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Abstract— We present an optimization method for unequal
error protection (UEP)-LDPC codes with higher order constel-
lations. By modifying the density evolution algorithm under
the Gaussian approximation, we propose a flexible code design
algorithm for a variable number of protection classes and
arbitrary modulation schemes with Gray mapping. Our results
show that appropriate code design for higher order constellations
reduces the overall bit-error rate. Furthermore, the influence on
the UEP capability of the code, that is, the difference in bit-error
rate between the protection classes, is investigated.

I. INTRODUCTION

Coded modulation is a well-known technique which opti-
mizes the coding scheme given the modulation in order to
improve the performance of transmission systems [1], [2],
[3], [4]. Usually, the modulation alphabet is successively
partitioned into smaller subsets, where each partitioning level
is assigned a label. These labels are protected by separate
channel codes with certain protection capabilities. The codes
have to be designed carefully depending on the modulation
scheme and its partitioning or labeling strategy. According to
[5], the optimal way of designing the codes is to match the
different code rates to the capacities of the partitioning steps.
This means that, for a given signal-to-noise ratio (SNR) and
given modulation scheme and partitioning, the code rates of
the single codes are fixed. However, there are also other design
approaches with similar results, [6], [7]. The corresponding
channel codes can be block codes, convolutional codes, or
concatenated codes.

In our approach, we will use low-density parity-check
(LDPC) codes, which were presented by Gallager in [8].
LDPC codes are block codes with a sparse parity-check
matrix H that can be conveniently described through a graph
commonly called a Tanner graph [9]. Such a graphical rep-
resentation facilitates a decoding algorithm known as the
message-passing algorithm. For more details on message-
passing decoding, the reader is referred to an introduction
by Kschischang et al. [10]. Optimization of LDPC codes as
separate codes for each level in multilevel coding has been
investigated in [11] amongst others.

In this paper, only one code is used for all levels instead
of separate codes. A longer code (with better performance)
can then be used while keeping the delay fixed. The task is to
design certain local properties of the code to match the higher

order constellations and assign bit positions of the modulation
scheme to the codeword bits. Achieving local properties in the
codeword may be done by designing the variable and/or check
node degree distribution of the code in an irregular way [12],
[13], [14], [15]. The connection degree of the variable nodes
affects the bit-error rate (BER). The message bits are divided
into several classes depending on the connection degree and
each class has different BER after decoding, that is, the code
provides unequal error protection (UEP). In [16], bits from
the least protected modulation level are mapped to variable
nodes with the best protection, that is, the variable nodes
with highest connection degrees. No other optimization is
performed. In [7], the different amount of protection for each
modulation level is taken into account in the initialization of
the density evolution algorithm that is employed to optimize
the degree distribution of the code. In our approach, we design
UEP-LDPC codes while accounting for the unequal error
protection which is already inherent in modulation. Regarding
the modulation schemes, any conventional scheme like M -
QAM or M -PSK as well as more complex schemes called
hierarchical constellations [17] with Gray labeling may be
used.

The paper is organized as follows. Section II presents the
overall system model, while models for the modulator are
given in Section III. Section IV contains the main part of
this paper which includes a general description of irregular
LDPC codes and the standard code optimization as well as
extensions for UEP. We also explain the optimization of the
degree distribution for higher order constellations and give an
algorithm for the code design. In Section V, some simulation
results are discussed.

II. SYSTEM MODEL

In this section, we describe the system model of the trans-
mission scheme. Usually, in multilevel coding, the information
bits are demultiplexed into lm parallel streams, where 2lm =
M is the constellation size of the modulation scheme. The
different bit streams are encoded separately and are assigned to
the lm partitioning steps of a modulation scheme. In our case,
the independent and identically distributed (i.i.d.) source bits
are not multiplexed but each bit is assigned to one of Nc − 1
protection classes which are usually defined by the source
coding unit and do not have to be of equal size. We apply only
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Fig. 1. UEP-LDPC coded modulation scheme.

one code C, providing Nc protection classes at its output (see
Fig. 1), where all parity bits correspond to the least protected
class CNc

. The bits of the protection classes are remultiplexed
and assigned to certain bit positions of the modulator, which
correspond to modulation classes M1, . . . , MNs

. The bit
assignment will be described in Section IV-A. In the following
we assume an additive white Gaussian noise (AWGN) channel
with noise variance σ2.

III. MODULATION

Let us assume a modulation scheme with M = 2lm signal
points, labeled by binary vectors d = (dlm−1, . . . d1, d0).
In order to design codes for higher order constellations, we
investigate the error probabilities of the individual bits. The
example of 8-PSK is chosen here, but the scheme can also be
designed for any other constellation.

Using the union bound, the approximate symbol-error rate
expression for 8-PSK is given as [18],

Ps,8−PSK = erfc

(

√

3Eb

N0
sin

π

8

)

, (1)

where erfc is the complementary error function. The individual
and average bit-error probabilities depend on the partitioning
and labeling strategy. We will only consider Gray labeling,
since it leads to the lowest overall bit-error probability. Fur-
thermore, the bits are almost independent of each other which
is important for the LDPC decoder performance.

For Gray labeling, a symbol error typically results in only
one bit error and, thus, one can assume that the average bit-
error rate is P̃b ≈ Ps/ log2(M). The expressions for the bit-
error probabilities of the individual bits in the symbol are

Pb,d0 ≈ 1

2
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(
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)

, (2)

Pb,d1 = Pb,d2 ≈ 1

4
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(

√

3Eb
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π

8

)

. (3)

From these different bit-error probabilities, one can determine
equivalent noise variances of the single bit positions corre-
sponding to the case of BPSK. We define the noise vector
σ2 = [σ2

1 . . . σ2
Ns

] to be a vector that contains the equivalent
noise variances for each separate bit-error rate ordered with
the lowest variance first. We assume that there are Ns distinct
equivalent noise variances, where Ns ≤ lm. The equivalent
noise variances may be calculated from the individual bit-error
rates by

σ2
j =

1

2
(

erfc−1(2Pb,dj
)
)2 . (4)

Note that these expressions are obtained by applying the union
bound. The approximations are assumed to be appropriate for
our purposes but can be replaced by more exact formulas. In
the following, we assume that Ns equivalent BPSK channels
are employed instead of the higher order constellation channel.
We claim that this approximation meets our requirements since
the system employs Gray mapping.

IV. UEP-LDPC CODES

As a channel code, we choose a UEP-LDPC code. There are
different methods for achieving UEP with LDPC codes, the
probably most obvious one is puncturing a certain amount of
the code bits before modulation. The receiver does not have
any knowledge about these bits and assumes all signals of
the input alphabet with equal probability. Two other possi-
bilities for obtaining UEP were presented in [14] and [15].
Both approaches use irregular LDPC codes and optimize the
irregularities of the code in order to obtain several classes of
protection within the codeword. More precisely, the authors
in [14] optimize the irregular variable node (also called bit
node) degree distribution while keeping the check node degree
distribution fixed, whereas in [15], the check node degree
distribution is adapted, keeping the variable node degree
distribution fixed. We will follow the approach from [14]. The
next section gives a general description of UEP-LDPC codes
by considering degree distributions.

A. General Description

LDPC codes are block codes with a sparse parity-check
matrix H of dimension (n− k)× n, where R = k/n denotes
the code rate and k and n are the lengths of the information
word and the codeword. The codes can be represented as
a bipartite graph, called Tanner graph. The graph consists
of two types of nodes, variable nodes and check nodes,
which correspond to the bits of the codeword and to the
parity-check constraints, respectively. A variable node is
connected to a check node if the bit is included in the
parity-check constraint. For regular LDPC codes, all variable
nodes and check nodes have fixed variable node degree
and check node degree, respectively. However, irregular
LDPC codes are known to approach capacity closer than
regular LDPC codes. The irregular variable node and check
node degree distributions may be defined by the polynomials

λ(x) =

dvmax
∑

i=2

λix
i−1 and ρ(x) =

dcmax
∑

i=2

ρix
i−1

where dvmax
and dcmax

are the maximum variable and
check node degree [19]. The degree distributions describe the
proportion of edges connected to nodes with a certain degree.

In order to optimize the degree distribution of an irregular
LDPC code, the decoding behavior has to be investigated. Us-
ing a message-passing algorithm, the messages along the edges
of the graph are updated iteratively. The mutual information
messages at the input of a variable node and a check node
at iteration l can be computed by means of density evolution



using the Gaussian approximation [20] to be

x(l−1)
u = 1 −

dcmax
∑

j=2

ρjJ((j − 1)J−1(1 − x(l−1)
v )) , (5)

x(l)
v =

dvmax
∑

i=2

λiJ(
2

σ2
+ (i − 1)J−1(x(l−1)

u )) , (6)

with J(·) computing the mutual information x = J(m) by

J(m) = 1 − E{log2(1 + e−z)} (7)

= 1 − 1√
4πm

∫

R

log2(1 + e−z) · e− (z−m)2

4m dz

for a consistent Gaussian random variable z ∼ N (m, 2m).
These update rules are valid only when all bits belong to one
modulation class with noise variance σ2.

For the case of UEP-LDPC codes, we follow the approach
from [14] and define an overall check node degree distribution
and different variable node degree distributions for the Nc

protection class, i.e.,

λ(Ck)(x) =

dvmax
∑

i=2

λ
(Ck)
i xi−1 for k = 1 . . .Nc . (8)

Since the variable node degree distributions give proportions
of edges connected to variable nodes of certain degrees, the
constraint

Nc
∑

k=1

dvmax
∑

i=2

λ
(Ck)
i = 1 (9)

must be fulfilled. Different variable node degree distributions
lead to a modified update rule for the messages from variable
nodes to check nodes

x(l)
v =

Nc
∑

k=1

dvmax
∑

i=2

λ
(Ck)
i J(

2

σ2
+ (i − 1)J−1(x(l−1)

u )) . (10)

The update rule for the messages from check nodes to variable
nodes stays the same since the check node degree distribution
is constant.

This paper considers the design of UEP-LDPC codes for
higher order constellations, where the individual bits in the
symbol may have different error probabilities. The aim of
the code design is to reduce the overall BER by taking
these different error probabilities into account. The design
algorithm should also give the possibility to trade overall BER
for UEP capability. The natural way of assigning bits from
modulation classes to protection classes to achieve UEP, is
to use the best protected bits from the modulation, that is,
modulation class M1, for protection class C1 and continue
like that until all bits have been assigned to a protection
class. However, this assignment is not necessarily expected to
give a degree distribution with the lowest possible threshold,
where the threshold is defined as the lowest Eb/N0 for which
density evolution converges. However, as is discussed later
on, there is always a tradeoff between a low threshold and
good UEP capability. By introducing different variable node

degree distributions also for each modulation class, linear
programming may be used to assign bits from the modulation
classes to the protection classes.

B. Notations

We consider a UEP-LDPC code with Nc protection classes.
The proportions of each class are given by the normalized
lengths of each class corresponding to the information bits,
α = [α1, . . . , αNc−1]. The proportion distribution of the
bits in the codeword belonging to the protection classes is
given by p = [α1R, . . . , αNc−1R, (1 − R)]. Ns is the
number of different bit-error rates for the bits in a symbol
and we will describe the bits with a distinct bit-error rate as
belonging to one modulation class. β = [β1, . . . , βNs

] defines
the proportion of bits that belongs to each modulation class.

The vector λ contains the overall variable node de-
gree distribution, both for different protection classes and
different modulation classes. Let λ

(Ck)
j,i be the propor-

tion of edges connected to variable nodes of degree i
that belong to modulation class Mj and protection class
Ck. Define λ

(Ck)
j = [λ

(Ck)
j,2 , . . . , λ

(Ck)
j,dvmax

]T and λ =
[

λ
(C1)
1

T

, . . . , λ
(CNc )
1

T

, . . . , λ
(C1)
Ns

T

, . . . , λ
(CNc)
Ns

T
]T

, where

(·)T denotes the transpose. λ
(Ck)
j is a (dvmax

− 1 × 1)
vector and λ is a vector of size ((dvmax

− 1) · Nc ·
Ns × 1). The vector ρ = [ρ2, . . . , ρdcmax

]T describes the
check node degree distribution. For later purposes, we also
define 1/dv = [1/2, 1/3, . . . , 1/dvmax

]T , 1/dc =

[1/2, 1/3, . . . , 1/dcmax
]T and 1 to be an all-ones vector

of appropriate length.

C. Optimization of the Degree Distribution for HOC

For higher order constellations, the update rule (10) has
to be modified to take different noise variances for different
variable nodes into account. Similar to [7], the update rule
may be written

x(l)
v =

Nc
∑

k=1

Ns
∑

j=1

dvmax
∑

i=2

λ
(Ck)
j,i J(

2

σ2
j

+(i−1)J−1(x(l−1)
u )) . (11)

Equations (5) and (11) can now be combined to yield the
mutual information evolution of the LDPC code

x(l)
v = F (λ, ρ, σ2, x(l−1)

v ) . (12)

If x
(l)
v > x

(l−1)
v for any x

(l−1)
v , then λ and ρ describe a code

for which density evolution converges for the noise variance
vector σ2.

UEP capability may be obtained by optimizing each protec-
tion class after another by linear programming, starting with
the best protected class and fixing the degree distributions
of the already optimized classes during the optimization of
the following classes, [14]. It is well-known that a higher
connectivity of a variable node leads to better protection.
Thus, the optimization target is to find a variable node degree
distribution for the whole code that maximizes the average



variable node degree of the class being optimized. Thus, the
target function for protection class Ck can be formulated as

max
λ

Ns
∑

j=1

dvmax
∑

i=2

λ
(Ck)
j,i . (13)

This target function results in a degree distribution with UEP
capability, but the only requirement on the assignment of the
code bits to the modulation classes is that density evolution
must converge for the given degree distribution. In order to
achieve UEP, one would assign as many bits as possible
from better modulation classes to the protection class being
optimized. This can be done by introducing a scaling factor
kj for the modulation classes, where the only requirement is
k1 > k2 > . . . > kNs

> 0. For simplicity, kj might be
chosen as kj = Ns − j + 1. The factor kj will appear later
in the target function (16) of the algorithm where it has the
effect that the linear programming algorithm, if possible while
fulfilling all constraints, will use modulation classes with low
noise variance for the best protected classes.

When designing good LDPC code ensembles, the stability
condition which ensures convergence of the density evolution
for mutual information close to one should be fulfilled [19].
The stability condition gives an upper bound on the number of
degree-2 variable nodes. For a BPSK scheme, where all bits
are affected by the same noise variance, we have [19]

1

λ′(0)ρ′(1)
> e−r =

∫

R

P0(x)e−
x
2 dx = e−

1
2σ2 (14)

with P0(x) being the message density corresponding to the
received values and λ′(x) and ρ′(x) being the derivatives
of the degree polynomials. It is straightforward to see that
λ′(0) =

∑Ns

j=1

∑Nc

k=1 λ
(Ck)
j,2 and ρ′(1) =

∑dcmax

m=2 ρm ·(m−1).
In our case, the bits are affected by channel noise with different
variances σ2

j (see (4)) and, thus, different densities. We use the
average density, which is given by utilizing the modulation
class proportions β,

e−r =

∫

R

Ns
∑

j=1

βj · P0,j(x)e−
x
2 dx =

Ns
∑

j=1

βj · e
−

1

2σ2
j . (15)

We are very well aware that this is an approximation but
assume appropriateness for the ensemble of code constructions
with given β.

D. Optimization Algorithm

The optimization algorithm proposed here is a modification
of the hierarchical optimization algorithm presented in [14]
for higher order constellations. The optimization is performed
at Eb/N0 = δ + ε (this will be the threshold of the optimized
code), where δ is the lowest possible threshold in dB for the
given ρ and dvmax

, and ε is the offset from the lowest threshold
that gives freedom in the choice of λ to enable design of a
UEP code.

The algorithm can be divided into two parts, global opti-
mization and local optimization. In the global optimization,
the linear programming is executed class after class for a

given Eb/N0. In the local optimization, λ is optimized to
maximize the scaled average variable node degree of class Ck

while using the best possible modulation class, assuming that
classes C1, . . . , Ck−1 have already been optimized. In order
to find a maximum average degree, the algorithm starts by
setting the minimum variable node degree to some maximum
value, conveniently the maximum variable node degree of
the code, and tries to find a solution. In case of failure, the
minimum variable node degree is successively reduced until
the algorithm succeeds in finding an overall degree distribution
which fulfills the constraints.

The global optimization can be stated as follows.

1) Fix Eb/N0 = δ + ε and calculate σ2.
2) for k = 1 . . .Nc, find λ

(Ck)
opt with the local optimization

procedure.

λ
(CNc )
opt gives the final result.

For the local optimization of class Ck, a linear programming
routine is executed, which requires definition of the check
node degree distribution ρ, Eb/N0 = δ + ε in dB, and the
maximum variable node degree dvmax

.

1) Initialization d
(k)
vmin

= dvmax

2) While optimization failure
a) Optimize

max
λ

Ns
X

j=1

kj

dvmax
X

i=2

λ
(Ck)
j,i (16)

under the constraints [C1] − [C6].
[C1] Rate constraint

Ns
X

j=1

Nc
X

k=1

λ
(Ck)
j

T
1/dv =

1

1 − R
ρT 1/dc (17)

[C2] Proportion distribution constraints
i)

Ns
X

j=1

Nc
X

k=1

λ
(Ck)
j

T
1 = 1 (18)

ii) ∀k ∈ {1, . . . , Nc − 1},

Ns
X

j=1

λ
(Ck)
j

T
1/dv = αk

R

1 − R
ρT 1/dc (19)

iii) ∀j ∈ {1, . . . , Ns − 1},

Nc
X

k=1

λ
(Ck)
j

T
1/dv = βj

1

1 − R
ρT 1/dc (20)

[C3] Convergence constraints, see (12)

F (λ, ρ, σ2, x) > x (21)

[C4] Stability condition, see (14) and (15)

Ns
X

j=1

Nc
X

k=1

λ
(Ck)
j,2 <

2

4

Ns
X

j=1

βje
−1/2σ2

j ·

dcmax
X

m=2

ρm(m − 1)

3

5

−1

(22)
[C5] Minimum variable node degree constraint

∀i < d(k)
vmin

, ∀j, λ
(Ck)
j,i = 0 (23)



[C6] Previous optimization constraints

∀k′ < k, ∀j, λ
(Ck′ )

j is fixed (24)

b) d
(k)
vmin

= d
(k)
vmin

− 1

End

E. Code Construction

When the optimal degree distribution of the variable nodes
is found, a parity-check matrix is constructed by the Approx-
imate Cycle Extrinsic message degree (ACE) algorithm [21].
The ACE algorithm selectively avoids small cycle clusters
that are isolated from the rest of the graph and has good
performance in the error-floor region for irregular LDPC
codes.

V. SIMULATION RESULTS

In this section, simulation results for an example with 8-
PSK are presented. We denote our scheme by higher order
constellation UEP (”HOC-UEP”), which is a UEP-LDPC code
optimized for the different σ2

j from the modulation. The noise
vector σ2 is calculated according to (4), with Ns = 2 and β =
[2/3, 1/3] for Gray-labeled 8-PSK. The HOC-UEP scheme is
compared to a UEP-LDPC code optimized for BPSK [14],
but used for 8-PSK. This scheme, that is denoted by “UEP”,
designs the code for an average σ2 and assigns the bits
following the natural bit assignment. The degree distributions
are optimized for R = 1/2, Nc = 3, α = [0.3, 0.7], and
dvmax

= 30. The check node degree distribution is chosen as
ρ(x) = 0.00749x7 + 0.99101x8 + 0.00150x9, which is found
by numerical optimization in [19] to be a good check node
degree distribution for dvmax

= 30.
Table I shows the degree distributions given by the two

design algorithms. For the UEP scheme, we arbitrarily choose
ε = 0.1 dB to allow for some unequal error protection. The
resulting degree distributions λ(Ck) are given for each pro-
tection class Ck . The minimum threshold δ of the HOC-UEP
code is 0.27 dB lower than of the corresponding UEP code.
Thus, we design the HOC-UEP code for ε = 0.37 dB in order
to have the same thresholds for both schemes. The degree
distributions of the HOC-UEP scheme λ

(Ck)
j for protection

classes Ck and modulation classes Mj are also given in Table
I. For comparison, the degree distributions for both algorithms
are also shown for the minimum tresholds, that is, ε = 0 dB.

Finite length codeword simulations with n = 4096 and
50 decoding iterations are performed using the equivalent
BPSK channels. Simulations verify that 8-PSK modulation
and demodulation give almost exactly the same results as
simulations with the equivalent BPSK channels. We assume
that a soft demapper provides the message passing decoder
with the channel log-likelihood ratios (LLRs) in any case using
higher order constellation modulation and demodulation. Note
that the channel LLRs are computed using the appropriate
noise variances σ2

j of the modulation classes.
Fig. 2 shows the overall BER after 50 decoding iterations.

By design, the overall BERs for the codes with ε 6= 0 dB are

TABLE I

DEGREE DISTRIBUTIONS FOR THE UEP AND HOC-UEP SCHEMES.

C1 C2 C3

ε = 0 dB
UEP λ7 = 0.0799 λ3 = 0.1790 λ2 = 0.2103

λ8 = 0.0948 λ6 = 0.0737 λ3 = 0.0181

λ30 = 0.3029 λ7 = 0.0414

HOC-UEP M1 λ9 = 0.1703 λ3 = 0.1673 λ2 = 0.1240

λ10 = 0.0555

λ30 = 0.1811

HOC-UEP M2 λ30 = 0.0854 λ4 = 0.0225 λ2 = 0.0878

λ5 = 0.0738 λ3 = 0.0022

λ7 = 0.0117 λ4 = 0.0183

ε = 0.1 dB
UEP λ11 = 0.1783 λ3 = 0.2041 λ2 = 0.1841

λ12 = 0.1184 λ4 = 0.0393 λ3 = 0.0575

λ30 = 0.2183

ε = 0.37 dB
HOC-UEP M1 λ16 = 0.5255 λ3 = 0.0187 λ2 = 0.2174

λ17 = 0.0088

HOC-UEP M2 λ3 = 0.1929 λ3 = 0.0075

λ4 = 0.0293
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Fig. 2. Overall bit-error rate performance.

higher than for the corresponding codes with ε = 0 dB. This
is because the thresholds of the codes are increased in order to
allow an increased average variable node degree of the most
protected classes. Fig. 2 also shows that for high Eb/N0, the
overall BERs of the HOC-UEP codes are lower than for the
UEP codes. The overall BER of the HOC-UEP ε = 0.37 dB
code is lower than the overall BER of the UEP ε = 0.1 dB
code, even though they are designed for the same threshold.
For an overall BER of 10−5, there is a gain of around 0.7 dB
by the HOC-UEP scheme.

The BER performances of the individual protection classes
C1 and C2 for the UEP scheme are shown in Fig. 3. The
UEP capability, that is, the difference in BER between class
C1 and C2, is increased with increasing ε. For ε = 0 dB, the
UEP capability is accomplished by assignment of high degree
variable nodes to the most protected classes.

Fig. 4 shows the BER performance of protection classes C1

and C2 for the HOC-UEP scheme. The results show that the
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HOC-UEP ε = 0.37 dB code has more UEP capability than
the HOC-UEP ε = 0 dB code.

A comparison of the UEP capability for the UEP scheme
and the HOC-UEP scheme suggests that a high ε is needed
for the HOC-UEP scheme in order to achieve UEP. However,
a high ε does not seem to affect the overall BER of the HOC-
UEP scheme much for high Eb/N0, see Fig. 2.

Comparing the individual protection classes of the HOC-
UEP ε = 0.37 dB and the UEP ε = 0.1 dB scheme at BER
10−5, we gain 0.1 dB for protection class C1 and (expected)
0.7 dB for class C2. These gains are expected to be even higher
for lower BERs.

VI. CONCLUSIONS

In this paper, we present a flexible design method for UEP-
LDPC codes with higher order constellations which is appli-
cable to arbitrary signal constellations and arbitrary number

and proportions of the protection classes. For an example
with 8-PSK, it is shown that the overall BER is reduced by
the proposed method and there is a gain of 0.7 dB at BER
10−5. The results for the individual protection classes show
only slightly reduced UEP capability for the HOC-UEP design
method, but lower bit-error rates for all protection classes
corresponding to information bits.
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[3] G. Ungerböck, “Trellis-Coded Modulation with Redundant Signal Sets
Part I: Introduction,” IEEE Communications Magazine, vol. 25, pp. 5–
11, Feb. 1987.
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