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Abstract — We prove that a Turbo-like iterative de-
coding of an analog product code with parity-check
component codes lead to the least-squares solution.

I. ENCODING

Analog codes date back to early papers by Jack Wolf in
1983 (see also own earlier work at trsys.fbe.hs-bremen.de),
where he described the decoding of Reed-Solomon codes over
complex numbers with a focus on impulse noise. As a first
step into iterative decoding of analog codes, in here, we de-
fine analog product codes with analog parity-check component
codes in rows and columns. Under analog parity-check code
we understand appending the negative disparity (sum) of the
information components. Thus, every row and every column
will be DC-free. We obtain the code array
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II. DECODING

Given the received codeword Rq), the basis idea. is to com-
pute two new matrices R; and R2, whose elements are
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with r;; denoting the components of Ry, k =0,1,... . The
algorithm is the analog counterpart of the one for binary ar-
ray codes usually used to explain Turbo decoding. Equations
(2) show the extrinsic information of the rows and columns,
respectively, knowing that the rows and columns sum to zero.
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The steps in (2) can be written as the elements of two
update matrices

TR(._;) and TR(, 1), 3)

where T is an identity matrix with zeros replaced by ones
and vice versa. The new matrix is then computed as the
weighted sum of the previous matrix and the update matrices:
—- — T
R(n) = (R("_l) - ’wI_R(n__l) - wII;‘("_l))/(l + 2w)
(R(n—-1) ~wI(R(n-1) + R{n_1)))/(1 + 2w)
“
To study the convergency properties, the received matrix is
written as a vector g, that contains the sequence of its rows.
The computation can then be described as

§y(k—l)
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Y(x) is the vector obtained at the k" iteration step. @ is the
iteration matrix of dimension (n + 1) x (n + 1)? defined as

Yy

¢ = (I— wM —’u}Mz)/(]. + 2111)
= (I-w(Mi+M2))/Q1+2w). (6)
I is the (n+1) x (n+1) identity matrix, M and M describe
the computation per columns and per rows, respectively, w is

a weight which depends on the matrix dimension.
The eigenvalues of the operator & have been found to be

1  eigenvalue equal to

142w ?
2n  eigenvalues equal to 1‘;‘;;’,; L, )
n2 eigenvalues equal to 1.

Convergence will be obtained, if all eigenvalues are less or
equal to one. The eigenvalues that are equal to one correspond
to the eigenvectors that span the solution space. If the others
are forced to below one by choosing the weight to be

O<w<1l/n, (8)>

convergence will be obtained.

Since eigenvectors associated with different eigenvalues are
mutually orthogonal, the iterative algorithm actually leads to
the least squares solution, i.e., it projects onto the solution
subspace. ’
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