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Abstract

The work describes the shortcomings of current analyt-
ical treatments of the noise and error probability caused
by the clipping of a multicarrier signal. The best ap-
proach so far by Bahai et al. is shown not to describe
the actual properties correctly. The shortcomings of
the current approaches are outlined and simulation re-
sults of the real behavior are shown. This presentation
is intended to be a starting point for a new analysis.

1. MOTIVATION

The high peak-to-average ratio (PAR) is the major
drawback of multicarrier transmission. It requires for
high resolution converters and high-voltage power sup-
plies, in turn leading to high power dissipation. With-
out PAR reduction schemes in place, at some voltage
level, the signals will be clipped. It would thus be im-
portant to know the level of noise and its frequency
dependency defining the bit-error rate on every car-
rier. Two possible approaches had been given in the
past, which are subsequently studied. Thereafter, we
present some simulation result that show the real clip-
ping distortion.

2. THE TWO APPROACHES FOR ANALYZ-

ING CLIPPING DISTORTION

In the past, the most often used approach is to see
the effect of clipping as white Gaussian noise in DFT
domain (see, e.g., [1]). Choosing the DFT represen-
tation with 1/

√

Nf in both transform equations (Nf

being the block length), the noise power N will be the
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same and just given by the clipped portion of the Gaus-
sian density in time domain. This means

N = 2

∫ ∞

Lc

√
P

(u −Lc

√
P )2

1√
2πP

e−
u2

2P du (1)

with the normalized clipping level Lc = l/
√

P , the
clipping voltage l, and the signal variance (power) P .
With the Gaussian i.i.d. assumption, the probability pd

of crossing the half distance between two neighboring
QAM signal points can easily be computed as

pd =
1

2
erfc

(

a/2√
2N

)

, (2)

with a denoting the minimum Euclidean distance be-
tween points. Determining the corresponding bit-error
probability is straight forward.

Unfortunately, as has been correctly pointed out by
Bahai et al. in [2], there are typically not so many clip-
ping events within a DMT(OFDM) symbol that could
justify a Gaussian i.i.d. assumption for the DFT do-
main. This kind of analysis is therefore only valid for
very low clipping levels with many clips. For applica-
tions, this is an unusual case. Ignoring this, the bit-
error rate computations would lead to the completely
wrong interpretation that clipping noise is not an issue
at all. Very low error rates are obtained. The effect is
underestimated as can be seen from Fig. 1 taken from
[1]. One would conclude that only a minor increase in
resolution would be required.

Bahai et al. [2] realized the shortcomings for the
first time and went through a lengthy derivation1 cor-
rectly assuming the bursty impulse-noise nature of clip-
ping. The actual results, however, did not look too re-
alistic, either. Here, we now summarize the problems

1which is not presented in detail in [2]; [7] provides the inter-
mediate steps.
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Figure 1: Symbol-error probability Ps as a function of
the number of bits per carrier m, i.e., 2m-QAM, and
the clipping ratio Lc = l/

√
P under idealizing Gaussian

i.i.d. assumptions

that we saw when going through Bahai’s assumptions
and derivations in detail, some of them referencing pa-
pers dating back to the 50’s.

The starting point is the assumption that the
clipped portion of the signal will follow a parabolic
function

pτ (t) =

(

−1

2
lm2t

2 +
1

8
lm2τ

2

)

· rect
(

t

τ

)

, (3)

with

mi =

{

1
2π

∫

ωiSx(ω)dω , i = 2u
0 , i = 2u + 1

for u = 0, 1, 2, · · · .

(4)
rect(.) denotes a rectangular window function, and τ ,
the random duration of the clip, forms the support of
the parabolic arc. The parabolic shape of the signal’s
crossing above high level l follows naturally from a Tay-
lor series expansion around the peak value. However,
still the question is, if this is a realistic model, although
this assumption is so appealing. In reality, most of the
clips are very spiky and the actual shape depends on
filter functions in place before the non-linearity.

This assumption of a parabolic shape directly leads
to the spectral properties in DFT-domain, given as

Fk =

√

Nfm2T lτ

4π2k2
e−(j2πk(t0+ τ

2
)/T ) · (5)

·
(

sinc
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πkτ

T

)

− cos

(

πkτ

T

))

, (6)

with k is the carrier number, T the symbol (frame) du-
ration, and t0 the clip time, The actual noise power
density spectra that we found in simulations did not
follow this function. Usually occurring short single
spiky noise impulses due to clipping indeed produce

an almost white spectrum. The only spectral depen-
dency of the SNR that needs to be taken into consider-
ation is caused by any kind of filtering before the non-
linearity. This filtering will influence the signal PSD
(power spectral density), but since the clipping noise
is almost white, the noise PSD after zero-forcing fre-
quency equalization will increase accordingly. In other
words, the SNR will, of course, drop where the signal
is suppressed. This is of much stronger impact than
any spectral dependency of clipping noise that one can
assume. In general, there is a frequency dependency
when not just investigating single clip cases, but as is
shown later, it is not following (6).

The parameter that influences the shape of the spec-
trum is τ . It’s statistics are stated in [2], as well. It’s
density is said to be

ρτ (τ) =
π

2

τ

τ2
m

exp(−(π/4)(τ/τm)2), τ ≥ 0 , (7)

where τm denotes the expectation of τ . Letting λl be
the average rate of the Poisson arrivals of clips (an-
other assumption), λlτm = Pr{x(t) ≥ l} leads to the
expected value of the duration of a clip

τm =
Pr{x(t) ≥ l}

λl
≈

√
2π

l
√

m2
, (8)

The approximation is due to

Pr{x(t) ≥ l} =

=
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Together with

λl =

√
m2

2π
exp(−l2/2) , (10)

which is also derived in [2], the approximation results
when using only the first term in (9). We still have to
compute

m2 =
1

2π

∫

ω2Sx(ω)dω , (11)



which equals

m2 =
(2π)2f3

0 S0

3
(12)

for a constant PSD S0 within a bandwidth of f0. Bahai
normalized the total power to be one, which means that
S0 = 1/f0, finally leading to

m2 =
(2π)2f2

0

3
. (13)

The actual distribution function in (7) and hence, the
resulting density was taken from an early paper by Rice
[5] from 1958, which he had called a ‘conjecture’. How-
ever the actual distribution looks like, let us have a
look at the realistic value of τm. Let us choose a very
low normalized2 clipping level of 10 dB. This would
mean a normalized clipping level of l = 1010/20 = 3.16
and let us further use the parameters of ADSL, i.e.,
f0 = 1.104 MHz. We then obtain

τm =

√
3

l
√

2πf0

= 0.22/f0 ≈ 0.2 µs . (14)

The clock rate is 2.208 MHz, meaning a sample time
of 0.453 µs. The mean duration of a clip would be sig-
nificantly below the duration of a sample. This is in
accordance with our finding that the clipping spikes
that we see are just single samples, leading to a white
disturbance in DFT domain. Thus, we need not really
discuss, if the assumption of the actual shape of the
distribution is correct. Most of the clip events will be
single samples. If we are concerned with the out-of-
band extension, then the actual duration may be an
issue, but this was not the content of Bahai’s work and
will not be treated here, either. However, one would
need to study Rice’s work very carefully, if the given
distribution really holds. Furthermore, note that the
normalized clipping level of 10 dB is quite low. With-
out any means of peak reduction, 14 dB should be more
realistic, leading to an even shorter τm.

Thus, we conclude that although the assumption of
the shape and length distribution of clips may come
with some question marks, practically, they will not
lead to a frequency dependency in the case of single
clips. Multiple clips were not treated in [2]. What we
will practically see are either single-sample clips with
a white dependent (not i.i.d. as in [1]) disturbance
in DFT domain or multiple single-sample clips with
possibly some frequency effect. The second has not
been studied, yet, but is visible in simulation.

There are a few further (minor) weaknesses in [2]
that we mention shortly. When looking into the deriva-
tion of the amplitude of the parabolic arc exceeding

2normalized to the standard deviation

level l thoroughly (see Fig. 2), it starts from a Taylor
extension using only the constant and quadratic term
given as

pτ (t) =

(

1

2
x′′t2 − 1

8
x′′τ2

)

· rect
(

t

τ

)

. (15)

The quadratic term of a Taylor expansion is 1
2!x

′′t2

around t = 0. The constant term ensures the zeros at
t = ±τ/2. x′′ can be approximated by x′′ ∼= R′′

xx(0) ·x ,
R′′

xx being the second derivative of the autocorrelation
function. In [2], however, x is replaced by l, the clipping
level, although x exceeds l.
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Figure 2: Parabolic arc modeling the excursion above
level l

In the course of the actual derivation of the error
probability, a variable substitution was made to obtain
a Gaussian distribution. The corresponding standard
deviation should correctly be

σ =

(

1
√

3Nfπl2

)1/3

, (16)

whereas σ =

(

2√
3Nf πl2

)1/3

is given in [2] below (26).

In the course of deriving (27) of [2], the authors
make use of their normalization of the total power to
one. However, they do not rigorously follow the same
procedure as for σ. A normalization of the power to
unity means that the rms value in time domain will be
unity as well (despite of a reference impedance, which
can be ignored). Applying a power-preserving DFT,
this would again mean that the average power in DFT
domain will also be one. It will not be 1/N per carrier
as stated in [2], although it is indeed appealing to just
divide the normalized power by N to obtain the power
per carrier in the discrete representation.



Not all derivations can be given here in detail. We
will soon provide [7] on our Web page, which especially
contains intermediate derivation steps of [2].

3. SOME SIMULATION RESULTS

We first show the mean PSDs resulting from clip-
ping at two normalized clip levels. They are given in
Fig. 3.
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Figure 3: Noise power spectral density at normalized
clipping levels of 10 and 12 dB

The decrease with frequency is due to multiple clips.
If we would have plotted it only for single clips, the
spectrum would just be white, except a rise at higher
frequencies. The increase there is due to the filtering
that we applied before clipping. The FEQ would then
increase the noise which clearly can be seen. This is
much stronger than any other frequency dependency.
This low average noise level in the order of usual back-
ground noise could be interpreted as nothing to worry
about. A three-dimensional plot in Fig. 4 of the dis-
tribution of the PSD levels outlines that this interpre-
tation may be misleading. There are certainly some
clipping events that reach up to about −70 dBm/Hz.
One may compare with, e.g., the so-called ETSI A
noise model specified in G.996.1, which has a maxi-
mum at −100 dBm/Hz and the background level at
−140 dBm/Hz.

4. CONCLUSIONS

We discussed two possible approaches for describ-
ing the disturbance due to clipping, the Gaussian-i.i.d.
approach and the single-parabolic-impulse approach by

Figure 4: Histogram of the noise PSD at a normalized
clipping level of 10 dB

Bahai et al.. Unfortunately, both do not yet describe
the real spectral effect. This paper outlines the short-
comings, not yet a new solution. As a conference pre-
sentation, it should serve as a starting point for a new
effort in this direction.
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