guessing the plaintext message if the
entropy of the key is larger or equal to the entropy of the
message. Although this finding has been widely known, the
key distribution, along with the requirement of the large key
length, constituted the practical limitations for which much of
the research focus has shifted towards classic cryptographic
schemes over the last century. The interest in information-
theoretic security has risen again, along with the advancements
in ad-hoc networks, such as wireless sensor networks (WSN),
and Internet of Things (IoT), where the assumption of a key
distribution infrastructure, on which computational security
relies, is unfeasible. A thorough survey on recent physical
layer key generation advancements can be found in [3].

Our contribution in this paper focuses on the quantization
and reconciliation of correlated channel estimates obtained
by two users. Unlike other works [4], [5], we use the com-
plex channel state information (CSI) for key generation, and

quantize the real and imaginary parts jointly. In obtaining
the complex CSI, a parasitic antenna array is used at one
of the users, in order to generate artificial fading and to
ensure a high degree of channel randomness, even in line-
of-sight (LOS) or static environments. We also propose a
transformation that maps the complex channel estimates to
the unit square, prior to a vector quantization step, whose
purpose is multifold. First, the transformation we propose
facilitates the use of well-known, low-complexity vector quan-
tizers, such as Linde-Buzo-Grey (LBG) [6], by providing a
uniformly distributed quantizer output, even for higher level
quantization. Second, we show how such a transformation
enables the straightforward construction of guard bands around
the quantization boundaries, without sacrificing the uniformity
of the quantizer output. Such guard bands are introduced as
a key reconciliation method, with the purpose of excluding
the measurement samples most likely to be erroneous due to
independent noise on both sides or circuitry imperfections.
Our findings show that in the case of a very strong correlation
between the legitimate user measurements, for a fixed key
generation rate, a higher level quantization with wider guard
bands is preferred to lower level quantization with narrow
guard bands. Section IV show the performance improvement
of our scheme to previous methods described in literature.

A. Requirements for Physical Layer Key Generation

Three main requirements need to be fulfilled for physical
layer key generation, channel reciprocity, randomness, and
spatial decorrelation.

If we denote by hAB the forward channel from Alice to
Bob, and by hBA the reverse channel from Bob to Alice,
as shown in Fig. 1, the channel reciprocity principle implies
hAB = hBA = c. This is true to some extent for TDD systems,
such as 802.11, WiMAX, LTE, etc.. As long as the coherence
time of the channel is larger than the measurement time, the
two users, Alice and Bob, can send previously known pilot
signals in consecutive time slots in order to obtain their vectors
of channel estimates, â = c+na, b̂ = c+nb, where â and b̂
denote the estimate vectors at Alice, and Bob, respectively. na,
and nb represent the independent noise vectors affecting the
user estimates, arising from different transceiver circuitry, and
possible variations of the channel during the non-simultaneous
measurement slots. Although they are correlated, a straight-
forward quantization of the measurement vectors will likely



result in key mismatch between the users, and an additional
step of key reconciliation needs to be performed.

The channel measurements can represent either channel
state information (CSI), or received signal strength information
(RSSI). The CSI measurements can refer to either the channel
impulse response or frequency response, containing both am-
plitude and phase information. RSSI, in contrast, refers to an
average of the received power for the whole packet and can be
seen as more coarse-grained, compared to the instantaneous
CSI values. Although CSI-based key generation has been
shown to significantly outperform RSSI-based key generation
[7], RSSI data has been used in most of the previously
proposed key generation schemes based on its availability from
most off-the-shelf WiFi cards.

Spatial decorrelation. If a passive eavesdropper, Eve, is
located a few wavelengths away from any of the legitimate
users, the channel samples estimated by Eve, ê, will exhibit
a low correlation to the forward and reverse channel samples
estimated by Alice and Bob. Hence, most of the randomly
generated key bits will be secure with respect to Eve. In order
to support this claim, we refer the readers to the work in [8]–
[10], where theoretical and experimental approaches have been
taken in deriving the amount of key information that leaks to
the eavesdropper, depending on its separation distance. Even a
small amount of information leaked is of serious concern and
is highly dependent on Eve’s position and relative distance to
the legitimate users, thus further processing methods such as
advantage distillation and privacy amplification [11], [12], are
required. An initial key KN of length N , obtained by Alice
and Bob, is reduced to a shorter key of length R, i.e., KR,
through the use of a hash function g, known by all parties,
such that the leakage H(KR|ê, g) is diminished. In here, we
hence ignore the effect of a passive Eve, by assuming sufficient
eavesdropper separation, as well as privacy amplification after
the quantization step. We are also not concerned here with the
possibility of active jamming attacks.

Randomness. A large degree of randomness ensures the
existence of a large key pool after quantization, making it more
computationally prohibitive for the eavesdropper to resort to
brute-force attacks. If the reciprocal wireless channel does
not exhibit a high degree of fading, artificial fading can be
induced through the use of parasitic antenna arrays, as we
discuss in Section II-A. It should be noted that the uncertainty
at the eavesdropper is maximum when the key is uniformly
distributed over its alphabet.

For comparing different approaches, we follow the frame-
work of [13], with the following metrics.

1) Correlation Coefficient: We use the Pearson correlation
coefficient, 0 ≤ ρ ≤ 1, as a measure of the degree of
reciprocity of two sequences, â = [â1 · · · âN ]T and b̂ =
[b̂1 · · · b̂N ]T .

2) Key Disagreement Rate (KDR): The key disagreement
rate is defined as the average ratio between the key symbols
found in disagreement between Alice and Bob to the overall
number of symbols. We shall distinguish accordingly between
symbol and bit disagreement rate in subsequent sections.

3) Initial Key Generation Rate (IKGR): We define the
symbol IKGR as the average of the ratio between the number
of symbols used for key generation after quantization to the
total number of symbols fed to the quantizer. For multilevel
quantizations, i.e., Nq ≥ 2, the bit IKGR is obtained by
multiplying the symbol IKGR with the number of bits per
symbol.

II. SYSTEM DESCRIPTION

A. RECAP Antennas for Channel Randomization

The wireless channel between the users does not only
include the propagation channel, but also the radiation charac-
teristics of the transmit/receive antennas. The channel can be
seen as time-varying if the propagation channel is multipath
rich and one of the nodes is moving. However, in the case of
a line-of-sight (LOS) channel, reconfigurable aperture antenna
arrays (RECAPs) can be used. A RECAP antenna consists of
reconfigurable elements (REs), confined to a physical aperture
[8], [14]. Each RE can be in a number of states, e.g., by
varying capacitive loads.

B. System Model

Figure 1 depicts the system model. We consider one of the
legitimate users, e.g., Alice, to be equipped with a RECAP
antenna with 24 parasitic reconfigurable elements (REs), and
one feed element, shown in orange. Bob and Eve are each
equipped with a single dipole antenna. The perceived channel
distribution, as seen by the users, when a RECAP antenna is
used, depends on the number of REs that are active, as well
as on the number of states.

Although using RECAP antennas for creating artificial
fading does not always lead to a normal channel distribution,
when the number of reconfigurable elements of the array
is large, the number of states is large, and the reflection
coefficient is controlled, as discussed in [15], the distribution is
very close to a complex Gaussian, with the real and imaginary
parts i.i.d.. The channel distributions obtained for the RECAP
configurations in Fig. 2, are shown subsequently, in Fig. 3.
For the rest of this work, we assume the channel to follow
a normalized complex Gaussian distribution, with the real
and imaginary parts i.i.d., as obtained for the NRE = 24
RECAP configuration. Additional details on how the channel
measurements used in this work were obtained, along with a
study on the number of secure bits as a function of multipath
and eavesdropper antenna separation, can be found in [16],
[17].

Fig. 1. System Model



Fig. 2. RECAP configurations; 2, 4, 8, 16, 24 active reconfigurable elements (REs); feed element in orange, active REs in blue, inactive REs in green

Fig. 3. Complex channel pdfs given different RECAP configurations; 2, 4, 8, 16, 24 active reconfigurable elements (REs)

The first step in the key generation and reconciliation
process is the channel probing phase, in which both Alice
and Bob obtain their length N vectors of complex CSI
estimates, namely â and b̂. Note that throughout this paper,
bold lowercase notations are used for vectors, while the noisy
estimates are indicated by theˆsymbol.

If c = x + jy denotes a complex channel sample, â =
x̂A + jŷA and b̂ = x̂B + jŷB represent the noisy estimates of
the channel sample c at Alice, and Bob, respectively, with x̂A,
ŷA, x̂B , ŷB denoting the estimates of the real and imaginary
components. All notations are summarized in Table I, for
convenience.

TABLE I
NOTATIONS

Notation Description
c = x+ jy vector of channel samples (complex)
x = [x1 · · ·xN ]T vector of channel samples (real part)
y = [y1 · · · yN ]T vector of channel samples (imaginary part)
â = x̂A + jŷA vector of complex channel estimates at Alice,

â = [â1 · · · âN ]T

b̂ = x̂B + jŷB vector of complex channel estimates at Bob,
b̂ = [b̂1 · · · b̂N ]T

x̂A = x+ nxa measurement estimates of x at Alice
ŷA = y + nya measurement estimates of y at Alice
x̂B = x+ nxb measurement estimates of x at Bob
ŷB = y + nyb measurement estimates of y at Bob
ûa = ûxa + jûya transformed vector â (uniform domain)
ûb = ûxb + jûyb transformed vector b̂ (uniform domain)
σ2 variance of x, y (channel variance)
σ2
na

noise variance at Alice
σ2
nb

noise variance at Bob
σ2
a = σ2 + σ2

na
variance of a (at Alice)

σ2
b = σ2 + σ2

nb
variance of b (at Bob)

Nq number of quantization regions
Ri ith quantization region
(ûxa, ûya) real and imaginary components of Alice’s

sample â after transformation
(ûxb, ûyb) real and imaginary components of Bob’s sam-

ple b̂ after transformation to uniform domain
(nux, nuy) random variables describing the real and

imaginary noise components, respectively, af-
fecting a complex sample c = x + jy, after
transformation to uniform domain

C. Uniform Transformation

Having obtained their sequences of analog complex channel
estimates, both Alice and Bob first apply a transformation of
the data, before quantizing, as follows:

ûxa =
1

2
erfc

−
x̂A√

2(σ2 + σ2
na

)

 ; ûya =
1

2
erfc

−
ŷA√

2(σ2 + σ2
na

)

 .

(1)

ûxa and ûya correspond to the real and imaginary compo-
nents of sample â after the transformation, at Alice, likewise
ûxb and ûyb for Bob. Since the estimates x̂A and ŷA are
each distributed according to a zero-mean Gaussian pdf with
variance σ2

a = σ2 + σ2
na, the transformed samples ûxa and

ûya will each follow a uniform distribution in (0, 1). Thus,
the vector of complex estimates â, in the original domain,
will now be mapped into vector ûa, uniformly distributed in
the unit square, after transformation. We refer to the domain
after transformation as the uniform domain. Performing such
a transformation of the data before quantization is motivated
by the reduced complexity of the vector quantization, as well
as the computation of the guard band widths.

Our goal now is to find an equal-area partitioning of the
unit square into Nq quantization regions, while maintaining a
low probability that a channel sample is quantized to different
regions by Alice and Bob, due to independent noise effects.
The equal-area constraint is required to ensure a uniform
distribution of the quantized key symbols.

We first turn our attention to the noise distribution after
transformation. Since nxa and nya were normally distributed
before transformation with means x and y, and variances
σ2
nxa

= σ2
nya

= σ2
na

, their marginal pdfs after transformation
are found to be

f(nux|x) =
σa

σna

e
(erfc−1(2nux))

2− (x+σa
√

2erfc−1(2nux))
2

2σ2
na ,(2)

The marginal pdf for the imaginary noise component is similar
to the one in (2). The noise at Alice, around the point of



coordinates (x, y) will have a distribution, after the transforma-
tion, which will depend on the (x, y) positions in the original
domain. The real and imaginary noise pdfs at Bob are obtained
by substituting σa with σb in (2). Figure 4 shows the marginal
pdf of the noise after transformation (real dimension only),
from (2), for various positions of (x, y) in the original domain.
As (x, y) vary from the inside of the circularly symmetric
Gaussian towards the periphery, the marginal noise pdfs after
transformation have a narrower variance towards the edges of
the unit square.
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Fig. 4. Marginal PDF of the noise after transformation to uniform domain; real
component only. The circular markers correspond to the theoretical curves, as
given in (2), while the lines correspond to the pdf estimates from simulations.

After the transformation phase, both Alice and Bob are
ready to proceed with the vector quantization. We will first
proceed with describing the vector quantization scheme chosen
and then describe the computation of the guard bands.

III. QUANTIZATION

One of the most widely used vector quantization schemes is
the Linde-Buzo-Gray (LBG) algorithm [6]. Its widespread is
a consequence of the fact that is has very low implementation
complexity and it outperforms other vector quantizers in
practical situations. LBG is the discrete version of the Lloyd-
Max quantizer, and, unlike Lloyd-Max, it does not require
a closed form expression of the input density, but an initial
training vector that is iteratively partitioned into Nq clusters.

We show in Fig. 5 the difference in output distribution when
we apply the LBG quantization to a circularly symmetric
Gaussian input and when we apply it to a uniformly distributed
input, as the one obtained after our transformation in (1).
With an increase in the number of quantization regions,
the uniformity of the output is not preserved when LBG
quantization is applied directly to the estimate vectors, with-
out first performing the transformation. Hence, the proposed
transformation is important for key generation.

A. Guard Band Construction

The second argument for such a transformation is that
once the coordinates of the vertices of the Voronoi cells are
obtained, the computation of the guard bands is straightfor-
ward. Since the quantization cells are now equal-area polygons
tessellating the unit square, we can design guard bands around
the quantization boundaries starting from a certain efficiency.
We define efficiency 0 ≤ η ≤ 1 to represent the ratio of
points that fall outside the guard bands to the overall number
of points. Due to the uniform distribution of the samples

Fig. 5. Output distribution across quantization regions for uniform and normally
distributed LBG training sets; (a) Nq = 32; (b) Nq = 16

after transformation, the efficiency η =
Auseful
Asquare

= 1 − Agb,
where Agb is the total area of the guard bands. Since we are
interested in preserving the uniformity of the output symbols,
even after the construction of the guard bands, we require
that an area of 1−η

Nq
is assigned to the guard bands within

each quantization region. It should be noted, however, that
although the quantization regions should have equal areas in
the unit square, this does not imply equal widths of the guard
bands across the regions. If we let (vx,vy) denote the vectors
holding the real and imaginary coordinates of the vertices
of a certain region Ri, the coordinates of the inner polygon
representing the useful region of cell Ri can be computed
using the theorem of similar polygons, as follows:

vxrescaled =
√
η(vx − µvx) + µvx ,

vyrescaled =
√
η(vy − µvy ) + µvy , (3)

where µv is the mean of vector v. For illustration purposes, we
show in Fig. 6 (a) the LBG quantization regions, along with
the corresponding guard bands, for Nq = 8, and an efficiency
η = 0.8. Fig. 6 (b) shows the same points that have been
quantized in the uniform domain, after being transformed back
to the original domain. This is shown to illustrate the fact that
an equivalent quantization in the original domain would have
non-linear guard bands. Note that our method does not require
such an inverse transformation of the points, and both Alice
and Bob generate their keys by quantizing their transformed
complex vectors ûa and ûb, respectively.

The guard band construction is also possible in the original
domain, however, more complicated. For the simplest case
of the binary quantization, when the data is quantized in the
original domain, with the quantization boundary consisting of
a straight line going through the origin, the guard bands of
width 2r around the quantization line are computed by solving

1− η =
1

2π(σ2 + σ2
na)

∞∫
−∞

r∫
−r

e
− x̂2

A+ŷ2
A

2(σ2+σ2
na) dx̂AdŷA . (4)

However, for a larger number of Voronoi cells, with arbitrary
quantization boundaries, (4) becomes much more complex,
making even individual numerical solutions for the guard band



widths in the original domain practically unfeasible. Note that
regardless of the domain chosen, neither the quantization nor
the guard band reconciliation should affect the uniformity
at the output of the quantizer. Previous quantization and
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Fig. 6. (a) Linde-Buzo-Gray (LBG) quantization of the uniformly distributed
square; points that fall in the guard bands in blue, points outside guard bands
in green. This plot was generated for an efficiency η = .8; (b) equivalent
positions in the original domain.

reconciliation schemes have taken different approaches. We
briefly describe some of the more relevant previous results,
since we will use them as a basis of comparison to our method
in Section IV. However, most of the results available in the
literature discuss binary quantization schemes and do not take
advantage of quantizing the real and imaginary components
of the complex channel jointly, as we propose.

Aono [14] drops RSSI values below a threshold, chosen
as the median, and communicates the positions of the dis-
carded samples to the other party. In [18], Tope computes
the difference in RSSI values and relies on two thresholds
to exclude points that will likely result in a key mismatch.
Similarly, in the work of Mathur et al. [5], Alice and Bob
check for successive blocks of m samples that fall above or
below two thresholds, q+, and q−. Jana et al. [4] proposed both
a multibit and single bit adaptive secret bit generation (ASBG)
algorithm, which is a modification of the work of Mathur [5].
In contrast, the quantizer proposed by Jana, however, divides
the measurements into smaller block lengths and calculates
the thresholds for each block separately, resulting in a faster
adaptation to shifts in the RSSI mean value over time.

Unlike all of the above methods, we start from fine-grained
CSI measurements, following a complex circularly symmetric
distribution, as explained in Section II-A.

B. Key Disagreement Rates

The symbol mismatch probability1 P (â ∈ Ri|b̂ /∈ Ri)
between Alice and Bob can be computed as follows:

Pâ̸=b̂ =

Nq∑
i=1

Nq∑
j=1,j ̸=i

P (b̂ ∈ Rj , â ∈ Ri)

(5)

1Note that P denotes a probability, while the lowercase p refers to a
probability density function.

Pâ̸=b̂ =

∫
c

Nq∑
i=1

Nq∑
j=1,j ̸=i

p(b̂ ∈ Rj , â ∈ Ri, c)dc

=

∫
c

Nq∑
i=1

Nq∑
j=1,j ̸=i

P (b̂ ∈ Rj , â ∈ Ri|c)p(c)dc

=

∫
c

Nq∑
i=1

Nq∑
j=1,j ̸=i

P (b̂ ∈ Rj |c)P (â ∈ Ri|c)p(c)dc

For the simplest case, with two quantization regions, with the
quantization boundary at x = 0, the bit mismatch probability,
or bit disagreement rate (BDR), is derived in (6)-(9), where
R1 is from (−∞, 0), R2 is from (0,∞), and R = R1 ∪
R2. Note that â, b̂, and c are all complex variables, so any
integration is in real and imaginary dimensions. For binary
quantization, Nq = 2, due to the symmetry of the quantization,
it is sufficient to integrate only the along the real components
of the variables, namely x̂A, x̂B , and x, as shown in (9).

Pâ ̸=b̂N2
= P (â ∈ R1, b̂ ∈ R2) + P (â ∈ R2, b̂ ∈ R1) (6)

Pâ ̸=b̂N2
= 2

∫
c∈R

P (â ∈ R1|c)P (b̂ ∈ R2|c)p(c)dc (7)

Pâ ̸=b̂N2
= 2

∫
c∈R

∫
b̂∈R2

∫
â∈R1

p(â|c)p(b̂|c)p(c)dâ db̂ dc (8)

IV. RESULTS

For a fair evaluation of the quantization and reconciliation
performances, we show simulation results for the bit disagree-
ment rate (BDR) versus the correlation coefficient. We provide
results for both the binary quantization, Nq = 2, as well as
multibit quantization, Nq = 4 and Nq = 8. One interesting
aspect is whether any advantage can be achieved by using a
higher level quantization, e.g., extracting multiple bits from a
single CSI sample, while fixing the initial key generation rate.

In Fig. 7, we show the bit disagreement rates (BDR) versus
correlation for various efficiency curves, for two quantization
regions, and the same BDR plotted against the SNR in
Fig. 8. For binary quantization we investigate three scenarios:
Method 1 quantizes the user estimates with a line through
the middle of the original domain, i.e., no transformation is
applied. Method 2 splits the original domain into two equally
probable regions by using a circle of appropriate radius.
Method 3 transforms the user estimates to the unit square,
before quantizing2 with a line at ux = 0.5. A maximum
key generation rate of 1, for the binary quantization case,
is achieved for the case when the guard band widths are
zero. As confirmed by simulations, for the binary quantization,
methods 1 and 3 have, of course, the same performance, and
surpass Method 2. For four quantization regions, Nq = 4,
we have considered four options. Method 1 quantizes the
original data by splitting the original domain with four squares
intersecting in the origin. Method 2 uses 4 concentric circles
to quantize the Gaussian estimates. The radii of the concentric

2This is equivalent to LBG quantization in the uniform domain for Nq = 2



Pâ̸=b̂Nq=2
=

1√
2σnaσnb

σ

∞∫
−∞

0∫
−∞

∞∫
0

e
− (x̂A−x)2

2σ2
na e

− (x̂B−x)2

2σ2
nb e−

x2

2σ2 dx̂Adx̂Bdx (9)
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Fig. 7. Bit disagreement rate versus correlation for different initial key
generation rates; Nq = 2
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Fig. 8. Bit disagreement rates and the corresponding IKGRs for Nq = 2

circles are computed such that the output of the quantization
is uniformly distributed. Methods 3 and 4 first transform the
data to the uniform domain. Method 3 is similar to Method 1,
however, the quantization with four squares is done in the
uniform domain, instead of the original one. Method 4 is
the LBG quantization in the uniform domain, that we have
described in the previous sections. Figure 9 shows the BDR
versus the correlation coefficient for different key generation
rates. Note that since we now consider 2 bits/symbol, an

IKGR of 2 corresponds to an efficiency η = 1 when no
points are discarded, i.e., guard band widths are zero. Our
findings show identical performance for the quantization with
four squares, whether it is done in the uniform domain, and
the Linde-Buzo-Gray quantization case. Again, the concentric
quantization shows the worst performance. Figure 10 shows
the BDR versus the SNR for Nq = 4 for different key
generation rates.
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Fig. 9. Bit disagreement rates versus correlation for different initial key
generation rates; Nq = 4

We illustrate, in Fig. 11, a performance comparison be-
tween our work and previous quantization and reconciliation
schemes, following the framework discussed in [13]. We
compare our LBG results for the case of Nq = 2 and Nq = 3
with the multibit scheme proposed by Jana [4]. As shown
in Fig. 11, with the initial key generation fixed, IKGR=2,
our 2-bit LBG quantization shows an improvement over the
corresponding 2-bit quantization of Jana, regardless of the
value of the correlation coefficient. However, by increasing the
number of bits extracted per CSI symbol, i.e., 3 bits/symbol, a
performance increase in terms of BDR is achievable only for
high correlation values, compared to the case of extracting
only 2 bits/symbol. The schemes proposed by Tope and
Maurer exhibit a low BDR, however, they also have very low
initial key generation rates. Nevertheless, if we fix our IKGR
to similar values as shown of the other schemes in Fig. 11, our
LBG methd is advantageous is terms of BDR when compared
to all the other quantization schemes.

V. CONCLUSION

Instead of simply applying the quantization to the CSI
estimate vectors that Alice and Bob obtain, we first apply
a transformation of the data that leads to a uniform distri-
bution. The advantage of performing such a transformation
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Fig. 10. Bit disagreement rates versus SNR for different initial key generation
rates; Nq = 4

Fig. 11. Bit disagreement Rate (BDR) and Initial Key Generation Rate
(IKGR) versus correlation - comparison to previous works

of the complex data, enables us a to use a well known
vector quantizer, such as Linde-Buzo-Gray [6], to partition
the uniform domain into equal-area regions and to easily
construct the guard bands around the quantization boundaries,
for a fixed key generation rate. Our proposed method takes
advantage of the joint quantization of the real and complex
CSI components and discards the samples that are most likely
to result in key mismatches, without disturbing the uniformity

requirement at the output of the quantizer. Our method shows
a better performance in terms of bit disagreement and initial
key generation rates compared to other previous quantization
and reconciliation schemes currently available, while also
benefiting from a low implementation complexity.
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