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Abstract: Several different sequences for frame
synchronisation have been published in the liter-
ature. Recently, even sequences using complex
signal alphabets have been specified. Whether
binary or complex, they are always chosen accord-
ing to the properties of their autocorrelation func-
tion. However, the probability of being out of
synchronisation has not as such been considered
sufficiently. The paper serves as a compendium
of derivations of such probability formulas for
various applications and conditions, including
both binary and complex signal constellations.
Hard quantisation as well as the continuous case
are treated.

1 introduction

Binary sync sequences for frame synchronisation are
found in nearly every data transmission system. Depend-
ing on the application, several specialised sequences have
been developed. Some of them are

m-sequences or PN (pseudo-noise) sequences

Barker sequences

Williard sequences

Neuman-Hofman sequences

Lindner sequences

Bauderon—Laubie sequences

A few of them will be described below in a little more
detail. The criteria for selecting such sync sequences have
always been based on the autocorrelation function. This
results from the maximum of the cross-correlation or its
absolute value being used to synchronise, without taking
into account the correction term introduced by Massey
[11.

Based on the maximum of the crosscorrelation, an
upper bound for the probability of being out of sync,
subsequently denoted as ‘sync error probability’, has been
derived by Maury and Style [2]. In this contribution, the
exact solution is presented and a similar upper bound is
derived from it. Both derivations rely on hard quantisa-
tions of the received signal. Most of this paper will be
dedicated to the continuous case. AWGN (additive white
Gaussian noise) will be assumed. The binary as well as a
complex-valued alphabet will be handled.
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Recently, some work was done to define sync
sequences over complex alphabets and especially over
polyphase alphabets [3-5]. Before results of this research
were published, we did some computations to search for
Barker-like sequences over complex alphabets. Then we
focussed on the derivation of sync-error probabilities that
were not reported in the literature. Thus, this work may
supplement results in the search for complex sync
sequences.

In this paper, a short preliminary overview of some of
the well-known binary sync sequences is presented. m-
and Barker sequences, and the differences in the way
their autocorrelations are defined, are explained. Only
Barker and Barker-like sequences are examined as exam-
ples for computations. Nevertheless, the formulas
obtained are also valid for other sequences. To point out
some relations, the recently published papers on complex
sequences are also incorporated. Derivations for sync
error probabilities under several conditions are given.
First, the discrete case is handled, leading to the above-
mentioned upper bound as an approximation of the
exact solution. The continuous case is studied for data
existing outside the sync word as well as assuming the
samples outside to be zero. These two possibilities are
investigated for the binary alphabet and especially for
complex alphabets. Fig. 1 shows the different cases to be
studied.
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Fig. 1  Different cases for which sync-error probabilities are derived

2 Definition of some binary sync sequences

2.1 m-sequences

These sequences, also called pseudonoise sequences, have
an ideal form of the autocorrelation function. The cyclic
autocorrelationt

N-1
Ris)= ) aiay, (1)
i=0 mod N

t The star symbolises conjugation in the complex case.
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equals
s=0

Rsy=1 N
V=121 s=1..N—1

The only drawback is that the m-sequence has to be
transmitted twice to lead to the given R(s), at least in an
interval of width N + 1. Otherwise random data would
be included in parts of the correlation, leading to a devi-
ation from eqn. 2.

m-sequences follow an appealing mathematical struc-
ture. They are defined by shift registers, whose taps are
given according to a primitive polynomial (see e.g. Refer-
ence 6, pp. 406412) over the extension field GF(2™) of
the binary GF(2). The resulting length of the sequence is
2" — 1.

The concept of m-sequences has been generalised by
Popovic [5] to develop complex sequences with such
ideal autocorrelation properties. His definition relies on
shift registers over GF(gq), which means a multilevel shift
register defined by a primitive polynomial over GF(g™).

@)

2.2 Barker and Barker-like sequences

Barker sequences rely on a noncyclic autocorrelation
function, assuming zeros outside the sequence itself. This
assumption corresponds to the fact that the data mean,
transmitted outside the sync sequence, equals zero if +1
and — 1 are equally probable.

The noncyclic autocorrelation is given by
N-s—1

R)= ¥ aah, o)

Barker sequences are defined to have sidelobes satisfying
[Ris)I <1 1<]|s[<N @

!

As the real data structure is not known, the shift
between the sync sequence in the receiver and the one
received is restricted to the range {—(N —1), ...,
+(N — 1)}, which is a usual assumption. However, the
derivation can easily be adapted to other sizes of the
window within which the sync sequence is searched. Only
the bounds of all products and sums in which the shift s
appears as varying parameter (—(N —1)<s< N - 1)
have to be chosen according to the new shift range.

3.1 Discrete case

Depending on the amount of the shift s (see Fig. 2), there
are positions of the autocorrelation giving the product
+1, and others yielding — 1; these will be called positive
or negative correlated, respectively. Outside the sync
sequence, the data are assumed to be equally probable
and uncorrelated with the sequence.

+1 o1 +1 -1 -1 ol -1

Vol

-1 »1

1 -1 -1

Fig. 2  Positive and negative correlated positions of two Barker
sequences of length 7 staggered by 2

If the received sequence is erroneous with bit-error
probability p, the components of the crosscorrelation
have the probabilities given in Fig, 3.
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tions. For simplicity, we omit the dependence on s. The
total number 8 of negative correlated bits are distributed
to the three ‘ranges’n_, n, and n,, which means that

9=6,+6_+86, ®)

Then, the probability P, of having a total of negative
correlated bits is

B
Pfs,0)= } (m)p"*(l—p)‘”"*’

8. =4 9+

D (n
x Y (6‘)(1—1’)’7"'“""
é-=C -

x (;:)0.5"-(1 — 0.5)m=00 ©)

In this equation, mutual dependences for the different
shifts s have not been taken into account.

The limits of the summations are determined by some
simple considerations. D cannot be greater than n_
(8- <n_) and it cannot be greater than 6 — 8., the
number of remaining negative correlated bits, when e,
have already been taken from 6. Thus, D is given by

D=min(n_,0-80,)

B is derived in a similar way. B cannot exceed n, and the
total number of negative correlated positions :

B =min (n,, )

Likewise, the lower limit C cannot be smaller than zero
and has to be greater orequal to§ — n, — 8, :

C=max (0,0 —n,—8,)
and A is also lower-bounded by zero and 8 — n, — n_:
A=max (0,8 —n,—n_)

Together with eqn. 8, the probability of having 0 negative
correlated positions is given by

_ SN 8. ne—04)

8e=4 +
D

) (;_)(1—17)"17"'“""
g-=c \U-

( n, )“"/0.5"‘“
“\o—a, —0_

D=min(n_,0—-149,)
C=max (0,6 —n,—6,)

(10)

B =min (n,,0)
A=max (0,0 —n, —n_)

The crosscorrelation function

N-1
R(sy= } ab,, (11
i=o

itself depends on 6 according to the relation
R(s,0) =N —26 0¢[0,N] 12

Thus, the probability of negative correlated locations is
also the probability of having a certain crosscorrelation
function.

Now we are prepared to derive the sync-error prob-
ability for the discrete binary case. First, the exact solu-
tion is given followed by the above-mentioned upper
bound resulting from an approximation.

3.1.1 Exact solution of the sync-error probability: Let
P, be the sync-error probability, the probability that the
crosscorrelation at an arbitrary shift s # 0 is greater or
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equal to that at s = 0. Furthermore, let P, be the prob-
ability of being in sync

P,=1-P, (13)

If P(R (s = 0)) denotes the probability of having a certain
crosscorrelation at s = 0 and we bear in mind that to be
in sync, every crosscorrelation for 5 # 0 has to be less
than that at s = 0, we obtain the relation for P,:

T PR <Rs = 0) )

P= 3 <
R:(s=0) 5= —{N—-1)
s#0
X P(R (s = 0)) (14)

where ) g (-0, denotes the sum over all possible results
of the crosscorrelation at s = 0. Considering eqn. 12, eqn.
14 can be rewritten as
N N-1 N
=3 (

2 P 9;)) P0,6,) (19

8o=0 s=—(N-1) §,=6p+1
s#0

Thus, the sync-error probability P 8

P.f ql - i I:[ ( Z P,.(S, 0;)) Pn(os 00)
8p=0 0;,=0p+1

5= —-(N—-1)
s#0
(16)
Utilising the symmetry of P(—s, 8) = P,(s, §), eqn. 16
yields

N-1[N-1 N 2

Pf =1- Z [H ( z P,,(S, 0:)):} Pn(O’ 00) (ln
8o=0[ s=1 \By,=8p+1

The next section gives an approximation that is close to

the exact solution for small bit-error probabilities.

3.1.2 Upper bound of the sync -élde{ probability: Since

i Pfs,0)=1-— § Pfs, 0) (18)
8;=6g+1 0,=0

eqn. 16 can be approximated by

é=N N-1 6o
Pfsl_ an(oaeo)(l" Z EP'(O,H,))
8p=0 3= —{N—-1)8,=0

s*0
N—-1

N 8o
= ) Y PQO, eo)sgop,(s, 0,) (19)

5= —iﬂo—l) 80=0
Again, because of the symmetry of P,(—s, 6) = P.(s, 8),
eqn. 19 can be further simplified:

N—-1 N 8y
Pf g 2 Z Z P n(O! 80) Z P n(s’ gs) (20)
8,=0

s=1 8p=0

In Fig. 4 the exact solution is compared to the upper
bound. All Barker sequences and three proposed by Bau-
deron and Laubie have been included. P, has been
shown to depend on the standard deviation of Gaussian
noise (p = (1/2) erfc (1/,/(2)0)), to enable a comparison
with the results given below. Both solutions are seen to
converge for small bit-error probabilities (small ).

Limits for o — oo are derived in Appendix 6.1.

In the following Section, the continuous case is con-
sidered, first restricting the symbols outside the sync
sequence to be sent as zeros. The more difficult situation,
when data are transmitted outside, is studied afterwards.

32 Continuous case
Again, we consider the channel noise to be AWGN
(additive white Gaussian noise) but, of course, with some
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effort, other density functions could be treated in the

same way.
exact

1.0p upper bound ; ; : solution

0.8r

0.6t

Py

0.4

Fig. 4 Sync-error probability in the discrete case — a comparison
between upper bound and exact solution

The considered sequences of lengths 3 to 13 are by Barker (B) and those of lengths
21 (two different sequences) and 48 are by Bauderon and Laubie (BL)

First, let the alphabet be binary with zeros transmitted
outside the sync sequence.

3.2.1 Zeros outside, binary alphabet: The probability
density function of one component of the cross-
correlation (b, a;, ) is given by

1 — 2
S8 = Jame P~ - 2;)

where 4 = mean and ¢ = standard deviation. Under the
condition of statistical independence, the sum of those
terms formed by the crosscorrelation is again distributed
normally.

Thus, R =) b;a;,, is Gaussian with mean y, =n,
— n_ = Ry(s) (autocorrelation), u,_, = N, and variance
2 __ 2

oy =No

@n

1 u—u)’
= — 2
J) = oame 2No? (22)
Let f,_o(u) be the probability density function for s =0

and F(u) the corresponding distribution function to f,.
Then, in analogy with eqn. 15, P, is given by

exp

N-—-1
P = J. ( I1 F:(“)) Si=o(w) du (23)
A\
" 1 - 2
F) = f_ J@nN)o e"p[' (sz:;) ]d" I

Compare also eqn. 17. Some trivial mathematical oper-
ations lead to

B B + o N—-1 l u—[«l, ])
P, =1 '[F_m '=_];I%~”2(1+erf[\/(2N)a
1 — N)?
x __—J(ZnN)a exp I:— (_____uz Naz) :| du (29)

Because of the symmetry of the autocorrelation function,
represented by u, = Ry(s), eqn. 24 can be written as

o= [ [0 G )

A2
%J du (25)

1
) J(nN)o cxP [—
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Results of some computations for Barker and Barker-like
sequences are illustrated in Fig. 5.
Limits for ¢ —+ co are derived in Appendix 6.2.

1.0

0.8r

0.4r

%

Fig. 5 Sync-error probability in the continuous case with binary
alphabet and zeros assumed outside the sequences

3.2.2 Zeros outside, complex-valued alphabet: The
considerations in this Section are based on the assump-
tion that the real part of the complex crosscorrelation or
its maximum, respectively, is used for synchronisation

N-1
max Re{ Y b, a;"+,} (26)
i=o0

3

Now, the random variable u is complex
u=x+jy (27)

The integral in eqn. 25 is changed into a two-dimensional
integral. However, since only the real part is of any inter-
est, the relation for P, in eqn. 25 is only slightly modified

e 11

lu—NJ? _
X 2aNg? exp |: 2Ng? du, = %(S) (28)

e H O ]

X o exp| — Ik dy (29
= —w 2Ng?

The integral over the imaginary part equals

j‘+uo o [ |y|2:| 3
pl — dy = /(2Nn)s (30)

—w® 2Ng?
This yields
- b
L0 )]
x exp [— %_I-V;Vz—)z] dx (31)

Up to now, in the continuous case, zeros outside the
transmitted sync sequence have been assumed. Random
data outside the sequence will entail more effort.
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3.2.3 Random data outside, binary alphabet: The prob-
ability density function of a term of the crosscorrelation
(b; a;.,) is no longer Gaussian, but a superposition of two
or more (for the complex alphabet) normal densities.
Assuming that in the binary case +1 and —1 are equally
probable, the probability density function f, of the
received samples outside the overlap range of the
received and receiver sync sequences are given by (see
also Fig. 6)

(o[ -5
2 \/(2 o 20

2
+ exp [— (_u;-Tzl)_:D (32)

fc,(u)=‘E NERT R

Jolw) =

f_y(u) f,4(u)

) I X u

Fig. 6  Probability density function of the received samples outside the
overlap range

Equiprobable binary data with Gaussian noise

The overlap range itself remains Gaussian with mean
4, =Ro(s) =n, —n_ and variance ¢} = (N —|s|)o>.
Thus, the density function of that part of the cross-
correlation function representing the overlap range is

(u — ﬂ.l)z

1
) = oa g —Tshe P [‘ AN — ssnaJ ¢3)

The remaining components outside the overlap region
have to be added. A sum of random variables corre-
sponds to the convolution of its density functions.

o= [ 100 (4)

The total probability density function of the cross-
correlation has now to be caiculated according to

S 1of¥) = £() * fo(u) = f(u) » -+ # f(u) (35)
s times

The convolution again corresponds to the multiplication
of the Fourier transforms, the characteristic functions.
These are*

Ji) -8 B ) = § exp [~ ("2;" 2)}

x (exp [—jo] +exp [+jw])  (36)

The Fourier transform of eqn. 35, together with egns. 36,

and 37, results in
|s| o?e?®
2

Jo 10dtt) -0 O,
= O (w)})" exp [—
x (exp [—jw] + exp [+ jo])* (38)

2.2

O, = (3" exp [— >

X &exp (— jow) + exp (+ jai"' (39)

z

] exp (—ju; @)

where

sl
= 3 (%) exp -Jot1s1 = v exp (jov

Js|

=2 (I l)eXP[—Jw(ISI 2v)]

v=0

= s, 1odtt) 00 D,

N 2. .2 |sf
(-2 (1)
Xexp[_jw(lsl—zv'*'tus)] (40)
B, v)

The inverse Fourier transform yields

o fal il
D, 101 8 f;. o) = (1) J(le)a Z:o(m)

< exp [ (s, v))’]

41
2Ng? (41)
In order to apply eqn. 23, the distribution function

*u

F)=] Jfywdx)dx

has to be calculated

u 1 tst Jal |S'
Fw) = Jow \/(ZNn)o( ) ,go( v )

X exp [— (x — M, v)© _25:'2 v))z] dx

-G O ) @

Together with f,_g (1) inserted into eqn. 23, we obtain

° [N k7 s) — s, v) ) 1 (u — N)z]
=1- = f - d
Fr=t fw [H gz) .go( v )2(1 e [ JeNe 1) JaNme P 2N |
F(u) fimol®)
us,vV)=(|sj—2v+n, —n_) 43)
The limit for & — oo is given in Appendix 6.3.
S{u) oo O (w) = exp [ —jou,] One case remains to be considered — a complex
N 2 2 alphabet and random data outside the overlap range.
X exp [_ (_ﬂw_] (37) | This will only be studied for one special configuration,
2 the 4-PSK signal format. Other signal sets can be

* o—e denotes Fourier transform.
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handled following the same procedure, except that the
number of terms in the formulas increase.
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3.2.4 Random data outside, complex-valued alphabet
(4-PSK): The data transmitted outside the sync
sequence is assumed to be equally probable, which means
that all four points of the 4-PSK (+1, —1, +j, —j)
appear with a probability of 1/4. In the presence of addi-
tive white Gaussian noise, the probability density func-
tion outside the overlap region is given by

_1 1 Ju—1[2
Julw) = 4 2ne? (cxp[ 202 ]
I S 0 Ul DS I e 1
P 202 P 202

+ exp [— ——I yz‘;jlz]) (44)

For the overlap range we again have

6% = (N —|s])o? (45)
19 = 5ot~ A
e e e
g

where Ry(s) is the noncyclic autocorrelation given by
Ro(5) = Y ¥ ¢ a,a¥,., (compare also eqn. 33).

In the sequel, Re {Ry(s)} and Im {R(s)} will be abbre-
viated by R and I, respectively. As in the section before,
the Fourier transform of the density functions is needed.
This time, of course, a two-dimensional transform has to
be applied. The characteristic functions are then given by
(see e.g. Reference 9)

Jdu) oo B fw,, »,)
= %(em [— ——Gz(wf; wg)] exp (—jo,)

[~ 2 2 247
+ exp _ﬂa%ui) exp (+jow,)
B 20,2 237
+exp| — s'(_wxz_w“&) exp (—je;)
[~ 2.2 23]
+exp| — U—(w—‘;—wZ) exp (+ jwz)) 47)
J{u) oo Py, w,)
= exp [_ N = 51Nk w%)]
x exp (—jw, R) exp (—jw, 1) (48)

The total probability density function is again (see eqn.
35) determined by a convolution, this time in two vari-
ables:

ool t®) = JL) * f () » -+ [(u) (49)

s times

This means that the corresponding two-dimensional
Fourier transforms are to be multiplied

D, o0, w;) = Byw,, W, XD, wz»"l (50)
34

Inserting eqns. 47 and 48 into eqn. 50 yields
f;. ror(’!) e (D,' lo!(wl! wz)

[ oX(N — |s[)w? + w%)]
=exp| — )

x exp (—jo,R) exp (—jw, )
g lex B ol w? + 0d)

4 %P 2
x (exp (—jw,) + exp (+jw,)

+ exp (—ja) + exp (+jwz)))M 51)
Considering that
(@a+b+c+d
( |s]
ky+ka+katke=|s| kl) kZ ’ k3 3 k4
eqn. 51 is rewritten as

fs, wr(l.‘) o—e d)s. m(wb 0’2)

(1) PN — Is])et + @)
-(§) e e

x exp (—jw,R) exp (—jw, 1)

Is] ) |: o(w? + w3) ]
x exp| — ——21s
(e - s

x exp [—jw,(k, — k,)]
x exp [ —jw,lks — k4)] (33)

Oz ()
Bl (4) kl..z=tsl (kl’ sees k4

< exp [_ azN(wz + w%)]

x exp [—jo,(k; — k; + R)]
x exp [—jw (ks — ks + 1)] (54)

Applying the inverse Fourier transform, f, ,,(u) results in

1 71\ s )
Joora = 2nNg? (4) h..‘ém (kl’ oo K

x — k; + k; — R)?
xexp[—( IZNG; ]

X exp [— ks + ke = 1)2} (55)

)ak;bkzctadh (52)

2Ng?
In order to apply eqn. 23, the distribution function

xQ o
Fxo) = _[_ J_ Jorodtt = x + jy}ydy dx

has to be determined

1 /1\" s
Fxo) = ——| -~
) = 27 Ne? (4) h_;,, (kl, kg
xa —k, +k,—R)?
X j exp [— x 12:1022 ) :Idx

+w _ _ N2
[ 2
J@rN)s
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In this way, we obtain the desired sync-error probability

_ _ @ N—1 l 15f Isf l
Fr=1 .L—wl:x]:[l (4) h--z=l-ﬂ (k,,...,k4)2

x —ky +k; —Re {Ro()} \ ]
X (1 + erf[ N ])]

1 (x — N)?
* J@aN) P [_ INo? ]

67

4 Conclusions

The probability of being out of sync has been determined
under various conditions. Thus, to a certain extent, this
contribution can be seen as a compendium of such rela-
tions for sync-error probabilities.

The discrete, quantised and continuous cases are
examined. For the discrete (binary) case, the exact solu-
tion and an upper bound are given. In the continuous
case, two different assumptions were studied — having
zero or random data outside the sync word. For each
assumption the cases of having a binary or a complex
signal alphabet were considered. The only restriction that
has been made is that the channel should be AWGN
(additive white Gaussian noise). But, with some effort, it
should also be possible to modify the given derivations to
match other noise conditions. However, the discrete case
can always be applied and yields at least an upper bound
of the out-of-sync probability for the continuous case, no
matter which probability density function underlies. In
most cases, this is sufficient for choosing an adequate
sequence for a special application. In Reference 17, such
upper bounds have been derived for a special frame syn-
chronisation developed for time-variant coded modula-
tion. An exact computation for the continuous case was
not feasible. Nevertheless, the discrete computation
yielded an acceptable approximation.
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6 Appendix

In this Appendix limits for ¢ — oo are determined.

6.1 Limitforeqn.14as o —

lim P(R(s) < R.(s = 0)) = %
N—-1 1
Re(s=0) | s=—-(N—-1)

s#0

1 2(N-1)
-
1 2(N-1)
i ()

6.2 Limitforeqn.25as o0 —
. u—u
lim (l +erf[—’ ):1
o J2N)
+ w0 N-1 1 2 1
e | .[m [1 (2)] J@nN)o

(u—Ny?
X exp [— N2 du

1 2(N—1) + @ l
Jmby=1- (5) Jm JeN)

—_ 2
x exp[—%v—:i—)}du

1 2(N—-1)

o+ a0

6.3 Limitforeqn. 43 as o0 - o
. N-1 1 Isl isl ISI 2 1 N -1)
me == [T E (V)]G
—

pAL
1 2(N—-1)

o+t
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