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Abstract—Starting from a recently proposed network coding
resource optimization method, we discuss the scalability of
this solution to larger scale-free topologies that are also
characterized by a realistic link loss distribution which we
derive from measurements. We sketch a possibility of designing
a network coding aware multicast routing scheme for hierar-
chical networks.
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I. INTRODUCTION

The purpose of this work was to address the concept
of deterministic linear network coding in the context of
scale-free hierarchical networks, while considering practical
aspects such as link loss and node degree distribution,
which are typically ignored in literature. Network coding
has been already shown to provide high throughput gains,
achieving the maximum flow in error-free networks [1].
It is also known that when packet loss is present in the
network, the transmission performance of networks using
deterministic network coding can be degraded beyond the
scenario in which no network coding is employed, if the
global kernel (GEK) assignment is poorly chosen. Random
linear network coding (RLNC), on the other hand, is more
resilient to packet loss and topology changes but it intro-
duces a significant overhead. In the case of RLNC, in order
to ensure decodability at the sink, with a high probability,
the size of the finite field from which the coefficients are
chosen has to be large. This fact also arises some practical
aspects that need special consideration. The multiplication
and division operations require look-up tables according to
the size of the finite field. Nevertheless, for easy retrieval,
these tables should reside in the CPU cache, being subjected
to size constraints [2]. In order to overcome the performance
degradation of deterministic linear network coding when
confronted with erasures, we analyze a solution for a better
identification of the optimum coding nodes. The idea was
originally exemplified by Li and Pan [3] and makes use
of the Ant Colony Optimization algorithm. Unfortunately,
in the original work, the algorithm is discussed only on a
small artificial topology and the authors do not provide any
insight towards whether it is applicable to practical network
scenarios, that exhibit link loss and other characteristics. We

hereby propose to extend this idea and study its scalability to
much larger scale-free networks, such as the Internet, that
exhibit specific properties like preferential attachment and
growth over time. Although several methods for inferring
link loss statistics from path loss measurements have been
previously presented in literature [4], [5], to the knowledge
of the authors, no probability distribution regarding the
actual link losses in large scale-free networks was publicly
available. For this reason, we conduct extensive network
measurements and present our findings in Section III.

Since the focus of our ongoing research aims at extending
current routing algorithms to allow for network coding,
we summarize, in Section II, the hierarchical structure of
the Internet and two of the most widely employed rout-
ing protocols: an interior gateway protocol, namely Open
Shortest Path First (OSPF), and Border Gateway Protocol
(BGP). Throughout Section III, some previous theoretical
results regarding node degree distribution in the Internet are
compared to measurements we performed in the PlanetLab
testbed. A link loss distribution is also presented, which we
have obtained based on path loss measurements. Section IV
is concerned with a method of performing network coding
in non-hierarchical networks, based on the identification
of optimum coding nodes through the use of Ant Colony
Optimization. In Section V, we study the possibility to
extend the network coding scheme to hierarchical scale-
free networks. Section VI summarizes and concludes our
findings.

II. HIERARCHICAL NETWORKS

The Internet, as it is today, can be seen as a large hierar-
chical aggregation of Autonomous Systems (AS), connected
through backbone links. An Autonomous Systems (AS), as
defined in RFC 1930 [6] and RFC 4271 [7], is a set of
routers of one or more IP prefixes, under a single technical
administration and with a clearly defined routing policy.
Within this collection of routers, interior gateway routing
(IGP) protocols are used, while exterior gateway protocols
(EGP), such as the Border Gateway Protocol (BGP), are used
to route traffic between multiple ASs. Each AS is identified
by an unique Autonomous System Number (ASN) and falls
within one of the three categories: stub, multihomed, or



transit AS. A stub AS carries only local traffic, having
only one connection to another AS. A multihomed AS has
multiple connections to other ASs but it does not carry
transit traffic, while a transit AS has multiple connections
and by default it carries both local and transit traffic. A
reasonable assumption is that a high gain in throughput
would be achieved by employing network coding for signif-
icantly large traffic flows in the Internet. This assumption is
based on recent increasing trends in multimedia applications
such as videoconferencing and IPTV, as well as on studies
showing that approximately 9 % of flows between ASs
account for 90 % of the total number of bytes transmitted
[8].

A. OSPF - Open Shortest Path First

Two widely employed interior gateway protocols are
the Open Shortest Path First (OSPF) protocol and IS-IS
(Intermediate-System to Intermediate-System). OSPF is a
link state protocol described in RFC 2328 [9]. As opposed
to previous intraAS routing protocols, such as RIP, OSPF
builds shortest paths within a network based on multiple
cost metrics, such as link bandwidth, delay, distance, etc.. In
OSPF, larger ASs are split into areas and each node (router)
actively probes the status and costs of the incident edges
and builds a table that is sent to its neighbors and further
propagated through the entire area. Withing an area, each
router shares the same link state information and computes
a Dijkstra tree with itself as root in order to determine the
shortest paths to all the other nodes. This subdivisioning
into hierarchical structures was necessary to limit the size
of routing tables. Areas are connected through area border
routers, which summarize reachability and cost information
for every area and propagate it to the other adjacent areas.
This ensures that internal routers of a certain area are able
to determine the best area border router that will route
their traffic destined to a foreign area in terms of minimum
cost. The internal routers of an area need not be aware
of the internal topology of adjacent areas. In the case of
multiaccess networks, a Designated Router (DR) is elected
with the purpose of avoiding excessive flooding of link state
information and to represent the network to the rest of the
internetwork.

For the rest of the paper, we will refer to the term ’logical
node’ to refer to a simplified abstractization of a network
area, as defined in the context of OSPF.

B. BGP - Border Gateway Protocol

While the choice of a protocol for intradomain routing
might vary, in between ASs the same exterior gateway
protocol needs to be used. The most popular interdomain
routing protocol is the Border Gateway Protocol (BGP),
defined in RFC 1267 [10]. BGP was first introduced to
account for the need of different routing policies based on
economic, political, and security aspects. Unlike OSPF, BGP
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Figure 1. Node degree distribution comparison

not only maintains the costs to each destination but also
enumerates the routes to those destinations, as a sequence of
ASs being traversed. While doing so, it hides all the details
of the networks crossed, such as topology and individual
link costs.

III. PACKET LOSS IN SCALE FREE NETWORKS

A. Degree Distribution

In the past decade, a lot of research has been conducted
on modeling large network structures such as the Internet.
Barabasi and Albert have shown in [11] that previous
probabilistic network models from graph theory, such as
the Erdős-Rényi models, were obsolete, since they did not
account for the tendency of networks to form clusters and
grow over time. Barabasi and Albert have argued that given
a network such as the Internet, the probability of a new
node introduced to be connected to another one is highly
dependent on the other nodes’ degree. The term coined to
describe this property was preferential attachment. Taking
into account the two new characteristics, Barabasi and Albert
proposed a new degree distribution for scale-free networks,
given in (1).

P (k) = 2l1/βBAk−γBA (1)

By incrementally adding a node at each time step and con-
necting the node to l different nodes already present in the
system, the node degree distribution evolves asymptotically
into a power law function. The two constants in (1) were
found to be γBA = 3 and βBA = 0.5.

We have conducted several sets of measurements in the
PlanetLab Europe [12] network. In Fig. 1, we show the
theoretical degree distributions of a B-A modeled network,
along with the PlanetLab degree distribution obtained from
measurements.

B. Path loss and link loss

One of the tasks of the more general research problem
investigated here was link loss estimation. Due to various
constraints such as restricted router accessibility and ISP
policies, link loss data is not freely available in the Internet.
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Figure 2. Cumulative distribution functions for link loss and path loss

End-to-end nodes, on the other hand, are easily accessible
and can provide accurate measurements of path packet loss.
Several network tomography techniques that infer link loss
from path packet loss measurements are discussed in the
literature [4], [5].

We have chosen 226 nodes from the PlanetLab Europe
network and performed network measurements between
each pair using tools such as ping and traceroute. The
total number of investigated paths was 50850. One of the
practical aspects that had to be considered was the fact
that routers have at least two interfaces and multiple IP
addresses can be associated with each physical interface.
IP aliasing resolution techniques are utilized to identify
multiple aliases belonging to the same router. During our
measurements we have employed Ally, an active probing IP
aliasing resolution technique, and discovered that the 3049
IPs initially discovered belonged to a number of only 1920
distinct routers.

We have performed an estimation of the link loss prob-
ability distribution function after processing multiple sets
of measurements, following Netscope, an inferrence method
described in [4], [5]. Our findings indicate that more than
95 % of the links had an average packet loss rate smaller
than 5 %. Both link and path loss cumulative distributions
are shown in Fig. 2. The link loss distribution was used for
assigning link weights in a B-A network, where the network
edges were modeled as binary erasure channels.

IV. FINDING SHORTEST PATHS

A. Ant Colony Optimization (ACO) for finding shortest paths

Although many other algorithms such as Dijkstra and
Bellman-Ford can be successfully used in solving shortest
paths problems, we discuss here a decentralized algorithm.
Ant Colony Optimization (ACO), developed by Marco
Dorigo in his PhD thesis [13], was developed based on
the analogy that agents of a decentralized system with a
collective behavior, such as an ant colony, manage to find
shortest paths in an environment, in their search for food
locations.

The idea behind ACO originates from the fact that ants,
while walking through a network looking for food, deposit a

pheromone trail. Once at a node, when an ant is faced with
the choice of selecting one of the several incident edges to
follow, it is more inclined to choose the one with the highest
pheromone concentration. A concentrated pheromone trail is
an indicator that the edge has been walked before. Once an
ant reaches food, it goes back to its base and starts the search
all over again. Over time, the shorter paths will be walked
more, thus exhibiting a higher pheromone level. After a
certain number of iterations, the algorithm converges and
all ants walk the same shortest path.

Given a graph G = (V, E) with n = |V| vertices,
|E| edges, and edge mappings w : E → R, the shortest
path between a source and a destination can be found by
the simple ant algorithm described below. Following the
notations introduced by Dorigo in [13], the probability that a
certain ant moves from node i to node j in the current step is
given in (2), where τi,j(t) is used to denote the pheromone
level of edge ei,j ∈ E at time t and m is total number of
ants. Since at the start of the algorithm none of the links have
been previously walked, the pheromone level is initialized
to the same value throughout the entire graph.

pi,j(t) =
ταi,j(t)η

β
i,j∑

l allowed

ταi,l(t)η
β
i,l

, (2)

ηi,j = 1
wi,j

is a constant representing the visibility of the
link ei,j which is introduced to account for the effect of the
edge weights wi,j . α and β are two parameters that control
the trade-off between the pheromone trail importance and
the visibility. The pheromone level of every link is updated
after every time instance as given by

τi,j(t+ 1) = ρτi,j(t) + ∆τi,j , (3)

where ∆τi,j represents the total increment in pheromone
level deposited by all the ants on link ei,j at current time t,
obtained as

∆τi,j =

m∑
k=1

∆τki,j , (4)

with ∆τki,j denoting the pheromone deposited per unit of
length by the kth ant on the ei,j link, which is given by

∆τki,j =

{
Q
Lk

, if ant k deposited pheromones on ei,j
0, otherwise.

(5)
Following the notations in [14], Q is a constant and Lk
was previously defined as the current tour cost of ant k.
Given that each edge has been modeled as a binary erasure
channel, Lk is equivalent to the overall erasure probability
of the current tour. For an arbitrary path Pk in a network,
walked by ant k, with edges represented by ei, and individual
link erasure probabilities given by pi, the overall erasure
probability can be computed as in (6). Parameter ρ in (3) is
introduced to control the pheromone evaporation rate, such



that the trail does not build up indefinitely, and is defined
within the range 0 < ρ < 1.

Lk = 1−
|Pk|∏
i=1

(1− pi) (6)

After the convergence time is over, the shortest paths in
terms of an arbitrary metric, in our case the path packet
loss, can be identified based on the increased pheromone
concentration. Although we only use the packet loss metric
in our simulations to determine optimum paths through the
network, ACO can be easily modified to account for a
mixture of other metrics.

B. Identifying coding nodes

Given a network modeled by a graph G = (V, E) and
links with an equal capacity of one, we define a source
s and multiple sinks ti. It has been shown in [15] that if
maxflow(ti) ≥ h for a sink ti, then there are at least h
disjoint paths between the source and the sink, where h is
defined as the minimum cut between the source and any of
the receivers. Although h could be achieved for any of the
sinks independently, it might not be achievable for a store-
and-forward multicast, depending on the network topology.
If the network has bottlenecks, the only possibility to achieve
the multicast rate for all the sinks simultaneously is to em-
ploy network coding at the bottleneck nodes, e.g., combining
multiple incoming packets into an outgoing packet.

Since all the paths start at the source and end at various
sinks, the bottlenecks in the network will consist of overlap-
ping path segments, in particular, we search for paths that
start at the source, diverge, then overlap again later. The
length of the overlap should be of at least one link in length,
it is not sufficient that the paths cross each other. Once we
have identified the path overlaps among different sinks, the
coding nodes are found to be the heads of the overlapping
segments. This idea was initially briefly presented in [3]. We
discuss some practical aspects left uninvestigated and offer
a more clear description in [16].

For our simulations, we have chosen a number of ants
m equal to the number of nodes. Ants are prevented from
looping by having a memory that is reset at the beginning of
each new cycle. A new cycle for a certain ant begins after it
has managed to find a food source and has returned to the
base, depositing a pheromone trail. After a certain number of
iterations, ‘sniffing ants‘ are released from the source. The
sniffing ants follow the edges with the highest pheromone
trail, in a greedy fashion, one ant per disjoint path. In doing
so, they lay down another type of pheromone marker that
prevents any other sniffing ants running through the network
during that cycle to walk the same edge. Unfortunately, there
is a possibility that some sniffing ants will block the paths
of the others and although there are theoretically at least
h disjoint paths between the source and each of the sinks,
the sniffing ants could get stuck. A backtracking procedure

is necessary to ensure that all the disjoint paths are found.
Assuming that for a certain source-sink pair, only hf ≤ h
paths have been found, a certain percentage of the edges
belonging to the longest among the hf paths can have the
pheromone level decreased before resetting the sniffing ants
back to the source. Although it might introduce a small
compromise regarding the overall cost of the final disjoint
paths, by reducing the pheromone level of some of the edges
belonging to the longest of the hf paths, the desirability of
the sniffing ants to follow those paths will be reduced. This
ensures a faster convergence on average, since once a dead-
end is reached, the region of the search space is changed.
The longer a path is, in terms of number of edges, the higher
the chances of blocking other disjoint paths.

The fact that nodes only store the pheromone of incident
edges for every possible pair sink-source considered was the
main factor in choosing ACO for finding shortest paths. The
typical assumption is that full network topology information
is not available at the nodes. Our findings indicate that
the minimum number of required iterations scales with the
size of the network. When this condition is satisfied, for a
parameter setting of α = 1, β = 5 and ρ = 0.7, in more than
90 % of the cases, the paths returned by ACO are within
5 % tolerance of the ideal Dijkstra paths. Considering the
overhead ACO introduces and given the fact that for each
source-sink pair a new search needs to be performed, the
initial flooding of link state information that OSPF requires
in order to obtain full topology information for constructing
Dijkstra shortest path trees might still be preferred.

V. NETWORK-CODING AWARE ROUTING

The problem we face when trying to design a hierarchical
network coding scheme is illustrated in Fig. 3. Starting from
the canonical butterfly network configuration, we substitute
nodes with logical nodes, or pseudonodes. We introduce
the term logical node to refer to a larger network, similar
in concept to an AS. Consider Fig. 3 (a), where all nodes
have been replaced with larger subnetworks, namely logical
nodes. Node 4 (in blue) can be viewed as the autonomous
system in Fig. 3 (b) that needs to be traversed by two traffic
flows, a and b.

Depending on the type of traffic, whether it is local
traffic or transit, two different situations emerge. In the
case of local traffic, network coding can be performed as
previously described, once the optimum coding nodes have
been identified by analyzing the overlapping path segments
between sets of disjoint paths. Here a reasonable assumption
is the fact that if the traffic is destined for a local sink, it
will not be routed on paths outside of the local area. In
the case of transit traffic, a top-down approach is necessary.
Starting with the top-most level, the networks (logical nodes)
within which network coding needs to be done are first
identified. Once the GEK assignment has been determined at
the top-most level, it is now clear which areas will simply
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Figure 3. Hierarchical network structure

forward the traffic flows and which will have to combine
them. Considering the two-layer example illustrated in Fig. 3
nodes B, I, and G can be viewed as border routers which
route traffic in and out of the logical node. Unlike in the
previous example in Section IV, where only edges in a graph
were assigned a weight, it is now necessary to introduce
costs for the vertices. In a typical routing scenario, node B
would have to advertise the overall cost of reaching logical
nodes 5, 6, and 7 to its neighboring border router in logical
node 3, while node I would advertise the overall costs to its
corresponding peer in logical node 2, for reaching the same
destinations 5, 6, and 7. The cost for reaching a destination
propagates through the network in a cumulative fashion,
where each area adds its own cost and passes the information
to the adjacent areas. The cost advertised by Node B to
its adjacent area are different for reaching destinations 5,
6, and 7, from the ones advertised by Node I for the same
destinations. This is easily understood, since a packet routed
from logical Node 3 to Node 5 through B would follow a
different path through logical Node 4 than another packet
traveling from 2 to 5 through I.

The overall cost from a sink to destination, whether the
metric is bandwidth, delay, link reliability, etc., as defined
in the store-and-forward scenario turns to be wrong for
the case when packets are combined within the network.
Considering the logical node 4 in Fig. 3, with two incoming
flows a and b, the optimum coding node to perform the
linear combination is found by an examination of the pruned
minimum spanning tree rooted at G. Figure 4 illustrates this
idea. Node E is easily identified as the node of interest. In
the case more input flows need to be combined within an
area, the optimum coding nodes are the ones in the pruned
minimum spanning tree that have multiple children.

The choice of a MST instead of a Dijkstra tree comes from
the fact that our interest was to minimize the overall packet
loss for the combined packet outgoing from Node I. Every
area border router needs to be aware of the topology of the
area it resides in. The overall cost of the MST rooted at the
exit of the logical node and pruned at all the other incoming
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points into the logical node will always be smaller than the
cost of the pruned Dijkstra tree rooted at the same exit node
and pruned at all the other incoming points. In our example,
if the two flows a and b, specified by a source ID and the
same multicast group, are marked to be coded in a specific
logical node, the first router in the logical node receiving
both flows simultaneously can generate a new combined
flow, mark it as coded and output it on the corresponding
interface. Due to the MST structure, no loops can occur, thus
the distinct flows cannot be combined more than once. If a
router receives a flow marked for coding, the MST has to be
checked, otherwise the flow should be forwarded according
to the Dijkstra tree. The concept described above can be
extended recursively to networks with more that 2 layers,
either using ACO or MSTs.

VI. SUMMARY AND CONCLUSIONS

Measurements have been carried out and statistics data
has been gathered and processed concerning packet loss and
degree distribution in the Internet. We have used Netscope
to infer link loss from packet loss and shown the resulting
cumulative distribution functions for both path and link
losses. We describe an idea of finding coding nodes within
a network by identifying the segments of overlapping paths
between a source and each of the multicast sinks.

We conclude that although the idea can be extended to
larger hierarchical networks, other shortest path algorithms
might be preferred over ACO. We sketched a possibility
of designing a network aware routing scheme which makes
use of a mechanism for exchanging link state information
and computing Dijkstra shortest paths trees similar to the
one used in OSPF, but also incorporates the construction of



minimum spanning trees.
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