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Abstract-A Class-A density is well known to model inter­
ference, which is impulsive by nature. This model is expressed 
as a weighted infinite linear combination of Gaussian densities 
with different variances. The extension of this model for multiple 
receiving antennas is currently limited to two antennas. An 
algebraic extension leads to a multivariate Class-A density, which 
can be used for an arbitrary number of antennas. In this paper, 
we consider the design of optimum diversity combining for 
Rayleigh fading channels in the presence of Class-A interference. 
Since recent studies show a significant level of noise correlation 
in some wireless systems, we begin with a correlated multivariate 
Class-A model. Then, we show that the optimum combiner can 
be approximated by a maximum ratio combiner (MRC) preceded 
by noise decorrelators, which has a much lower complexity 
compared with the optimum one. When the interference is 
uncorrelated, we prove that the conventional MRC approximates 
the optimum combining. 

I. INTRODUCTION 

Non-Gaussian, impulsive interference arises in a variety of 
important practical wireless situations such as radio frequency 
interference (RFI) in indoor and outdoor channels [1], [2], 
wireless data transceivers deployed in computers [3], and 
co-channel interference [4]. The source of interference can 
be either natural or man-made such as atmospheric noise, 
power lines, ignition, and closely located wireless systems. 
Middleton's Class-A model (MCA) [2] represents a widely­
accepted statistical-physical model for impulsive interference 
superimposed onto additive white Gaussian noise (AWGN). 
This model has two basic parameters that can be adapted to 
fitting a wide variety of impulse noise phenomena occurring in 
practice. Middleton's models for impulse noise are derived and 
confirmed by a large number of comparisons of the analytical 
model with measurements for single antenna systems in differ­
ent impulse noise environments. The extension of this model 
is obtained based on statistical-physical principles for two 
closely-spaced antennas under the assumption of narrowband 
and far-field interference [5]. Extending the Middleton model 
to multiple antenna systems is complicated, which restricts any 
analysis to two receive antennas. To overcome this restriction, 
the uncorrelated multivariate MCA model is proposed in [6], 
[7]. 
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Spatial diversity is usually used to combat the detrimental 
effects of fading in wireless communication channels. In 
fading channels, the A WGN assumption in diversity branches 
leads to maximum ratio combining (MRC). In [7], The 
performance analysis of an MRC and some other diversity 
combining techniques is evaluated in the presence of uncor­
related multivariate MCA model. This model is applied to 
multiple-input multiple-output (MIMO) systems to derive the 
optimum decoder for space-time coding schemes [6]. In [8], 
we considered the design of an optimum detector in fading 
channels with impulse noise for a single receive antenna. 
We showed that the conventional detector is still optimum 
for MCA noise. So far, there has been no investigation how 
the optimum combiner for binary signals with correlated 
multivariate MCA noise should look like. Moreover, there are 
no clear justifications why the conventional MRC performs 
like the optimum detector in uncorrelated multivariate MCA 
noise. 

The basic objectives of this paper can be summarized by 
two contributions. The primarily contribution is to extend 
the bivariate MCA density to a multivariate MCA density 
for correlated complex-valued noise observations. The second 
contribution is to derive a simplified form of an optimum 
detector and subsequently justify the performance of the 
optimum combiner in different impulse noise environments. 

This paper is organized as follows. Section II briefly de­
scribes the system model and a MCA model for correlated 
interference. In Section III, we introduce the optimum diversity 
combiner in an impulse noise channel. In Section IV, we 
derive a simplified maximum likelihood (ML) combiner for 
correlated and uncorrelated multivariate MCA model. Finally, 
simulation results and concluding remarks are presented in 
sections V and VI, respectively. 

II. SYSTEM MODEL 

We consider a wireless communication channel of a bi­
nary signal transmission corrupted by MCA interference. For 
simplicity, we restrict our analysis to binary signals (BPSK). 
However, the generalization to an arbitrary M -ary signal 
set is straightforward. We assume that there are L diversity 



channels, carrying the same transmitted signal. The fading 
processes along the L diversity channels are assumed to 
be mutually statistically independent with slow frequency­
nonselective Rayleigh fading envelops. We further assume that 
the transmitted signal ±s(t) uses a rectangular pulse over 
o :::; t :::; Tb. Therefore, the equivalent low-pass received signal 
in one signaling interval is 

(E; rl(t) = ±v Nohls(t) + Zl(t) , [= 1" . .  ,L , (1) 

where Eb is the transmitted energy per bit, No is the noise 
variance, hl is a complex Gaussian channel gain with zero 
mean and variance normalized to 1 and Zl (t) denotes the 
complex-valued MCA process corrupting the signal in the [th 
channel. The interference process as seen by the [th receiver 
includes two noise components: a Gaussian component nl(t), 
which describes the thermal background noise generated at 
the receiver and an impulse component il (t) due to the 
interference from various man-made or natural sources. Hence, 
the received noise at the [th receiver is given by 

(2) 
where nl (t) and il (t) are assumed to be statistically inde­
pendent. Similar to [2], the interference waveforms com­
prising il(t) have the same form. However, their envelopes, 
duration, frequencies, and phases are randomly distributed. 
The locations of interfering sources and their emission times 
are randomly distributed in space and time according to a 
homogeneous Poisson point process with a rate A. At the 
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Fig. 1. Model of binary digital communication with spatial diversity 

receiver, after matched-filtering and sampling (see Fig. 1), the 
[th element of the received signal vector r = [rl . . .  rLJT can 
be expressed as 

rl = hlS1,0 + Zl, [= 1, . . .  ,L , (3) 

where SI,O E ±J1i corresponds to the transmitted antipodal 
signal and Zl rj:present the samples of the complex noise 
process, k fo b zl(t)dt, at the [th receive antenna. The 
complex random variable Zl can be modeled by a MCA density 
as [7] 00 

p(ZL) = L amg(zl; 0 , a;,,1) , (4) 
m=O 

where 

am = -----:-m! (5) 

2 1 IZ-1'12 g(z;/L, a ) = -2 e
-� , (6) 'Tra 

d 2 mjA+rl Th ' I' . d A \'7" h an am,l = � . e Impu SIve In ex, = A.Lb, IS t e 
average number of impulses within the bit interval Tb. The 
Gaussian factor, fl = var[JoTo nl(t)l!var[JoTo il(t)], represents 
the power ratio of the Gaussian component nl to the impulsive 
component il at the [th receive antenna. The specified range of 
A and fl are within [10-21] and [10-6 1], respectively. Note 
that (4) reduces to a Gaussian density when A --+ 00. The 
MCA density can be seen as a Gaussian distribution condi­
tioned on the values of m, where m represents the noise state. 
According to (5), the noise state m is a Poisson-distributed 
random variable such that the probability of being in a given 
state is equal to am. Moreover, for a given noise state, m, 
we can indicate that there is no impulse, i.e., m = 0, or, 
impulses are present, i.e., m 2 1. From (4), It is easy to show 
that E(lzlI2) = 1. Therefore, No, that appears in (1), controls 
the noise variance at the receiver. Since the L receivers are 
influenced by the same physical process creating the impulse, 
the elements of the received noise vector z = [ZI'" ZL] can be 
assumed jointly dependent. Therefore, a complex multivariate 
MCA model can be used to model z as follows: 

where 

00 
p(z) = L amg(z; 0 , �m) , (7) 

m=O 

1 - (z-J.L) *�;;,' (z-J.L) T g(z; /L, �m) = ('Tr)LI�ml e , (8) 

where 1 ·1 denotes a determinant. �m is the covariance matrix, 
which has the following form 

p;;am,lam,2 
a;' 2 

lL ) Pm am,lam,L 2L Pm am,2am,L 

a;' L , (9) 
L2 Pm am,Lam,2 

where p� is the correlation coefficient of the noise samples 
at the [th and kth receive antennas for a noise state m. 
In the case of two receive antennas, (7) can be seen as a 
complex extension of a bivariate MCA model [5], which has 
been derived through a statistical-physical modeling. Under 
the assumption of uncorrelated noise observations of equal 
variances, a;' 1 = a;' k I;j [, k, the present model (7) reduces 
to a multivari�te MCA model considered in [6], [7]. 

III. OPTIMUM DIVERSITY COMBINER 

In [10], it has been shown that, for a signal transmitted 
over an AWGN channel, an MRC is the optimum diversity 
combiner. Since the impulsive noise leads to a nonlinear 
receiver structure, the MRC will no longer be the optimum 
combiner. In the following analysis, we assume that the 
channel coefficients hl are perfectly known at the receiver. 



Based on the observation vector r = h · · ·  rd, assuming 
equiprobable transmitted symbols, the optimum detector com­
putes the following likelihood ratio test (LRT): 

A(r) = 
p(rlsd ¥ 1 (10) p(rlso) So ' 

where p(rlsl,o) are the joint conditional pdfs of the received 
vector r given Sl or So was sent. The hypotheses Sl and So 
correspond to + 1 and -1, respectively. The joint conditional 
pdfs of the received vector r can be expressed as 

00 Am 
p(rISl,o) = e-A L m! g(r; sl,oh, �m) . (11) 

m=O 
For a practical realization, the infinite sum in the multivariate 
MCA density may be truncated to a finite sum. It has been 
shown in [11] that the two-term approximation is sufficient in 
most problems. Therefore, the joint conditional pdfs may be 
approximated as 

p(rlsl,o) � e-Ag(r; sl,oh, �o) + (1 -e-A)g(r; sl,oh, �d· 
(12) 

The joint conditional pdf only contains two exponential func­
tions. The natural logarithm of p(rlsl,o) cannot be used for 
further simplification, thereby resulting in increased complex­
ity of evaluating the exponential functions for all (here two) 
possible hypotheses. 

IV. SIMPLIFIED ML DIVERSITY COMBINER 

The two-term model of a MCA density is a sum of 
two scaled Gaussian densities. The first term represents the 
Gaussian background noise with variance 0"5 l' while the 
second term is thought to represent the impuls� events with 
O"i l » 0"5 l' For L = 1, in [8], we showed that the MCA 
de�sity ca� be further simplified into a one-term only (either 
Gaussian or impulse term) over two distinct regions. Here, 
we extend this result to a multivariate case. Therefore, the 
multivariate MCA density can be simplified as 

(z) � 

!
�_A;�Z�' �o)' if z*MzT ::; Co p PI(Z) 
'(1 -e-A)�(z; 0 , �d' otherwise, 

where 
z*MzT = Co, 

(13) 

(14) 
represents the boundary equation when the two terms are 

I M - �-1 �-1 d - 1 ( I�lle-A ) R d' equa , - Llo -Lll ' an Co - n I�ol(l-e A) . egar 109 
this approximation, the joint conditional pdfs (11) can be 
approximated as 

p(rISl,O) � ! Pc (rlsl,o) 
�-Ag(r; ;l,oh, �o)' if (r - sl,oh)*M(r - sl,oh)T ::; Co 

PI (rISl,o) ''-U---e---A-)g-'( r'- ;- S-I,-oh- '- �--I)' otherwise . 
(15) 

Since the approximated joint conditional pdf (15) contains 
only one term, the log-likelihood can be used to simplify the 
optimum combiner. To derive a closed-form expression for a 
diversity combiner, we start with a decision boundary analysis 
to determine the overlapping regions between the received 
observations rl, I = 1, . . .  , L. The boundary equation can be 
expressed as 

(r - sl,oh)*M(r - sl,ohf = Co . (16) 

For two receive antennas (L = 2), this equation reduces to 

alh - sl,ohll2 + a2ir2 - sl,oh212 
- 2pb)R{(rl - sl,ohl)*(r2 - sl,oh2)} = (1 - p2)cO , 

(17) 
2 2 

where a = 
Jl,I-JO,1 l = 1 2 and b = Jl,lJl,2-JO,lJO,2

. when l ai.la6 . 1 " (}1,1(71,2(70,1(70,2 rl and hl are real signals, the boundary equation can be seen as 
ellipses (see Fig. 2) centered at (slhl' slh2) and (SOhl' SOh2) 
for SI and So, respectively. Figure 2 is depicted for rl and hl 

2r-�'-�---'-------'-------'------'---' 
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Fig. 2. Decision regions with A = 0.01, r = [0.1 0.01] 
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as real signals, but it is still valid for complex signals. As we 
can see from this figure, there are four possible overlapping 
regions Ri, i = 0" " ,3. The decision boundaries of each 
region can be computed as follows: 

where p(r E Rilsl,o) can be simplified using (15) to be either 
pc(rlsl,o) or Pr(rlsl,o). In region Ro, the joint conditional 
pdfs p(rlsl,o) can be approximated by Pr(rlsl,o). Then, the 
decision boundary can be calculated as 

(19) 

By substituting (15) into (19), the decision boundary can be 
solved as 

(20) 



which represents the combiner equation for region Ro. In 
region R1 , the optimum combiner can be approximated as 

Inpc(rlsl) = Inpc(rlso) , 
which yields the following solution: 

�{h*�olrT} = o .  

(21) 

(22) 
Since pc(rlsl,O) » PI(rlso,d, the regions R2 and R3 can 
simply be assigned to SI and So, respectively. The combining 
equation over these regions can be computed from the bound­
ary equation 

(r - h)*M(r - hf = (r + h)*M(r + hf (23) 
with the following solution: 

�{h*MrT} = O. (24) 
Since 0'1,1 » 0'0,1, the matrix M = �OI - �11 can be 
approximated by �o 1. Therefore, the combiner of (22) can 
be used for overlapping regions R2 and R3. 

In the above analysis, we showed that the optimum com­
biner for L diversity channels corrupted by correlated multi­
variate MCA impulse noise can be approximated by a linear 
combiner. The proposed combiner computes the boundary 
equations (23) to determine the noise state (Gaussian or 
impulsive), then it applies the corresponding noise covariance 
matrix (�OI or �11) as seen in (20) and (22). 

When the receiving antennas are spaced far enough, the 
received interference can be assumed spatially uncorrelated. 
In this case pI):, = 0 'V I i=- k, then the covariance matrix of z 
becomes a diagonal matrix �m = diag( O'� 1, . . .  ,O'� L ) and 
the boundary equation (16) reduces to

' , 

L 
L all'l - sl,ohl12 

= Co, 
/=1 

(25) 

and consequently the combiners of (20) and (22) reduce to 
L 1 L -2-�{hi'Z} ,  (26) 

/=1 0'1,1 
and L 1 L -2-�{hi'Z} ,  

/=1 0'0,1 
(27) 

respectively. Now, when the L channels are effected by inter­
ference of the same Gaussian factors fl = f, I = 1, . . .  ,L, the 
noise variances on the L channels will be the same O'� I = O'� , 
m = 0 , 1. In this case, the proposed combiners of (20), (22), 
and (24) reduce to the following 

(28) 
/=1 

which represents the optimum combiner for Gaussian interfer­
ence. That is, we can state that the conventional MRC approx­
imates the optimum detector when the noise observations have 
equal variances, which justifies why the MRC offers almost 
the same performance of the optimum detector as reported 
in [7]. 

V. SIMULATION RESULTS 

In this section, we present a series of simulation results to 
validate our analysis by comparing the bit-error ratio (BER) of 
a conventional MRC, an optimum combiner, and the proposed 
combiner for different impulse noise environments. In all 
cases, we consider L = 2 and L = 4 diversity reception 
for BPSK signal transmission over Rayleigh fading channels. 
Furthermore, we assume that the parameters of impulse noise 
(A, r, and pI):,) are known at the receivers. Moreover, we use 
the first 10 terms of a MCA density to approximate the full 
MCA density. 

10-4 X proposed spatial combiner 

, , , . , , , optimum combiner 

� conventional MRC 
a proposed spatial combiner 

10-5 ,-, -, optimum combiner 
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Fig. 3. Performance comparison over a correlated impulse channel 

Since the received interference comes from the external 
sources to the receiving antennas, recent studies show that 
a significant level of noise correlation exists even when the 
antennas are far apart [3]. To simulate this scenario, we assume 
that the correlation coefficients pI):, are identical for all noise 
states. Therefore, the received interference has the following 
correlation matrices 

( 0.�95 
0.�95) 

and (0 ;95 
0.795 0.602 0 372) 

1 0.795 0.602 
0.602 0.795 1 0.795 
0.372 0.602 0.795 1 

for L = 2 and L = 4, respectively. In Fig. 3, we show 
the BER for the considered combiners in a moderate impulse 
channel (A = 0.1) with different Gaussian factors along the 
antennas, i.e., r = [0.01 0.1], and r = [0.010.10.10.01] for 
L = 2 and L = 4, respectively. As expected, as L (diversity 
order) increases the performance improves. The optimum and 
the proposed spatial combiners offer better performance than 
the conventional MRC. It is clear that the performance of 
the proposed spatial combiner approaches the optimum one. 
From (20) and (22), the proposed combiner decorrelates the 



MCA noise (by applying ��l, m = 0 ,1) before performing 
the MRC, which justifies why it approaches the optimum 
performance. 
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As the antenna-spacing decreases the fading channels hl, 
1, . . . , L become more correlated and the assumption of 
independent fading envelops will no longer be true. For L = 2, 
Fig. 4 shows the BER performance versus the noise correlation 
coefficient Pl,2 at different factors of fading correlation keorr = 
corr(lh11, Ih21). It is clear that the BER curves become much 
worse as fading channel correlation increases. A strong fading 
correlation of 0.9 makes the received signals suffer essentially 
the same fading and no diversity reception is gained. We note 
that the BER is improved when the C1ass-A noise is correlated 
and this improvement is maximized when the fading envelopes 
are uncorrelated. 
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Fig. 5. Performance comparison over uncorrelated impulse channel 

In [7], it was reported that the conventional MRC outper­
forms the other combining schemes such as selection com-

bining and equal gain combining under the assumption of un­
correlated MCA noise and equal Gaussian factors. Regarding 
our analysis in Sec. IV, we show that the conventional MRC 
approximates the optimum detector under these assumptions. 
To confirm this point, Fig. 5 shows the BER of a conventional 
MRC and optimum detector for uncorrelated MCA noise with 
fl = 0.1, 1= 1,,,, , 4. 

VI. CONCLUSION 

For spatially correlated channels, the multivariate Class-A 
(MCA) model can be approximated as a weighted-sum of 
two multivariate normal densities with different covariance 
matrices. Based on this model, the noise state (Gaussian or 
impulsive) can be determined at the receiver and subsequently, 
the MCA model can further be approximated as a multivariate 
Gaussian density. Herewith, we showed that the maximum 
ratio combiner (MRC) preceded by noise-whitening filters 
approaches the optimum combiner. The noise whitening filters 
are designed based on the noise state to decorrelate the 
Gaussian or impulse noise. For binary signaling, the maximum 
performance improvement is achieved when the noise is highly 
correlated. Additionally, we approved that the conventional 
MRC is still optimum when the received noise is uncorrelated. 
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