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Abstract—Recently, Li and Pan proposed a deterministic
network coding resource optimization method built to overcome
the issue of severe performance degradation of network coding
in the presence of erasures. Considering a multicast scenario,
their method relied on the use of Ant Colony Optimization
(ACO) to find shortest disjoint paths from a source to each sink
and identified the coding nodes as the heads of the overlapping
path segments among multiple sinks. Although their technique
appears to be suitable for the small artificial topologies on
which it has been exemplified, there is no clear study regarding
the scalability of the proposed solution for larger Internet-like
networks where properties such as clustering are observed.
Throughout this paper we point out and provide solutions to
several problematic aspects that were not previously brought
up for discussion. We conduct extensive network measurements
on scale-free networks, deriving a probability function for link
erasures and construct a software simulation platform to assess
and enhance the practicality of their solution.

Keywords–deterministic network coding; ant-colony optimiza-
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I. INTRODUCTION

As Ahlswede et al. suggested in [1], it is possible to
achieve the upper bound of network flow in a multicast
network scenario by applying network coding. There is,
however, the problem of how to choose the coding nodes
in an optimum way, such that no more than the necessary
linear combinations of packets are performed at intermediate
nodes in the network. While there has been some work on
this issue, the problem of finding the optimum global encod-
ing kernels in the presence of erasures, remains unsolved.
Unfortunately, linear network coding, in its standard form,
is not robust against packet loss (erasures) and fast topology
changes.

There are recent contributions available in literature that
show that the same upper bound can be achieved by the use
of random linear network coding (RLNC). This, however,
requires that all network nodes act as coding nodes and
perform random linear combinations of the packets, by
multiplying them with coefficients from a large finite field.
The disadvantage of RLNC lies in the overhead introduced,
since all the nodes need to append to the data packets they
produce the random coefficients used in encoding. In order
for the max-flow bound to be reached with high probability,

it needs to be ensured that the field size chosen is large
enough [2]. This significantly increases the complexity of
the decoder and the memory requirements.

There has been an innovative approach to deterministic
network coding based on the use of Ant Colony Optimiza-
tion (ACO), as proposed in [3]. The authors describe a
promising method of identifying the minimum number of
coding nodes in order to achieve the multicast rate by first
identifying disjoint paths from the source to each sink and
recognizing the overlapping path segments. Nevertheless,
there are several critical aspects left uninvestigated in [3]
that need consideration before a coding solution that scales
well to large wireline networks can be proposed.

Throughout the rest of this paper, our interest lies in ex-
tending the idea originating from [3] to real-life large-scale
networks, subject to packet loss. Hereto, we have constructed
a software simulation platform that takes into account scale-
free network parameters such as the preferential attachment
of nodes, and link losses which have been derived from
actual Internet measurements.

The organization of this paper is as follows: Section II is
concerned with the derivation of a link erasure probability
function based on measurements we have conducted on the
PlanetLab Internet testbed. A description of the simulation
platform developed is also provided. Section III summarizes
the Ant Colony Optimization (ACO) algorithm in the pres-
ence of link erasures and provides an analysis of the ACO
convergence behavior for larger Internet-like networks. In
Section V, we address several practical aspects previously
not considered regarding the actual global encoding kernel
(GEK) assignment. Concluding remarks are presented in
Section VI.

II. LINK LOSS IN SCALE-FREE NETWORKS

A. Scale-Free Networks

Unlike the previous probabilistic models for network mod-
eling, Barabasi and Albert [4] took into account the growth
of real life networks such as the Internet, and the tendency
to form nuclei. They have argued that the probability of a
node to be connected to another one is highly dependent on
the node’s degree. The property of networks to form clusters
was termed as preferential attachment. Based on these two



properties, it has been shown that by incrementally adding
a new node at each time step and connecting the node to l
different nodes already present in the system, such networks
evolve asymptotically into scale-free networks, where the
probability that a node has degree k is given by (1) for
γBA=3 and βBA=0.5. A scale-free network is a network for
which the degree distribution follows a power law.

P (k) = 2l1/βBAk−γBA (1)

B. Link Loss in Scale-Free Networks

Although extensive literature is available on packet loss
studies in the Internet and ISP networks, there have been
only a few studies1 publicly available on link packet loss.
This is attributed to the fact that while end-nodes in a
network are easily accessible and end-to-end statistics data
can be easily obtained, the accessibility to intermediate
nodes such as routers and switches is much more restricted.
The problem of inferring link losses from packet loss
measurements is quite complex and is tackled by network
tomography algorithms. For an accurate evaluation of the
deterministic network coding scheme detailed in Section III,
we were first concerned with the derivation of a probability
distribution function of the link losses, which we intended to
use for the generation of erasures in B-A modeled networks.

C. Measurement Setup

We have considered the PlanetLab Europe Internet testbed
[5] for our packet loss measurements. We have chosen 226
nodes from PlanetLab Europe which we have considered
both as sources and sinks. We have written and deployed
scripts to all the nodes for probing and centralized data
gathering. The network was queried at multiple instances,
using tools such as ping and traceroute.

One of the aspects that had to be considered was the fact
that routers, by definition, have at least two interfaces, with
some recently introduced that support up to 160 physical
interfaces. Each interface can have multiple IP addresses
associated, which results in the same router responding to
different ICMP2 requests under a different alias. Careful
consideration had to be paid to this issue, since any in-
accuracies in the topology matrix derived would propagate
to our findings regarding link packet loss. For collapsing
the topological graph of the network we have chosen an IP
aliasing resolution technique named ally. Ally relies on the
idea that consecutive packets generated by a router will have
consecutive IP IDs, without regard of which source sent the
datagrams and for whom they were destined. Ally [6] starts
by considering all possible pairs of routers in the network.
Taking each pair at a time, it generates probe messages that
are sent to both nodes and waits for the ICMP replies. Once
a reply is received, it sends another probe to the address

1to the knowledge of the authors
2Internet Control Message Protocol
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Figure 2. Link transmission – success probability

that replied first. If all three ICMP replies are received in
order and close in value, there is a strong indication that the
two IP addresses are aliases, i.e., they belong to the same
router. For an extensive description of the IP header and
the IP ID field, the reader is referred to RFC 791 [7]. The
number of routers after the initial tracerouting was found
to be 3049, but after the IP alias resolution performed by
using the Ally technique, the number of unique routers was
reduced to 1920. Our results show, as can be seen in Fig. 1,
that quite a large fraction of routers have multiple IP aliases.
The router with the highest numbers of aliases (251) in the
PlanetLab Europe network was identified as being part of
NORDUnet (Nordic Infrastructure for Research & Education
network), located in Denmark.

The collected measurements have been processed offline,
following the method described in [8], [9], namely Netscope.
This allowed for the estimation of link packet loss, given
path packet loss measurements (end-to-end). Our findings
indicate that about 92 % of the links were completely error-
free, while a small percentage of the links had 100 % packet
loss.

The distribution we have obtained and shown in Fig. 2 was
used for assigning link weights in a B-A network, where the
network edges were modeled as binary erasure channels.

In Fig. 3, we show the theoretical degree distribution of
a B-A modeled network, along with the PlanetLab degree
distribution obtained from measurements.
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III. ANT COLONY OPTIMIZATION

The Ant Colony Optimization Algorithm (ACO) was
developed based on the analogy that agents of a decen-
tralized system with a collective behavior, such as an ant
colony, manage to find shortest paths in an environment, in
their search for food sources. The first ACO algorithm was
proposed by Marco Dorigo in his PhD thesis [10].

A. General Description

As real ants walk through a network, looking for food
sources, they lay down a pheromone trail which acts as a
signal for the other ants. When more ants face a decision
on which path to follow, they are more inclined to follow
a path that has been previously walked and marked with
pheromones, thus reinforcing the trail. In other words, once
a branching is reached, the probability that an ant follows
a certain edge is directly proportional to the amount of
pheromone present on adjacent edges. The strength of the
trail decays over time due to diffusion. After a certain
amount of time, the shorter paths in the network will tend
to have a higher pheromone concentration, since they will
be walked more per unit of time, and the pheromone level
does not have sufficient time to decay. Finally, all ants will
walk the shortest path.

The difference between ACO and other well-known algo-
rithms for finding shortest paths through a network, such as
Dijkstra or Bellman-Ford, is that ACO does not require cen-
tralized topology information, and due to localized structure
of the information required by the ants, it can be applied
to de-centralized systems. As part of our task of designing
a GEK assignment scheme with minimum overhead, in
the presence of link erasures, we are first interested in
finding shortest paths through the network in terms of era-
sure probabilities from one source to multiple destinations.
We have based our description of the ACO algorithm on
the notations introduced in [11], where a solution for the
classical traveling salesman problem (TSP) is provided. We
have tailored the proposed solution in [11] to our problem,
by loosening some constraints and introducing others. A few
initial assumptions are necessary. At the initialization of the
algorithm, all ants leave from the colony base. Every ant

k has a memory of the current tour, where the tour cost is
symbolized by Lk, and every ant is able to recognize whether
the node currently visited is a food source or their colony
base. Every time an ant walks from one node to another,
it adds the label of the node to the memory and makes a
decision on which edge to follow, while being subject to
the constraint that the new vertex reached by following the
respective edge is not already found in its memory. In other
words, an ant is not allowed to visit the same vertex twice
during one tour. This constraint is necessary to prevent ants
from looping. In the case of the TSP problem, the memory
of an ant would reset once Lk = n, that is, all the vertices
have been walked. In our modified version of the ACO, once
an ant k reaches a food location, it goes back to the base
following the same path it stored in memory, while laying
down a pheromone trail that is proportional to the cost Lk
of its tour. Once the base is reached, the memory of the ant
is reset and the ant starts another tour.

Given a graph G = (V, E) with n = |V| vertices,
|E| edges, and edge mappings w : E → R, the shortest
path between a source and a destination can be found by
the simple ant algorithm described below. Preserving the
notations introduced in [10], τi,j(t) is used to denote the
pheromone level associated with edge ei,j ∈ E at time t
and m to denote the total number of ants. Initially, all links
start with equal pheromone levels. Once an ant has reached
a node vi, it makes a decision on which adjacent vertex to
visit, given the pheromone levels of the incident vertices,
i.e., based on

pi,j(t) =
ταi,j(t)η

β
i,j∑

l allowed

ταi,l(t)η
β
i,l

, (2)

where pi,j denotes the transition probability of an ant from
node vi to vj , in the current time instance, and ηi,j = 1

wi,j

is a constant representing the visibility of the link ei,j . This
is introduced to account for the effect of the edge weights
wi,j . α and β are two parameters that control the trade-off
between the pheromone trail importance and the visibility.
After each new time instance, the pheromone trail on all
links is updated according to

τi,j(t+ 1) = ρτi,j(t) + ∆τi,j , (3)

where ∆τi,j represents the total increment in pheromone
level deposited by all the ants on link ei,j in time instance
t, defined in (4)

∆τi,j =

m∑
k=1

∆τki,j . (4)

Notation ∆τki,j represents the pheromone quantity per unit
of length laid down by the kth ant on the ei,j link, which
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Figure 4. ACO shortest path detection

is given by

∆τki,j =

{
Q
Lk

, if ant k deposited pheromones on ei,j
0, otherwise.

(5)
Following the notations in [11], Q is a constant and Lk
was previously defined as the current tour cost of ant k.
Given that each edge has been modeled as a binary erasure
channel, Lk is equivalent to the overall erasure probability
of the current tour. For an arbitrary path Pk in a network,
walked by ant k, with edges represented by ei, and individual
link erasure probabilities given by pi, the overall erasure
probability can be computed as in (6). Parameter ρ in (3) is
introduced to control the pheromone evaporation rate, such
that the trail does not build up indefinitely, and is defined
within the range 0 < ρ < 1.

Lk = 1−
|Pk|∏
i=1

(1− pi) (6)

We have implemented the algorithm described above,
which is a slightly modified version of the one proposed in
[11], and tested it on a subset of the PlanetLab network,
where the erasures associated with the edges have been
generated using the distribution in Fig. 2. For a parameter
setting of α = 1, β = 5, ρ = 0.7, and the number of ants
equal to n, the size of the network, in more than 90 % of
the cases, the shortest paths found by ACO are very close
to the ones returned by Dijkstra’s algorithm, within a 5 %
tolerance limit. For the results illustrated in Fig. 4, the size
of the network was kept constant, n = 156, and the number
of iterations was varied, as a linear function of the network
size.
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IV. FINDING THE OPTIMUM CODING NODES

Algorithm 1 Finding disjoint paths (taken from [3])
Step 1: Compute the maximum multicast rate h for the
given network using the Ford-Fulkerson algorithm.
Step 2: Select a sink node which has not previously been
selected and find the shortest path based on ant colony
optimization.
Step 3: Block all links of the last shortest path. Find a
shortest path from source to the sink based on ant colony
optimization. If no paths can be found, go to Step 4, or
go to Step 5.
Step 4: Abolish the last path we found, unblock all links
of the last path, and block a link of the last path randomly.
Define m as the times of backtracking. If still not working,
unblock the previous link and block another randomly. If
we cannot find m+ 1 disjoint paths, let m = m+ 1, and
continue to abolish the last path, until m+1 disjoint paths
have been found.
Step 5: If h disjoint paths have been found, go to Step 6,
or go back to Step 3.
Step 6: Put all h disjoint paths into the set of paths. If
all sinks have been selected, go to Step 7, or go back to
Step 2.
Step 7: Analyze the set of paths and find the coding nodes.

We show, in Table I, the eight paths, P1 − P8, found by
the algorithm above for the network in Fig. 5. As previously
mentioned, all links have a capacity of one, Node 1 is the
source of the multicast, and nodes 16−19 are the sinks. By
carefully checking the table below, the first links of each of
the joint path segments are found to be 4 → 5, 12 → 14,
and 13 → 15. The coding nodes are the heads of the joint
path segments, 4, 12, and 13, respectively. In Table I, the
joint path segments are shown in color, the coding nodes are



2 3

5 6

7 8

9 10 11

4

1

a+b

b

a

2 3

5

7 8

9 10 11

4

1

a+b

b

a

a

a

b

a b

b a+bb

6

(a) (b)
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framed, and the coding links are shown in bold. If two paths,
each corresponding to a different sink, start from the source,
split and rejoin multiple times, then every overlapping path
segment will generate a coding node. Node 1, the source
of the multicast does not act as a coding node, thus links
1→ 2 and 1→ 3 are not identified as coding links.

V. PRACTICAL ASPECTS

The identification of the coding nodes in a network does
not uniquely specify the GEK assignment for all the edges.
For instance, consider the multicast scenario in Fig. 6. Node
1 is the source of the multicast, nodes 9, 10, and 11 are the
sinks, and all edges have a capacity of 1. The multicast rate
for the network is 2. Assume that, for illustration purposes,
the paths returned by the ant colony optimization algorithm
are indeed the ones in Fig. 6, two for every pair (source,
sink). In this specific case, it can be easily seen that the
multicast rate is achievable for all sinks simultaneously only
if either Node 5 or Node 6 perform network coding. For the
paths chosen in Fig. 6, Node 6 is identified as the optimum
coding node. However, this is a necessary but not sufficient
condition to guarantee decodability at all sinks. For instance,
in Fig 6(b), the symbols a and b have been assigned to the
outgoing edges of the source such that all sinks can obtain a
system of equations for which the equations are not linearly
dependent. If symbol b was sent instead of a on the 1→ 3
edge, sink 11 would be unable to recover both a and b.
It follows that it is not sufficient to correctly identify the
coding nodes within a network, but also to correctly choose
the local encoding matrix Ks at the source, such that

yi = xGi (7)

has an unique solution for every sink ti, where yi is the
vector of received symbols, x is the vector of transmitted
symbols, and the ω × In(ti) matrix Gi holds the global
encoding kernels for all edges e ∈ In(ti), where
In(ti) represents the set of incoming edges of sink ti and
ω = |In(s)|. The matrix Gi can be easily derived once the
coding nodes have been identified.

The distinct paths found for a sink, although edge disjoint,
might still intersect at a node. To understand the problem
that arises from this fact, consider Fig. 5. Assume that for
the first sink, Node 16, the two edge-disjoint paths cross
each other at Node 6. Thus, instead of paths P1 and P2

given in Table I, P1 = 1 → 2 → 6 → 9 → 12 → 14 → 16
and P2 = 1 → 3 → 4 → 5 → 6 → 8 → 16. The coding
nodes in this situation remain the same, namely 4, 12, and
13. Router 6, in the previous case when the paths did not
cross each other, sent noncoded symbol a to router 8 and
coded symbol a + b to router 9. If we now consider the
situation in which the paths cross each other, we reach a
dead end, since router 6 would need to send a+ b to router
8 and a to router 9, to reach sink 16, while at the same time
sending a on link 6→ 8 and a+ b on link 6→ 9. Since the
transmissions need to be done simultaneously, this is not
possible. Thus, it must be ensured that whenever disjoint
paths associated with a sink cross each other, they have to
be flipped back. This is one of the critical aspects that the
authors of [3] do not consider in their work.

VI. SUMMARY AND CONCLUSION

Network coding, despite its theoretical performance on
small error-free network models, when implemented in a net-
work subject to packet loss suffers from severe performance
degradation. To overcome this effect, any deterministic code
construction needs to be specifically tailored taking into
account the lossy nature of the channel.

First, we were interested in developing a software simula-
tion platform to provide aid in the performance assessment
of a deterministic network coding scheme, in the presence
of erasures. We conducted extensive simulations on a large-
scale network, gathered statistics on packet loss and topology
information and, given the path losses measured, we derived
a probability function for the individual link losses. We
proceeded to the simulation of large networks, that exhibited
properties such as clustering, which were subject to packet
loss.

Several practical aspects left unaddressed in [3] are in-
vestigated, concluding that Ant Colony Optimization may
be successfully employed in the context of decentralized
deterministic network coding, scaling well to larger networks
prone to packet loss. The integration of this current technique
in the framework of network-coding aware routing protocols
is subject of future research. The ant colony optimization
may actually be part of a hierarchical network coding and
routing scheme, e.g., combined with constructions based on
a minimum spanning tree at lower hierarchy levels. For space
limitations, we could not describe these aspects in here.
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TABLE I
DISJOINT PATHS

Sinks First disjoint path Second disjoint path

Sink 16 P1: 1→2→6→8→16 P2: 1→3→ 4 ⇒5→6→9→ 12 ⇒14→16

Sink 17 P3: 1→2→6→8→ 12 ⇒14→17 P4: 1→3→ 4 ⇒5→6→9→17

Sink 18 P5: 1→2→ 4 ⇒5→7→10→18 P6: 1→3→7→11→ 13 ⇒15→18

Sink 19 P7: 1→3→7→11→19 P8: 1→2→ 4 ⇒5→7→10 → 13 ⇒ 15→19
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