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Abstract—In this paper, we investigate signal space diversity
(SSD) of lattice codes to mitigate the effect of impulse noise
in wireless MIMO systems. A Middleton Class-A (MCA) model
is one of the most accepted models for impulsive interference
superimposed to additive white Gaussian noise (AWGN). To prove
SSD for both Raleigh fading and impulse noise, we evaluate the
pairwise-error probability (PEP) of optimum lattice decoding
under perfect knowledge of noise states. However, due to the
spatial coupling of impulse noise, the extension of the MCA
model to MIMO systems leads to a correlated multivariate
distribution. To maintain the full diversity advantages of lattice
coding in MIMO systems, we investigate a diagonal design of
lattice space-time (ST) coding for Rayleigh fading and correlated
impulse noise. We also utilize a null space of the MIMO channel
to extract noise states using a simple threshold detector. We
show that the optimum lattice ST decoder can be realized by a
noise-whitening transformation followed by a conventional sphere
decoder. Finally, we evaluate the PEP of the optimum lattice ST
decoding, which shows how impulse noise coupling limits the
performance improvements of SSD with respect to the number
of receive antennas.

Index Terms—MIMO systems, lattice codes, impulse noise.

I. INTRODUCTION

Impulsive interference corrupts a variety of practical wire-

less channels such as the wireless LAN spectrum at 2.4 GHz

[2], [3] and digital aeronautical communications in the L-

band [5]. A Middletons Class-A model [1] represents one

of the most applied models for narrowband radio frequency

interference (RFI). This model is confirmed [1], [6] to repre-

sent a wide class of interference varying from a pure Gaussian

distribution to a heavy-tailed distribution. For multiple antenna

systems, a multivariate MCA model is verified to capture the

noise statistics and the spatial coupling of impulse noise [4],

[7].

The research into investigating the effect of impulse noise on

multiple-input multiple-output (MIMO) systems is considered

in several publications [8]–[10]. One of the key advantages

of the MIMO system lies in the ability of achieving both

transmit and receive diversity. Signal space diversity (SSD) or

so-called lattice coding [11] has been proven to provide a high

diversity order for both single-input single-output (SISO) [12]

and MIMO systems [13], [21]. The diversity encoder of SSD

applies a unitary transform to spread the modulated symbols

into an N -dimensional lattice space. The codeword of SSD

can be represented as a point of a lattice, which is uniquely

determined by any of the codeword components. This property

allows providing a diversity of the order N in independent

fading channels with AWGN. In [15], [16], Häring and Vinck

introduced the concept of a complex number code (based

on the inverse discrete Fourier Transform (IDFT) matrix) to

mitigate the impact of impulse noise. Due to the spreading

effect of the unitary transform, the optimum lattice decoding

in impulse noise approaches the performance of impulse-free

channels.

In this paper, we first prove the concept of SSD for wireless

channels with independent fading and impulse noise. Then, we

extend the analysis to a MIMO system in multivariate MCA

noise. Since the extension requires perfect knowledge of noise

states, we utilize the spatial dimension of MIMO channels to

extract a reference signal of interference. This allows us to

realize the optimum decoder as a conventional lattice decoder

preceded by noise decorrelation. Thereafter, we evaluate a

pairwise error probability (PEP) to assess the performance

achievements of a diagonal lattice ST code in impulse noise.

The rest of this paper is organized as follows. Section II

introduces the lattice code for Rayleigh fading and impulse

noise. In Section III, we proceed with receiver design and

performance analysis of lattice ST coding in multivariate MCA

noise. Finally, simulation results and concluding remarks are

presented in sections IV and V, respectively.

II. LATTICE CODES IN IMPULSE NOISE

The encoder of lattice codes applies a unitary transform or

a rotation matrix to rotate an information vector s as [14]

x = GNs , (1)

where s = [s1, · · · , sN ]T is a vector of N complex-valued

information symbols, which are taken from complex signal

constellations such as QPSK or QAM. The algebraic design

of GN combines the N×N IDFT matrix WH
N with a diagonal

algebraic matrix to construct a full diversity transform as

GN = WH
Ndiag

(

1, θ
1
N , · · · , θ

N−1
N

)

, where θ is chosen

to guarantee a maximum diversity order [14]. We assume that

the codeword components are transmitted through independent

Rayleigh fading channels. Thus, the received signal vector can

be expressed as

y =
√

Esdiag
(
hT

)
x+ z , (2)



where Es is the transmitted energy per symbol. The vector

h = [h1, · · · , hN ]T is comprised of complex-valued random

fading coefficients with unit second moment. The vector z

represents a complex-valued additive noise at the receiver. In

channels with impulse noise, the receive noise observations

zk, k = 1, · · · , N , consist of Gaussian noise components

zG,k and impulsive components zI,k. Typically, the samples

zG,k represent complex-valued AWGN with zero mean and

variance σ2
G. However, the impulsive components are thought

to represent radio frequency interference of various man-made

or natural sources [1]. An MCA model provides a sufficiently

accurate representation of noise elements zk as [1], [17]

pz(zk) =

∞∑

mk=0

αmk

πσ2
mk

e
− |zk|2

σ2
mk , (3)

where

σ2
mk

= σ2
G(1 +

mk

AΥ ) , (4)

and

αmk
= Amke−A

mk!
. (5)

The MCA model is designated using two parameters A and

Υ. The former parameter A = λTI is called impulsive index,

where λ and TI are the average rate (pulse per second) and

the duration of impulses, respectively. The second parameter

defines the Gaussian factor Υ = σ2
G/σ

2
I , where σ2

I represents

the variance (average power) of the impulse component zI,k.

The MCA density reduces to a Gaussian distribution condi-

tioned on the knoweldge of mk, where mk is regarded as

the noise state. According to (5), the noise state mk is a

Poisson-distributed random variable such that the probability

of being in a state mk is equal to αmk
. Asymptotically, the

MCA model approaches a Gaussian distribution with zero

mean and variance σ2 = σ2
G(1 +

1
Υ ) when A → ∞. In cases

when A < 1, the MCA interference exhibits an impulsive

appearance. The MCA model can be approximated by a 2-

term Gaussian mixture (GM) model as [18]

pz(zk) =
α0

πσ2
0
e
− |zk|2

σ2
0 + α1

πσ2
1
e
− |zk|2

σ2
1 , (6)

where α0 = 1−A and α1 = A. In (6), we note that the first

term mk = 0 and the second term mk = 1 are corresponding

to the Gaussian and impulsive states of noise with probability

of occurrence 1 − A and A, respectively. For this reason,

the impulsive index A is recognized as the duty cycle of

impulses [17].

A. Signal Space Diversity

Similar to [12], we assume that the channel gains hk,

k = 1, · · · , N , are known at the receiver. Indeed, the in-

dependence assumption for fading coefficients represents the

situation where the code components xk are interleaved in

time. This assumption also implies that the noise observations

zk are independent. To prove SSD of lattice codes in impulse

noise, we evaluate the pairwise error probability (PEP) of the

optimum lattice decoding. Since the exact evaluation of the

PEP is infeasible [15], we further assume that the noise states

mk, k = 1, · · · , N , are known at the receiver. Hence, the

distribution of z reduces to conditional Gaussian as

pz(z|m) =

N∏

k=1

1
πσ2

mk

e
−|zk|2

σ2
mk , (7)

where m = [m1, · · · ,mN ]T is a noise state vector. We assume

that the detector decides between two lattice codeword xi and

xj , ∀i 6= j. Therefore, the optimum decision rule for deciding

between xi and xj can be derived as

log

(
pz(y −

√
Esh · xi|h,m)

pz(y −
√
Esh · xj |h,m)

)
xi

≥
<
xj

0 . (8)

Substituting (7) into (8), the decision rule in (8) leads to

2
√

Es

N∑

k=1

Re{ h∗
k

σ2
mk

(x∗
i,k − x∗

j,k)yk}−

Es

N∑

k=1

|hk|2
σ2
mk

(|xi,k|2 − |xj,k|2)
xi

≥
<
xj

0 . (9)

We suppose that xi was sent, i.e., yk =
√
Eshkxi,k + zk.

Hence, the decision variable in (9) reduces to

χ = 2
√

Es

N∑

k=1

Re{ h∗
k

σ2
mk

(x∗
i,k − x∗

j,k)zk}+

Es

N∑

k=1

|hk|2
σ2
mk

|xi,k − xj,k|2 , (10)

The PEP is simply the probability of erroneously decoding xj

given that xi was transmitted, which can be evaluated as the

probability that χ is less than zero. The decision variable χ

is Gaussian with mean µχ = Es

∑N
k=1

|hk|2
σ2
mk

(|xi,k − xj,k|2)
and variance σ2

χ = 2Es

∑N
k=1

|hk|2
σ2
mk

|xi,k − xj,k|2. Hence, the

conditional PEP can be computed as

P (xi → xj |h,m) = Q
(

µχ

σχ

)

, (11)

= Q

(√

Es

2

∑N
k=1

|hk|2
σ2
mk

|xi,k − xj,k|2
)

,

where Q(x) = 1
2erfc

(
x√
2

)

. Using the Chernoff bound, (11)

can be upper-bounded as

P (xi → xj |h,m) ≤ 1
2

N∏

k=1

exp
(

−Es

4
|hk|2
σ2
mk

|xi,k − xj,k|2
)

.

(12)

Since hk are complex-valued Gaussian distributed random

variables, βk = |hk|2 follows a chi-square distribution with

two degrees of freedom. We evaluate the conditional PEP

in (12) over the distribution of βk as follows:

P (xi → xi|m) = 1
2

N∏

k=1

∫ ∞

0

e
−Es

4
βk

σ2
mk

|xi,k−xj,k|2
p(βk)dβk ,

≤ 1
2

N∏

k=1

1

1 + Es

4
|xi,k−xj,k|2

σ2
mk

. (13)



Since σ2
mk

= σ2
G(1+

mk

AΥ ), k = 1, · · · , N , the right-hand side

of (13) can be approximated at a high signal-to-noise ratio

(SNR) Es/σ
2
G as

P (xi → xj |m) < 1
2

(
Es

4σ2
G

)−N N∏

k=1

1 + mk

AΥ

|xi,k − xj,k|2
. (14)

It is worth mentioning that in an impulse-free case, i.e., mk =
0, ∀k, (14) can be written as

P (xi → xj |m) < 1
2

(
Es

4σ2
G

)−N
1

d
(N)
p (xi,xj)

, (15)

where d
(N)
p (xi,xj) =

∏N
k=1 |xi,k − xj,k|2 is the N -product

distance [11], [12] between xi and xj . To derive a closed-form

expression of the PEP for channels with impulse noise, we

have to average (14) over the statistics of mk, k = 1, · · · , N .

Thus, we obtain

P (xi → xj) <

gd(N)
︷ ︸︸ ︷

1
2

(
Es

4σ2
G

)−N

gc(xi,xj)
︷ ︸︸ ︷

Em{∏N
k=1(1+

mk

AΥ )}
d
(N)
p (xi,xj)

, (16)

where Em{·} denotes the expectation with respect to a noise

state vector m = [m1, · · · ,mN ]. The PEP expression in (16)

allows us to distinguish between diversity gain gd(N) and cod-

ing gain gc(xi,xj) of the optimum lattice decoder in impulse

noise. In (16), we observe that the lattice code maintains a

maximum diversity order N . Additionally, we note that the

coding gain is depending on noise states probabilities. In a 2-

term GM model, the noise states probabilities are α0 = 1−A
and α1 = A such that Emk

{mk} = A. The received noise

observations zk are assumed to be statistically independent,

this implies that the noise states mk, ∀k, are also independent.

Thus, the coding gain gc(xi,xj) can be evaluated as

gc(xi,xj) =

∏N
k=1

(

1+
Emk

{mk}
AΥ

)

d
(N)
p (xi,xj)

,=
(1+

1
Υ)N

d
(N)
p (xi,xj)

, (17)

where the factor (1+ 1
Υ )N represents the performance loss due

to the presence of impulse noise. Substituting (17) into (16)

yields

P (xi → xj) <
1
2

(
Es

4σ2
G

)−N (1 + 1
Υ )N

d
(N)
p (xi,xj)

,

< 1
2

(
Es

4σ2
G(1 +

1
Υ )

)−N
1

d
(N)
p (xi,xj)

, (18)

where the factor (1 + 1
Υ ) determines the gap in the SNR

between the performances of the optimum lattice decoders for

impulse noise and the impulse-free case.

B. Extension to MIMO systems

We consider a point-to-point MIMO system with NT trans-

mit and NR receive antennas. Earlier works on ST coding

consider an orthogonal space-time block code (OSTBC) to

mitigate the impact of impulse noise [8], [9]. Hereto, we

employ a lattice space-time (ST) coding scheme to generate

a square ST code matrix of size NT × NK such that NT is

equal to the number of time slots NK as

X =








x1,1 x1,2 · · · x1,NT

x2,1 x2,2 · · · x2,NT

...
...

. . .
...

xNT ,1 xNT ,2 · · · xNT ,NT








, (19)

where the entries xnT ,k denote the coded symbols transmitted

from the nth
T transmit antenna at a time slot k. The MIMO

channel is assumed to be i.i.d. complex Gaussian with quasi-

static flat fading, i.e., the channel remains constant during

the transmission time of the lattice code matrix. The existing

lattice ST code matrices utilize the space and time dimensions

of the MIMO channel to provide both spatial multiplexing

(SM) and full SSD [19], [20]. The received signal vector

yk = [y1,k, · · · , yNR,k]
T during the kth time slot can be

expressed as

yk =
√

EsHxk + zk , k = 1, · · · , NT , (20)

where H ∈ C
NR×NT is the MIMO channel matrix and

xk = [x1,k, · · · , xNT ,k]
T represents the kth column vector

of X. Here zk = [z1,k, · · · , zNR,k]
T is a received spatial

noise vector. In strong interference channels, the NR receive

antennas are typically affected by impulse noise generated by

the same ISM sources [4], [7]. Thus, a multivariate MCA

model can be used to represent the joint probability as

p(zk) =
1−A

πNR |Σ0|e
−z

H
k Σ

−1
0 zk + A

πNR |Σ1|e
−z

H
k Σ

−1
1 zk , (21)

The spatial coupling of impulse noise is described by the

covariance matrix Σmk
, mk = 0, 1, as

Σmk
=






σ2
mk,1 · · · ρmk

1NR
σmk,1σmk,NR

...
. . .

...

ρmk

NR1σmk,NR
σmk,1

· · · σ2
mk,NR




 ,

(22)

where σ2
mk,nR

= σ2
G(1 + mk

AΥnR

) denotes the noise variance

at the nth
R receive antenna and ρmk

nRǹR
, mk = 0, 1, are the

correlation coefficients between the nth
R and ǹth

R receive anten-

nas of the Gaussian and impulsive components, respectively.

In impulse-free channels, mk = 0, the noise observations are

uncorrelated, i.e., Σ0 = σ2
GINR

. However, in the channels

with impulse noise, mk = 1, the received impulse noise

observations are dependent and might be correlated such as

Σ1 is positive-semidefinite and symmetric. Due to the spatial

coupling of impulse noise, it is more reasonable to design a

lattice ST code matrix that guarantees a maximum diversity

order NTNR. In such cases [19], the lattice code matrix

entries xnT ,k should examine independent observations for

both fading and impulse noise. This directs our attention to

investigate a diagonal lattice ST code to mitigate the impact

of impulse noise. The diagonal lattice ST code utilizes only

the main diagonal elements of X to interleave the code

components x = GNT
s as



X = diag
(
xT

)
=








x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...

0 0 · · · xNT








. (23)

This code proved to achieve maximum diversity and support

a rate of 1 symbol per channel use for fading channels with

AWGN. In the following analysis, we restrict our analysis

to the diagonal ST code in impulse noise. However, the

generalization to an arbitrary lattice ST coding scheme is

straightforward.

III. RECEIVER DESIGN AND PERFORMANCE ANALYSIS

The previous analysis assumes that the noise states mk,

k = 1, · · · , NT , are known at the receiver. In this section, we

realize this assumption using the null space of MIMO channels

at the receiver. Hence, we proceed with the performance

evaluation of lattice ST coding in impulse noise.

A. Decoding of Lattice ST Codes

The practical realization of the lattice decoding for MIMO

systems requires perfect knoweldge of noise states. To provide

an efficient noise state estimate, the properties of impulse noise

along time, space, and frequency dimensions can be used to

provide a reference signal of impulse noise. Herein, we take

a step into involving the spatial coupling of impulse noise to

extract the reference signal via the null space. We consider that

the receiver is equipped with NR = NT +1 antennas. Using a

QR decomposition, we factorize the channel H into a product

of an NT +1×NT +1 unitary matrix Q and an NT +1×NT

upper triangular matrix R =

(
R1

0

)

, where the last row of

R consists entirely of zeros. Thus, we multiply QH by the

received signal vector yk =
√
EsHxk + zk, which yields

ỹk =
√

Es

(
R1

0

)

xk +QHzk , k = 1, · · · , NT , (24)

where the bottom element of ỹk contains only a noise com-

ponent as

ỹNR,k =

NT+1∑

nR=1

q∗nR,NR
znR,k , k = 1, · · · , NT . (25)

For mk = 0, the noise observations znR,k, nR = 1, · · · , NT +
1, are Gaussian with Σ0 = σ2

GINR
. Hence, the reference

signal ỹNR,k is still Gaussian with zero mean and variance

σ2
G. For mk = 1, since znR,k, nR = 1, · · · , NT + 1, are

spatially coupled and correlated, ỹNR,k provides a construc-

tive signal of impulse noise. For mathematical convenience,

we consider uncorrelated MCA spatial observations, i.e.,

ρnRǹR
= 0, ∀nR 6= ǹR. Hence, the reference signal ỹNR,k

follows a 2-term GM distribution with variance σ̃2
NR,mk

=

σ2
G

(

1 + mk

A

∑NT+1
nR=1

|qnR,NR
|2

ΥnR

)

. Hence, the noise states mk

can be detected as

mk =

{

1 if |ỹNR,k|2 ≥ c20
0 otherwise

, k = 1, · · · , NT , (26)

where c0 =

√
σ̃2
NR,0σ̃

2
NR,1

σ̃2
NR,1−σ̃2

NR,0
log

(1−A)σ̃2
NR,1

Aσ̃2
NR,0

denotes an im-

pulse detection threshold [18]. By arranging the received

vectors yk =
√
EsHxk + zk, k = 1, · · · , NT , into a single

column vector y =
(
yT
1 , · · · , yT

NT

)T
as

y =
√

Es

HU
︷ ︸︸ ︷







h1 0 · · · 0

0 h2 · · · 0
...

...
. . .

...

0 0 · · · hNT








x+ z , (27)

where hk = [h1k, · · · , hNRk]
T is the kth column vector of

a MIMO channel H ∈ CNR×NT . Thus, HU ∈ CNRNT×NT

can seen a united MIMO channel matrix [19]. Since the noise

state estimates mk, k = 1, · · · , NT , are extracted from a null

space, the noise vector z =
[
zT1 , · · · , zTNT

]T
is a multivariate

Gaussian vector with

Σm = E
[
zzH

]
=








Σm1 0 · · · 0

0 Σm2 · · · 0
...

...
. . .

...

0 0 · · · ΣmNT








, (28)

where Σmk
is the spatial covariance matrix (22) of the kth

time slot noise observations. Since impulse noise is spatially

coupled, a noise-whitening matrix is applied to obtain the

equivalent samples with uncorrelated noise. The inverse of

the covariance matrix Σ−1
m can be factorized as Σ−1

m = LLH ,

multiplying (27) by LH , we obtain ỳ = LHy and z̀ = LHz.

The elements of z̀ are i.i.d. Gaussian distributed random

variables with unit variance. Hence, the ML decoder can be

implemented as

ŝ = argmin
s∈CNT

∣
∣ỳ −

√
EsL

HHUGNT
s
∣
∣
2
, (29)

which can be realized using a conventional sphere decoder.

B. Pairwise Error Probability

To assess the PEP of the diagonal lattice ST code, we rewrite

the received signal vector (27) in terms of a diagonal lattice

ST code matrix X = diag(xT ) as

y =
√

Es

(
XT ⊗ INR

)
h+ z , (30)

where ⊗ is the Kronecker product, INR
denotes the identity

matrix of size NR, and h =
(
hT
1 , · · · , hT

NT

)T
sorts the

MIMO channel H into a single column vector. We assume that

the receiver can decide between two lattice code matrices Xi

and Xj . The probability that Xi was sent and Xj is detected

can be expressed as

P (Xi → Xj |h,m) = Q
(√

Es

2NT
hHBh

)

, (31)

where B = (Ψi −Ψj)
HΣ−1

m
(Ψi −Ψj) is a code difference

matrix with Ψ = XT ⊗ INR
. For a Hermitian matrix B,

the eigen-decomposition implies that B = V∆VH , where



V is a unitary matrix and ∆ is an NTNR ×NTNR diagonal

eigenvalues matrix. Substituting this into (31) yields

P (Xi → Xj |h,m) = Q
(√

Es

2 ~~~
H
∆~~~

)

, (32)

= Q
(√

Es

2
∑NT

nT =1

∑NR
nR=1 |~nRnT

|2λ(nT −1)NR+nR

)

,

where ~~~ = VHh and λλ(nT −1)NR+nR
, 1 ≤ nT ≤ NT and

1 ≤ nR ≤ NR, are the eigenvalues of B. Since V is unitary,

then ~~~ follows the same distribution of h. Therefore, βnRnT
=

|~nRnT
|2, ∀nR and ∀nT , are i.i.d. chi-square variables. Similar

to (12) and (13), we apply the Chernoff bound and average the

right-hand side with respect the statistics of βnRnT
to arrive

at

P (Xi → Xj |m) ≤ 1
2

NT∏

nT=1

NR∏

nR=1

1

1 + Es

4 λ(nT−1)NR+nR

.

(33)

At high SNRs, the right-hand side of (33) can be approximated

as

P (Xi → Xj |m) < 1
2

(
Es

4

)−NTNR

NT∏

nT=1

NR∏

nR=1

1
λ(nT −1)NR+nR

.

(34)

Since X is a diagonal matrix, the eigenvalues of B can be

expressed as [9]

λ(nT−1)NR+nR
= |xi,nT

− xj,nT
|2ζnR,nT

, nR = 1, · · · , NR ,
(35)

where ζnR,k, nR = 1, · · · , NR, correspond to the eigenvalues

of Σ−1
mk

for spatial noise observations zk at the kth time slot.

Substituting (35) into (34) yields

P (Xi → Xj |m) < 1
2

(
Es

4

)−NTNR

∏NT
k=1

∏NR
nR=1

1
ζnR,k

(

d
(NT )
p (xi,xj)

)NR
. (36)

For correlated impulse noise, one should compute the eigen-

values of Σ−1
mk

. For simplicity, we consider uncorrelated

MCA observations, i.e., Σmk
= diag(σ2

1,mk
, · · · , σ2

NR,mk
).

Therefore, the eigenvalues of Σ−1
mk

can be expressed as

ζnR,k = 1

σ2
G

(

1+
mk

AΥnR

) , nR = 1, · · · , NR . (37)

Substituting this into (36) yields

P (Xi → Xj |m) < 1
2

(
Es

4σ2
G

)−NRNT

∏NT
k=1

∏NR
nR=1

(

1+
mk

AΥnR

)

(

d
(NT )
p (xi,xj)

)NR
.

(38)

Substituting mk = 0 into (38) yields the PEP for impulse-free

channels as

P (Xi → Xj) <
1
2

(
Es

4σ2
G

)−NRNT
1

(

d
(NT )
p (xi,xj)

)NR
. (39)

Similar to (16), we average (38) with respect to statistics of

noise states mk, k = 1, · · · , NT , as

P (Xi → Xj) <

gd(NTNR)
︷ ︸︸ ︷

1
2

(
Es

4σ2
G

)−NTNR

×

gc(xi,xj)
︷ ︸︸ ︷
(

Emk

{

∏NR
nR=1

(

1+
mk

AΥnR

)})NT

(

d
(NT )
p (xi,xj)

)NR
, (40)

which proves the maximum diversity order NTNR of the

diagonal lattice ST codes for MIMO systems in impulse noise.

However, to investigate the coding gain gc(xi,xj), we simply

consider MCA noise with ΥnR
= Υ, nR = 1, · · · , NR.

Therefore, since α0 = 1 − A and α1 = A, the coding gain

can be expressed as

gc(xi,xj) =

(

1−A+A
(
1 + 1

AΥ

)NR

)NT

(

d
(NT )
p (xi,xj)

)NR
. (41)

Comparing (41) and (18), we can see how the number of

receive antennas NR affects the performance of lattice codes in

impulse noise. For NR = 1, we observe that the coding gain

of the diagonal lattice ST code (41) approaches the coding

gain of SSD in impulse noise (18). However, for NR > 1, we

see that the code gain is further limited by the impulsive index

A of MCA noise. This limitation increases as the number of

receive antennas increases.

IV. SIMULATION RESULTS

We performed a link level simulations to assess the per-

formance improvement of lattice coding for wireless com-

munications in impulse noise. First, we confirm the concept

of SSD in impulse noise. Thus, a QPSK vector is precoded

using a unitary transform GN with θ = ejπ/6 [20]. The

lattice codeword is transmitted on N independent channels for

both Rayleigh fading and impulse noise. Figure 1 illustrates

the bit-error ratio (BER) versus Es/σ
2
G for lattice codes with

N = 1, 2, and 4 in MCA noise with A = 0.1 and Υ = 0.01.

Additionally, we depict the upper performance bound on the

PEP and the impulse-free case as references. We observe that

the performance of the lattice code improves as N increases,

which agrees with the diversity order of SSD. We also note

that the gap to the impulse-free limit is consistent with the

coding gain factor (1 + 1
Υ ). Second, we simulated the BER

performance of the lattice ST decoder for MIMO systems

based on null space estimates of noise states. Figure 2 depicts

the BER results of the 2 × 3 MIMO system in spatially

uncorrelated MCA noise with two different A and Υ = 0.01.

We note that, at high SNRs, the gap in the SNR between

the performances of lattice ST coding in impulse noise and

an impulse-free case increases as the impulsive index A
decreases. This gap is consistent with the performance loss

of the lattice ST decoding in (41).
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V. CONCLUSION

In this paper, we have investigated signal space diversity

based codes for multiple-input multiple-output systems in

fading channels with spatially coupled impulsive interference.

We adopt an MCA model to represent the amplitude statistics

of received interference superimposed to background Gaussian

noise. This model is well defined using two parameters to

fit a wide class of interference distributions. For MIMO

systems, we use a multivariate MCA model to capture the

spatial dependency and correlation of impulse noise at the

different receive antennas. First, we evaluated the pairwise

error probability of SSD to investigate the performance gain

of lattice codes in independent Rayleigh fading and impulse

noise. We showed that the coding gain is limited by the

Gaussian factor of impulse noise. Then, the PEP analysis is

extended to a lattice space-time code of MIMO systems in

spatially coupled impulse noise channels. The PEP showed

that the performance gain of the lattice ST code is limited by

the impulsive index of noise. In addition, this limitation grows

exponentially with the number of receive antennas. Since the

analysis requires perfect knowledge of noise states, we utilize a

null space of a MIMO channel to estimate the state of impulse

noise. Finally, we presented simulation results showing the

performance comparisons for lattice codes in different impulse

noise.
ACKNOWLEDGMENT

This work is funded by the German Research Foundation

(Deutsche Forschungsgemeinschaft, DFG).

REFERENCES

[1] D. Middleton, “Statistical-Physical Models of Electromagnetic Interfer-
ence,” in IEEE Tr. on Electromagnetic Compatibility, vol. EMC-19,
no. 3, pp. 106–127, Aug. 1977.

[2] M. Nassar, K. Gulati, A. K. Sujeeth, N. Aghasadeghi, B. L. Evans, and
K. R. Tinsley, “Mitigating near-field interference in laptop embedded
wireless tansceivers,” IEEE ICASP, Las Vegas, NV, 2008.

[3] K. L. Blackard, T. S. Rappaport and C. W. Bostian, “Measurements
and models of radio frequency impulsive noise for indoor wireless
communications,” in IEEE J. on Selected Areas in Comm., vol. 11,
no. 7, pp. 991–1001, Sep. 1993

[4] K. A. Saaifan and Werner Henkel, “Measurements and Modeling of
Impulse Noise at the 2.4 GHz Wireless LAN Band,” IEEE GlobalSIP,
Montreal, Quebec, Canada, 2017.

[5] U. Epple, F. Hoffmann, and M. Schnell, “Modeling DME interference
impact on LDACS1,” ICNS, Herndon, VA, 2012.

[6] K. A. Saaifan, A. Elshahed, and W. Henkel, “Cancellation of Distance
Measuring Equipment Interference for Aeronautical Communications,”
in IEEE Tr. on Aerospace and Electronic Systems, vol. PP, no. 99, 2017.

[7] K. F. McDonald and R. S. Blum, “A physically-based impulsive noise
model for array observations,” Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, USA, 1997.

[8] P. Gao and C. Tepedelenlioglu, “Space-time coding over mimo channels
with impulsive noise,” in IEEE Tr. on Wireless Comm., vol. 6, no. 1,
pp. 220-229, Jan. 2007.

[9] K. A. Saaifan and W. Henkel, “A receiver design for MIMO systems over
rayleigh fading channels with correlated impulse noise,” GLOBECOM,
Anaheim, CA, 2012.

[10] K. Gulati, A. Chopra, R. W. Heath, B. L. Evans, K. R. Tinsley, and
X. E. Lin, “MIMO Receiver Design in the Presence of Radio Frequency
Interference,” GLOBECOM, New Orleans, LO, 2008.

[11] J. Boutros and E. Viterbo, “Signal space diversity: a power- and
bandwidth-efficient diversity technique for the Rayleigh fading channel,”
in IEEE Tr. on Information Theory, vol. 44, no. 4, pp. 1453–1467, July
1998.

[12] J. Boutros, E. Viterbo, C. Rastello, and J. C. Belfiore, “Good lattice
constellations for both Rayleigh fading and Gaussian channels,” in IEEE
Tr. on Information Theory, vol. 42, no. 2, pp. 502–518, March 1996.

[13] H. Gamal, G. Caire, and M. O. Damen, “Lattice coding and decoding
achieve the optimal diversity-multiplexing tradeoff of MIMO channels,”
in IEEE Tr. on Information Theory, vol. 50, pp. 968985, June 2004.

[14] M. O. Damen, H. El Gamal, and N. C. Beaulieu, “Systematic construc-
tion of full diversity algebraic constellations,” in IEEE Tr. on Information
Theory, vol. 49, no. 12, pp. 3344-3349, Dec. 2003.

[15] J. Häring and A. J. H. Vinck, “Iterative decoding of codes over complex
numbers,” IEEE ISIT, Washington, DC, 2001.
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