
1

DNA Inspired Bi-directional Lempel-Ziv-like
Compression Algorithms

Attiya Mahmood, Nazia Islam, Dawit Nigatu, and Werner Henkel
Jacobs University Bremen

Electrical Engineering and Computer Science
Bremen, Germany

Emails: {a.mahmood, n.islam, d.nigatu, w.henkel}@jacobs-university.de

Abstract—The bi-directional reading processes in DNA repli-
cation and gene expression together with the similarities between
the so-called alternative splicing and Lempel-Ziv (LZ) algorithms
has motivated us to incorporate bi-directional readings into LZ
algorithms. LZ77, LZ78, and LZW84 are universal lossless data
compression algorithms. A modified version of these algorithms
that takes into account both forward and reverse readings is
presented in this work. It is shown that bi-directional reading
can improve the compression ratio at the expense of slight
modifications in LZ algorithms provided that there exists some
symmetry in the information content. Results are presented for
text, image, and audio files.

I. INTRODUCTION

LZ77 [1] and LZ78 [2] are lossless data compression
algorithms proposed by A. Lempel and J. Ziv in 1977 and
1978, respectively. LZW84 [3] is a similar algorithm proposed
by T. A. Welch in 1984. LZ77 is based on a sliding window
approach, where compression is achieved by preserving the
retransmission of a data vector that has already been sent.
It maintains a search buffer which stores the previously sent
string of characters and when any new upcoming string
matches the symbols already stored in the search buffer, the
position and length of that match are sent. At the decom-
pression end, a similar receive buffer is maintained which
retrieves data from the position specified by the compression
end. The overall idea of LZ78 is the same but it maintains an
adaptive dictionary to store the previously processed symbols
and compression is achieved by sending the index of the
dictionary, where a match occurs. LZW84 is similar to LZ78,
however LZW84 has an initialized dictionary and the output
does not contain a newly occurring character to update the
decompressing dictionary. In all of these algorithms, input data
statistics and compression are done in a single pass.

We have modified the original LZ77, LZ78, and LZW84
algorithms for bi-directional reading and analyzed their com-
pression performance. The idea for bi-directional reading
emanated from studies of the DNA, which is sometimes read
by enzymes in both forward and reverse direction on opposite
strands leading to different proteins. Additionally, in verte-
brates, a so-called alternative splicing of the RNA is in place,
which in a way looks related to LZ77. This made us consider
source coding algorithms for bi-directional reading. We have
investigated LZ77 and LZ78, LZW84 algorithms for variable
window lengths and variable numbers of bits to address the

dictionaries, respectively. The LZ like algorithms might be
further modified to suit DNA compression by introducing base
pair conjugacy relations as additional matching criterion.

In the following sections, we first describe the bi-directional
and Lemple-Ziv like processes in the DNA and then we intro-
duce the bi-directional algorithms along with their correspond-
ing pseudo-codes. In the third section we demonstrate and
discuss simulation results. Finally, conclusions are presented.

II. BI-DIRECTIONAL READING AND LEMPEL-ZIV LIKE
PROCESSES IN THE DNA

DNA is a double-stranded molecule. Each strand has so-
called 3′ and 5′ ends. The two strands are anti-parallel with the
so-called leading strand oriented in 3′ to 5′ direction, whereas
the lagging strand runs from the 5′ end to the 3′ end [4]. This
labeling gives DNA/RNA a built-in directionality. In between
the two ends, the building blocks called nucleotides exist. The
nucleotides are made of a sugar phosphate backbone and one
of the four nitrogenous bases attached to the sugars. These
bases are called Adenine (A), Thymine (T), Cytosine (C),
and Guanine (G). Adenine is always paired with Thymine and
Cytosine is always paired with Guanine.

During DNA replication, after the two strands are separated
to serve as a template for producing a copy, an enzyme
called DNA polymerase reads the strands in the 3′ to 5′

direction placing the corresponding nucleotides along the way
(see Fig. 1). On the leading strand template, addition of
complementary nucleotides is continuous. However, in the
lagging strand, the DNA is read in opposite direction (for
DNA polymerase, reading only makes sense in the 3′ to
5′ direction) and hence, DNA synthesis occurs in short and
separated fragments (Okazaki fragments)[5].

The other biological process involving the bi-directional
reading is gene expression. Gene expression is a process
by which the genetic information from a segment of DNA,
called genes, is used to synthesize protein or in some cases a
functional RNA [4]. The making of a protein consists of two
steps, transcription and translation, in eukaryotes, there is an
intermediate step entitled RNA processing (splicing). During
transcription, the gene sequence is copied into Messenger
RNA (mRNA) using the template strand of the DNA. The
enzyme involved in this reaction is known as RNA polymerase.
Here, also RNA polymerase reads the sequence in the 3′ to



2

Fig. 1. DNA replication (http://www.genome.gov/dmd/img.cfm?node=
Photos/Graphics&id=85151)

5′ direction. Hence, depending on the location of the gene,
RNA polymerase reads and copies the content in forward or
backward direction. The information in the mRNA sequence
is read in triplets, called codons, by a large and complex
molecule called ribosome. The codons are then translated to
an amino acid sequence based on what is known as the genetic
code. The codon ATG signals the start of the translation
process in the 5′ to 3′ direction and the process stops when
one of the three stop codons is recognized (TAA, TAG, and
TGA). Finally, the amino acids are connected by a polypeptide
chain and folded into a protein.

Genes can also exist in overlapping positions of the opposite
DNA strands. In such cases, reading in the opposite directions
leads to a synthesis of different proteins. For instance, in E.
coli, the gene “htgA” is embedded within “yaaW” as shown
in Fig. 2. Reading in forward direction, starting from ATG
(shown in blue arrow) the ribosome continues reading until a
stop codon occurs, in this case TGA. Using the same sequence,
reading in opposite direction on the other strand (red arrows),
the ribosome will find the start codon CAT (complementary to
ATG) and reads and decodes the corresponding protein until
a stop codon TAC (complementary to TGA) is encountered.

>gi|388476123:c11356-10643	Escherichia	coli	str.	K-12	substr.	W3110, Complete genome
ATGAATGTTAATTACCTGAATGATTCAGATCTGGATTTTCTTCAGCATTGTAGTGAGGAACAGTTGGCAAATTTC
GCCCGATTGCTCACCCATAATGAAAAAGGCAAAACTCGCCTCTCCAGCGTACTGATGCGCAACGAACTGTTAAATC
GATGGAAGGGCATCCCGAGCAACATCGCCGCAACTGGCAGCTGATTGCCGGAGAATTACAGCATTTTGGTGGCGAT
AGTATCGCCAACAAACTGCGCGGACACGGTAAATTGTATCGGGCCATTTTGCTCGATGTTTCAAAGCGATTGAAGC
TGAAAGCCGACAAAGAGATGTCTACGTTTGAAATTGAGCAACAGTTACTGGAACAATTTCTGCGTAATACCTGGA
AGAAAATGGACGAGGAACATAAGCAGGAGTTTCTGCACGCGGTCGATGCCAGGGTGAATGAGCTGGAAGAGCTGC
TGCGCTGCTGATGAAAGACAAATTATTGGCAAAAGGTGTGTCGCATTTGCTTTCCAGCCAACTGACCCGCATTTTA
CGCACCCACGCAGCAATGAGCGTACTTGGGCATGGTTTGCTGCGCGGCGCGGGGCTGGGAGGCCCTGTAGGTGCGG
CACTAAATGGGGTTAAAGCGGTCAGCGGCAGCGCCTATCGCGTGACGATTCCAGCCGTACTGCAAATCGCCTGCCT
GCGCCGGATGGTTAGCGCCACTCAGGTCTGA

Fig. 2. Genes “htgA” and “yaaW” in overlapping position on opposite strands
(nucleotide sequence of gene “yaaW” of E. coli K12.)

In eukaryotes, the RNA copied from the DNA has to be
further processed. The premature mRNA contains exons which
code for protein parts and introns, which are not considered.
Hence, before the RNA is translated, the introns are removed
and the exons are spliced together [6]. In a regulated process
called alternative splicing, some of the exons may either be
incorporated in the final matured mRNA or will be left out just
as the introns. This process gives the possibility of creating
multiple, but related, proteins from relatively smaller DNA
segments. The steps are illustrated in Fig. 3. If one thinks
of the introns to be already existing dictionary entries and

the exons to be currently not needed dictionary components,
directing which nucleotide sequences to be added for the to be
produced protein, the described alternative splicing technique
somehow resembles Lempel-Ziv (LZ77) source coding [1].

Together with overlapping (bi-directional) genes on both
strands, the question arises, how to make LZ algorithms to
work in a bi-directional fashion, too.

Fig. 3. Alternative splicing (http://www.genome.gov/Images/EdKit/bio2j
large.gif)

III. BI-DIRECTIONAL ALGORITHMS

A. Modified LZ77 Compression Algorithm

In the conventional LZ77 algorithm, the entire data are
traversed in the window of search and lookahead buffers.
Compression is achieved by sending the position and length
inside the search buffer, where the characters match exactly the
currently processed string of characters present in the looka-
head buffer. Our bi-directional reading mechanism modifies
the matching criteria of this search buffer. The original pseudo-
code of LZ77 [7] is modified to include bi-directional reading
as follows: The longest match of a string is found in both

Algorithm 1 : Bi-directional LZ77
1: while LA(Lookahead Buffer) 6= Empty do
2: L1 ← Length of Forward match;
3: L2 ← Length of Reverse match;
4: L← max(L1, L2);
5: if (L == 0) then
6: Output←(0, 0, FS in LA);
7: Shift left the window by 1 character;
8: else
9: Output←(Pos, F, L,N in LA);

10: Shift the window left by(L + 1) positions;
11: end if
12: end while

forward and reverse direction. If no match exists, then only
the first non-matching character (FS) is sent, otherwise the
position (Pos), the length (L) of the maximum matching string
in either direction, a flag bit (F ), and the next non-matching
character (N) in the lookahead buffer (LA) are output by the
compressor. The flag bit specifies the direction of the match
to be either forward or reverse. Thus, the numbers of coded



3

bits (LC) needed to compress the data in this modified scheme
are:

LC = log2(n− LA) + log2(LA) + 1 + NS, (1)

where n is the total window length containing both search and
lookahead buffers, LA is the length of lookahead buffer, the
flag bit needs one bit, and NS is the number of bits needed
to represent the next symbol. With respect to the original
algorithm, the only additional cost is a flag bit, which we
will see not to have a detrimental effect on the performance.

B. Modified LZ78 Compression Algorithm
In the original LZ78 algorithm, the dictionary is gradually

built at both the compression and the decompression end.
At every instant, input data symbols are searched at already
stored dictionary indices. If a subset of data symbols exists in
dictionary entries, then the reference of that dictionary index
is sent followed by the next non-existing symbol. The set
of matching symbols and the next non-existing symbol are
also added at the next available dictionary index. The original
pseudo-code of LZ78 [7] is modified to include bi-directional
reading as follows:

Algorithm 2 : Bi-directional LZ78
1: W1 = NIL (for forward matching);
2: W2 = NIL (for reverse matching);
3: while input available do
4: K← next symbol from input;
5: if W1K exists in dictionary then
6: W1 ←W1K;
7: end if
8: if W2K exists in flipped(dictionary) then
9: W2 ←W2K;

10: end if
11: if (W1K does not exist in dictionary)NN

(fliplr(W2)K does not exist in dictionary) then
12: L1← Length of characters in W1;
13: L2← Length of characters in W2;
14: L← max(L1, L2);
15: if (L == L1) then
16: Output← (Flag1, Index(W1), K);
17: Add W1K in the dictionary;
18: else
19: Output← (Flag2, Index(W2), K);
20: Add W2K in the dictionary;
21: end if
22: W1 ← NIL;
23: W2 ← NIL;
24: end if
25: end while

Like LZ77, the maximum match is searched in both forward
and reverse directions for all available dictionary entries.
Once no further match is possible in either direction then a
maximum match of characters in either direction is stored in
L. The sent information contains the dictionary index, flag
bit, and the next non-matching character in the incoming data
stream. Again, the cost is an extra flag bit which indicates the
dictionary reading direction.

C. Modified LZW84 Compression Algorithm

The original LZW84 algorithm is similar to the LZ78
algorithm in terms of a dictionary-based approach. However,
for LZW84, there is an initialized dictionary containing the
used characters (e.g. 256 ASCII characters) on both the
compression and decompression sides. Additionally, the trans-
mission of the not yet existing data symbol from the input data
sequence is not done. This symbol is recovered from the first
character of the dictionary entry which is transmitted next,
since the algorithm moves on by a single character at a time.
In case of a yet non-existing string, the first character of the
previous sequence is appended to the previous sequence to
obtain the missing entry.

The original algorithm is modified to include bi-directional
reading alike the modifications in LZ77 and LZ78. However,
the use of the flag bit for the initialized dictionary containing
the ASCII characters is redundant. An optimal use of the flag
bit for these entries can be made by exploiting the inherent bit
symmetry of the original characters, e.g., the bit patterns of
ASCII characters. By inverting each of the bits of the first 128
characters, the latter 128 characters can be obtained. Hence,
the starting dictionary for the bi-directional approach has half
the size than in its original counterpart. The original pseudo-
code of LZW84 [3] is modified to include bi-directional
reading in Algorithm 3.

In the modified algorithm the maximum match is searched
in both forward and reverse directions through the dictionary.
However, the last entry of the dictionary cannot be used for
reverse reading due to the lag of one step which the decoder
suffers in updating its dictionary. This necessary exclusion is
illustrated in the following example where we allow reverse
reading of the last entry on the encoder side. Let us assume
that the input stream contains ch1 + ch2 + ch1 + extra char,
and also that neither ch1 + ch2 nor ch2 + ch1 exists in the
dictionary. The encoder reads in ch1 + ch2 and since no
match is found, it appends this string as the last entry and
transmits index(ch1). The decoder receives index(ch1), but
cannot extend its dictionary since it has to wait for the first
character of the next transmit. On the encoder side, the next
string characteristically starts from the last unmatched charac-
ter, hence, the relevant string becomes ch2 + ch1. A match in
the dictionary is found at the last index in reverse direction, so
the string is extended and becomes ch2+ch1+extra char, no
match is found for this string. Hence, this string is appended
and the transmitted code is index (ch1 + ch2) with a flag
value of 1. On the decoder side, to update the last entry it
required the first character of the current transmitted sequence
which points towards a non-existing entry. Hence, the decoder
cannot construct this dictionary entry since it cannot retrieve
the relevant first character. This occurrence, although similar to
the inherent exception of similar kind (i.e. index points to non-
existing entry) in the original LZW84 algorithm, cannot be
dealt with in a similar fashion. In the original case, the relevant
character can always be recovered due to a certain repetition
pattern. In the bi-directional case, however, it cannot due to the
direction change. In our example, one would actually have two
unknown characters, ch2 and extra char, that cannot both be



4

Algorithm 3 : Bi-directional LZW84
1: W1 = NIL (for forward matching);
2: W2 = NIL (for reverse matching);
3: prefix← First input symbol;
4: nextbit← perfix + 1;
5: codeword← prefix + nextbit;
6: while input available do
7: if codeword exists in dictionary then
8: W1 ← length of codeword;
9: ForwardMatch = 1;

10: end if
11: if codeword exists in flipped dictionary except

last entry then
12: W2 ← length of codeword;
13: ReverseMatch = 1;
14: end if
15: if ForwardMatch = 1 or ReverseMatch = 1)

then
16: if (W1 > W2) then
17: Flag = 0;
18: else
19: Flag = 1;
20: end if
21: W1 = 0;
22: W2 = 0;
23: nextbit = nextbit + 1;
24: prefix← codeword;
25: ForwardMatch = 0;
26: ReverseMatch = 0;
27: end if
28: if ForwardMatch 6= 1 and ReverseMatch 6= 1)

then
29: if flag = 0 then
30: Output← (Index(prefix), flag);
31: else
32: Output← (index(prefix),flag);
33: flag = 0;
34: end if
35: add codeword to dictionary;
36: prefix← last character of codeword;
37: nextbit = nextbit + 1;
38: codeword← prefix + nextbit;
39: end if
40: end while

resolved. Hence, we limit reverse reading to all but the last
entry on the encoder side. In the appendix, we provide another
example that flags the problem occurring when not restricting
the last dictionary entry to forward comparison, only.

The information sent from the encoder to the decoder
contains the dictionary index and the flag bit indicating the
direction this entry is to be read. The cost of the modified
algorithm is again this extra flag bit.

The bit-symmetry inversion has not been included in the
above pseudo-code, since this particular manipulation does not
alter the general structure of the modified algorithm. We need
only note that in cases when the output (transmitted dictionary

index) refers to the first 128 slots of the dictionary, the flag
bit is to be interpreted as an indicator for bit inversion.

D. Simulation Results

For simulations, three different files were considered as
examples for this paper, namely: a text file of an English novel
having a size of 537 KB [8], an audio wave file of a drum
sound having a size of 19 KB [9], and an image file of a
spider having a size of 11,838 KB [10]. The results show that
the modified algorithms perform better than the conventional
ones, if there exists some symmetry in the data.

For LZ77, we have reserved the length of the lookahead
buffer (LA) to be 64 bytes. The number of bits required to
address the search buffer are NSB = log2(n− LA). We have
varied NSB to observe its effect on the compression ratio
for the actual and proposed LZ algorithms. Figure 4 shows
the results for modified and original LZ77 algorithms. The
compression ratio is computed as the ratio between the number
of bits after compression to the original size. The results show
that the bi-directional (FR) reading strategy performs better
than the standard forward reading (F) in case of an image
and audio file. However, for the text file, the two curves
almost overlap in the start and later, the forward reading
outperforms the bidirectional strategy highlighting the fact that
less symmetry exists in the specified textual data.

4 5 6 7 8 9 10 11 12 13 14
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

N
SB

C
o
m

p
re

ss
io

n
 R

at
io

Audio [F]

Audio [FR]

Image [F]

Image [FR]

Text [F]

Text [FR]

Fig. 4. Comparison of conventional and modified LZ77

For LZ78, we have varied the size of the dictionary using
the number of bits required to address all locations of the
dictionary (ND). Figure 5 shows the corresponding results for
the modified and the original LZ78 algorithm. The overall
trend is the same with LZ77, with bi-directional reading
yielding better compression ratios for lower ND. However,
note that as ND increases, at some point, the original algorithm
starts performing better than the modified one. For a very
large dictionary size, the forward reading can provide as much
compression as the bi-directional reading. The bi-directional
variants, however, require an additional flag bit.

For LZW84, the dictionary size is varied in accordance
with the number of bits required to address all locations of
the dictionary. Figure 6 displays the relevant results. For the
text file, the compression is better for small dictionary sizes,
only. For the image and the audio file, however, bi-directional
reading outperforms the original method.



5

4 5 6 7 8 9 10 11 12 13 14
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
SB

C
o

m
p

re
ss

io
n

 R
at

io
Audio [F]

Audio [FR]

Image [F]

Image [FR]

Text [F]

Text [FR]

Fig. 5. Comparison of conventional and modified LZ78

9 9.5 10 10.5 11 11.5 12
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Finite Dictionary Size

Co
m

pr
es

sio
n 

Ra
tio

Audio [F]
Audio [FR]
Image [F]
Image [FR]
Text [F]
Text [FR]

Fig. 6. Comparison of conventional and modified LZW84

IV. CONCLUSIONS

Motivated by bi-directional use of the DNA and alternative
splicing this work has proposed modifications in LZ77, LZ78,
and LZW84 algorithms for bi-directional reading. Results
indicate that a better compression ratio can be achieved, if
symmetries exist in the uncompressed data. Note that other
symmetries can be utilized in a similar fashion, e.g., using
conjugate reverse sequences in DNA compression or using
more than two alternatives and hence, non-binary flags.

APPENDIX
EXAMPLE FOR PROBLEM IN BI-DIRECTIONAL LZW84

WHEN NOT RESTRICTING THE LAST DICTIONARY ENTRY TO
FORWARD READING, ONLY

We assume that the dictionary only consists of the first 26
letters of the English alphabet in natural order. For simplicity,
symmetry arising from bit pattern inversion is not considered.
Let the input string be ç ecabaced

ç

.

Encoder Encoder String at Decoder
dictionary Output specified index dictionary

27: ec 5,0 ’e’ 27: e?
28: ca 3,0 ’c’ 27: ec; 28: c?
29: ab 1,0 ’a’ 28: ca; 29: a?
30: bac 29,1 ’?a’ 29: a?; 30: ?a?
31: ced 27,1 ’ce’ 30: ?ac; 31: ce?

We observe that dictionary entries at indices 29 and 30
cannot be reconstructed by the decoder, i.e., in the end, ’b’
is not resolved.

ACKNOWLEDGMENT

This work is funded by the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG).

REFERENCES

[1] Ziv, J., Lempel, A., “Compression of individual sequences via variable-
rate coding,” IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337-343, 1977.

[2] Ziv, J., Lempel, A., “Capacities of equivalent channels in multilevel
coding schemes,” IEEE Transactions on Information Theory, vol. 24, no. 5,
pp. 530-536, 1978.

[3] Welch, T. A., “A technique for high-performance data compression,”
Computer, vol. 17, no. 6, pp. 8-19, 1984,

[4] M. Hoefnagels and M. Hoefnagels, Biology: concepts and investigations.
McGraw-Hill Higher Education, 2009.

[5] T. Ogawa and T. Okazaki, “Discontinuous dna replication,” Annual review
of biochemistry, vol. 49, no. 1, pp. 421–457, 1980.

[6] S. Stamm, C. Smith, and R. Lührmann, Alternative Pre-mRNA Splicing:
Theory and Protocols. John Wiley & Sons, 2012.

[7] Zeeh, C., “The Lempel-Ziv algorithm,” January, 2003. [Online]. Avail-
able: http://tuxtina.de/les/seminar/LempelZiv.pdf

[8] Grimm, T. B., (2001, April) Grimms’ fairy tales. [Online]. Available:
http://www.gutenberg.org/cache/epub/2591/pg2591.txt

[9] (1998, September). http://www.stormii.com/Wavs/drum.wav
[10] (2007, December). http://compressionratings.com/files/cr img2.tar.7z


