
Multi-Edge Type Unequal Error Protecting
Low-Density Parity-Check Codes

H. V. Beltrão Neto, W. Henkel
Jacobs University Bremen

Campus Ring 1
D-28759 Bremen, Germany

Email: {h.beltrao, w.henkel}@jacobs-university.de

V. C. da Rocha Jr.
Department of Electronics and Systems

Federal University of Pernambuco
P.O. Box 7800 Recife, Brazil, 50711-970

Email: vcr@ufpe.br

Abstract—Irregular low-density parity-check (LDPC) codes
are particularly well-suited for transmission schemes that require
unequal error protection (UEP) of the transmitted data due to the
different connection degrees of its variable nodes. However, this
UEP capability is strongly dependent on the connection profile
among the protection classes. This paper applies a multi-edge
type analysis of LDPC codes for optimizing such a connection
profile according to the performance requirements of each
protection class. This allows the construction of UEP-LDPC codes
where the difference between the performance of the protection
classes can be adjusted and with an UEP capability that does
not vanish as the number of decoding iterations grows.

I. INTRODUCTION

In communication systems where source bits with different
sensitivities to errors are being transmitted, it is often wasteful
or even infeasible to provide uniform protection for the whole
data stream. In this scenario, the common strategy is the use
of schemes with unequal error protection (UEP) capabilities.
There are mainly three strategies to achieve UEP on trans-
mission systems: bit loading, multilevel coded modulation,
and channel coding [1]. In this paper, we will focus on the
latter, more specifically on low-density parity-check (LDPC)
codes that provide inherent unequal error protection within a
codeword as explored in [2] and [3], for example.

Irregular LDPC codes [4] can inherently provide unequal
error protection due to the different connection degrees of
the coded bits. The connection degrees of the variable and
check nodes of such codes are defined by the polynomials
λ(x) =

∑dvmax
i=2 λixi−1 and ρ(x) =

∑dcmax
i=2 ρixi−1, where

dvmax and dcmax are the maximum variable and check node
degrees of the code. From now on, we will refer to irregular
LDPC codes where the variable nodes are divided into disjoint
sets called protection classes as unequal error protecting LDPC
codes (UEP-LDPC). A flexible optimization of the irregularity
profile of irregular LDPC codes based on a hierarchical opti-
mization of the variable node degree distribution was proposed
in [3], where the authors interpret the UEP properties of an
LDPC code as different local convergence speeds, i.e., the
most protected bits are assigned to the bits in the codeword
which converge to their right value in the smallest number of
iterations. This assumption is made in order to cope with the
observation that the UEP gradation vanishes as the number
of iterations grow, a fact also observed in [5]. In [6], the

authors observed that this vanishing UEP gradation of an
iteratively decoded LDPC code is dependent on the algorithm
used to construct the parity check matrix, and suggested that
the connectivity between the classes is the key factor to be
observed if the UEP capabilities should be held as the number
of iterations grows.

Herein, we propose an optimization algorithm for the con-
nectivity profile between the different protection classes of
LDPC codes in order to not only keep the UEP capability of
a code for a moderate to large number of decoding iterations,
but also to adjust the performance of the protection classes
as required for different applications. This is achieved by
means of a multi-edge type (MET) analysis [7], [8] of the
LDPC codes. The multi-edge analysis enables us to distinguish
between the messages exchanged during the iterative decoding
among the different protection classes within one codeword.
Thus, we can control the amount of information that the most
protected classes receive from the less protected ones and vice
versa. If the most protected classes receive a lot of information
from the less protected ones, its performance will be decreased
while the one of the less protected classes will be enhanced.
Our main goal is to show how this exchange of performance
among the protection classes can be controlled and optimized.

This paper is organized as follows. In Section II, we
describe the multi-edge type analysis of UEP-LDPC codes.
Section III discusses the asymptotic analysis of multi-edge
type UEP-LDPC codes and the optimization algorithm used
to optimize the connection profile between the protection
classes. In Section IV, we show the results of the developed
optimization method for a chosen example. Finally, some
concluding remarks are drawn in Section V.

II. MULTI-EDGE TYPE UNEQUAL ERROR PROTECTING

LDPC CODES

A. Multi-edge LDPC codes

Multi-edge type LDPC codes [7] are a generalization of
irregular and regular LDPC codes. Diverting from standard
LDPC ensembles where the graph connectivity is constrained
only by the node degrees, in the multi-edge setting, several
edge classes can be defined and every node is characterized
by the number of connections to edges of each class. Within
this framework, the code ensemble can be specified through

2011 IEEE Information Theory Workshop

978-1-4577-0436-9/11/$26.00 ©2011 IEEE 335

Fig. 1. Multi-edge graph with two different edge types and one received
distribution.

two multinomials associated to variable and check nodes. The
two multinomials are defined by [8]

L(r, x) =
∑

Lb,drbxd and R(x) =
∑

Rdxd, (1)

where b, d, r, and x are vectors which are explained as follows.
First, let me denote the number of edge types used to represent
the graph ensemble and mr the number of different received
distributions. The number mr represents the fact that the
different bits can go through different channels and thus, have
different received distributions. Each node in the ensemble
graph has associated to it a vector x = (x1, ..., xme) that
indicates the different types of edges connected to it, and a
vector d = (d1, ..., dme) referred to as edge degree vector
which denotes the number of connections of a node to edges
of type i, where i ∈ (1, . . . ,me).

For the variable nodes, there is additionally the vector
r = (r1, ..., rmr) which represents the different received dis-
tributions1, and the vector b = (b0, ..., bmr) that indicates the
number of connections to the different received distributions
(b0 is used to indicate the puncturing of a variable node). In the
sequel, we assume that b has exactly one entry set to 1 and the
rest set to zero. This simply indicates that each variable node
has access to only one channel observation at a time. We use
xd to denote

∏me
i=1 x

di
i and rb to denote

∏mr
i=0 r

bi
i . Finally, the

coefficients Lb,d and Rd are non-negative reals such that if n
is the total number of variable nodes, Lb,dn and Rdn represent
the number of variable nodes of type (b,d) and check nodes
of type2 d, respectively. Furthermore, we have the additional
notations defined in [8]

Lxj(r, x) =
dL(r, x)
dxj

and Rxj(x) =
dR(x)
dxj

. (2)

Unequal error protecting LDPC codes can be included in
a multi-edge framework in a straightforward way. This can
be done by distinguishing between the edges connected to
different protection classes within a codeword. According to
this strategy, the edges connected to variable nodes within a

1In the multi-edge framework, one can consider that the different variable
node types may have different received distributions, i.e., the associated bits
may be transmitted through different channels. In this work, we consider
that the variable nodes have access solely to one observation and that the
transmission is made through an AWGN channel.

2We will frequently refer to nodes with edge degree vector d as “type d”
nodes.

protection class are all of the same type. For example, in Fig.
1 the first 4 variable nodes can be seen as one protection class
since they are connected only to type 1 edges (depicted by
solid lines), and the last 3 variable nodes compound another
protection class, since they are only connected to type 2 edges
(depicted by the dashed lines). The variable and check node
multinomials for this example are given by

L(r, x) =
4
7
r1x3

1 +
3
7
r1x2

2, R(x) =
2
7
x4
1x2 +

2
7
x2
1x

2
2 .

It is worth noting that as opposed to the variable nodes, the
check nodes admit connections with edges of different types
simultaneously as can be inferred from Fig.1. In the following,
we will divide the variable nodes into me protection classes
(C1, C2, . . . , Cme) with decreasing levels of protection.

B. Edge perspective notation

The connection between the protection classes occurs
through the check nodes since they can have different types
of edges attached to them. Consider irregular LDPC codes
with node perspective variable and check node multi-edge
multinomials L(r, x) =

∑

Lb,drbxd and R(x) =
∑

Rdxd,
respectively. In this paper, we consider unpunctured codes and
that the variable nodes have access to only one observation,
i.e., b = (0, 1). Also, variable node within Cj are only
connected to edges of type j.

In order to implement the optimization algorithm, it will be
more convenient to work with the edge, instead of the node
perspective. We now define the following edge perspective
multi-edge multinomials

λ(j)(r, x) =
Lxj (r, x)
Lxj(1, 1)

= r1
∑

i

λ(j)
i xi−1

j , (3)

ρ(j)(x) =
Rxj (r, x)
Rxj (1, 1)

=
∑

d

ρ(j)d xd′

xdj−1
j , (4)

where λ(j)
i denote the fraction of type j edges connected to

variable nodes of degree i, ρ(j)d denote the fraction of type j
edges connected to check nodes with edge degree vector d,
xd′

=
∏me

i=1 x
di
i with dj = 0, and 1 denotes a vector with all

entries equal to 1 with length being clear from the context.
In the next section, we will use Eqs. (3) and (4) in the

derivation of the optimization algorithm for the connection
profile among the protection classes of an UEP-LDPC code.

III. CHECK NODE PROFILE OPTIMIZATION

A. Asymptotic Analysis

Our main objective is, given the overall variable (λ(x))
and check node (ρ(x)) degree distributions of an UEP-LDPC
code, to optimize the connection profiles between the different
protection classes in order to control the amount of protection
of each class while preserving the UEP capability of the code
after a moderate to high number of decoding iterations. The
described optimization algorithm we derive here can be ap-
plied for any irregular pair of degree distributions. However, in
order to reduce the search space of the optimization algorithm,

336

we suppose from now on that the LDPC code to be optimized
is check-regular, i.e., all the check nodes have the same degree.

Despite of having the same degree, each check node may
have a different number of edges belonging to each one of
the me classes. Consider for example a check node with an
associated edge degree vector d = (d1, d2, . . . , dme), where
di is the number of connections to the protection class i
and

∑me
i=1 di = dcmax . If we then consider a code with

me = 3 protection classes, each check node may be connected
to d1 edges of class 1, d2 edges of class 2, and d3 edges
of class 3. This posed, one can compute the evolution of
the iterative decoding by means of density evolution. We
assume here standard belief propagation decoding of LDPC
codes where the messages exchanged between the variable
and check nodes are independent log-likelihood ratios having
a symmetric Gaussian distribution (variance equals twice the
mean).

Let I(j)v,l and I(j)c,l denote the mutual information between
the messages sent through edges of class j at the output
of variable and at the output of check nodes at iteration
l and the associated codeword bit, respectively. Assuming
Gaussian approximation [9] and noting that, for optimizing
the connection profile between the protection classes, we need
to consider the case where check nodes with different edge
degree vector d are allowed we have

I(j)v,l =
dvmax
∑

i=2

λ(j)
i J

(

√

4/σ2 + (i − 1)[J−1(I(j)c,l−1)]2
)

, (5)

I(j)c,l = 1−
dcmax
∑

i=1

∑

d:dj=i

ρ(j)d

× J

√

(dj − 1)J−1(1− I(j)v,l)2 +
∑

s6=j

dsJ−1(1− I(s)v,l)2

 ,

(6)

with the J(.) function defined as in [10]

J(σ) = 1−
∫ ∞

−∞

e
(ξ−σ2/2)2

2σ2

√
2πσ

× log2[1 + e−ξ]dξ . (7)

Combining Eqs. (5) and (6), one can summarize the density
evolution as a function of the mutual information of the
previous iteration, the mutual information contribution from
the other classes, noise variance, and degree distributions, i.e.,

I(j)v,l = F (λ(j),ρ(j)
d , σ2, I(j)v,l−1, Iv,l−1), (8)

where the bold symbols represent sequences of values de-
fined as λ(j) = {λ(j)

i }dvmax
i=2 , ρ(j)

d = {ρ(j)d:dj=i}
dcmax
i=1 and,

Iv,l−1 = {I(s)v,l−1}me
s=1 with s 6= j. By means of Eq. (8), we

can predict the convergence behavior of the decoding and than
optimize the degree distribution ρ(j)(x) under the constraint
that the mutual information shall be increasing as the number
of iterations grow, i.e.,

F (λ(j),ρ(j)
d , σ2, I(j), I) > I(j). (9)

At this point, it is worth noting that, as pointed out in [5]
and [6], the UEP capabilities of a code depend on the amount
of connection among the protection classes, i.e., if the most
protected class is well connected to the least protected one, the
performance of the former will decrease while the performance
of the latter will be improved. For example, suppose a code
with 2 protection classes and dcmax = 4. The possible values
for d = (d1, d2) are (0,4), (1,3), (2,2), (3,1), and (4,0). On
the one hand, if a code has a majority of check nodes with
d = (4, 0), the first protection class will be very isolated from
class 2 which will lead to an enhanced performance difference
between the two classes. On the other hand, if a large amount
of the check nodes are of type d = (2, 2), one can expect
the protection classes to be very connected, which favors the
overall performance but mitigates the UEP capability of a code
at a moderate to large number of decoding iterations. This
indicates that for controlling the UEP capability of an LDPC
code and to prevent this characteristic from vanishing as the
number of decoding iterations grows, one has to control the
amount of check nodes of each type, i.e., optimize ρ(j)(x).

These observations about the influence of the connection
between the protection classes and its UEP characteristics can
be further analyzed by means of a detailed computation of the
mutual information which may be performed by considering
the edge-based mutual information messages traversing the
graph instead of node-based averages. Such an analysis has
been done for protographs in [11] and applied for the analysis
of UEP-LDPC codes in [6].

B. Optimization Algorithm

The algorithm described here aims at optimizing the con-
nection profile between the various protection classes present
on a UEP-LDPC code, i.e., ρ(j)(x). Initially, the algorithm
computes the variable node degree distribution of each class
λ(j)(x) based on λ(x), dcmax , and the number of edges on
each class. The algorithm then proceeds sequentially optimiz-
ing the connection profile to the check nodes of one class at
a time, proceeding from the less protected class to the most
protected one. This scheduling is done in order to control the
amount of messages coming up from the less protected classes
that are forwarded to the more protected ones.

Since we are using linear programming (LP) with only a
single objective function, we chose it to be the minimization
of the average check node degree within the class being
optimized, i.e., it minimizes the average number of edges of
such a class connected to the check nodes. This minimization
aims at diminishing the amount of unreliable messages (i.e.,
the ones coming up from the less protected variable nodes) that
flows through a check node. In addition to it, we control the
proportion of check nodes of type d introducing the parameter
maxρ(j)

d which is an upper bound on
∑

d:dj=s ρ
(j)
d , i.e., it

limits the proportion of check nodes of type d : dj = s for
s = 0, . . . , dcmax , thus regulating the degree of connection
among the protection classes.

The optimization is then performed for each class Cj by
minimizing its average check node degree for a decreasing

337

d(j)min from dcmax to 1, where d(j)min is the minimum number
of edges of class j connected to a check node. At this point,
one can argue that since our goal is to minimize the average
connection degree within a protection class, we should thus
set d(j)min = 1. The problem with this strategy is that it
would shorten the degree of freedom for the optimization of
the next class, e.g., suppose the optimization of a two-class
code with d(2)min = 3 and dcmax = 5. Once we proceed to
the optimization of class two, the coefficients ρ(2)(2,3), ρ(2)(1,4),

and ρ(2)(0,5) are determined and consequently fixed for the next
optimization step, i.e., the optimization of class 1, we will
have as variables only the coefficients ρ(1)(3,2), ρ

(1)
(4,1), and ρ(1)(5,0).

Note that in this case, if we had set d(2)min = 1, there will be no
degree of freedom for optimizing class 1 since the only non-
optimized d would be d = (5, 0) which would be determined
by

∑dcmax

s=d(j)
min

∑

d:dj=s ρ
(j)
d = 1, i.e., the sum of all fraction of

edges must be equal to one.

The iterative procedure is successful, when a solution ρ(j)d

is found which converges for the given σ2 and d(j)min > 0. We
assume that the optimizations for classes {Cj′ , j′ < j} have
already been performed and the results of these optimizations
are used as constraints in the current optimization process. The
optimization algorithm can be written, for given λ(x), σ2, me,
dcmax , and maxρ(j)

d for j = 1, . . . ,me as shown in Fig. 2.

1) Compute λ(j)(x)
2) Initialization d(j)min = dcmax

3) While optimization failure
a) minimize the average check node degree

∑dcmax

s=d(j)min

s×
∑

d:dj=s ρ
(j)
d under the

following constraints,

C1 :
∑dcmax

s=d(j)min

∑

d:dj=s ρ
(j)
d = 1,

C2 :
∑

d:dj=s ρ
(j)
d ∈ [0, maxρ(j)

d],

C3 :F (λ(j),ρ(j)
d , σ2, x, I) > x,

∀x ∈ [0, 1),

C4 :∀j′ > j and d : d(j
′)

min ≤ dj′ ≤ dcmax ,
ρ(j)d is fixed.

b) d(j)min = d(j)min − 1
End (While)

Fig. 2. Check node profile optimization algorithm.

Note that the optimization can be solved by linear program-
ming since the cost function and the constraints (C1), (C2), and
(C3) are linear in the parameters ρ(j)

d . The constraint (C4) is
the previous optimization constraint. Once we have optimized
the check node profile, the code can be realized through the
construction of a parity check matrix following the desired
profile.

TABLE I
LOCAL VARIABLE DEGREE DISTRIBUTIONS. THE COEFFICIENTS λ(j)

i
REPRESENT THE FRACTION OF EDGES CONNECTED TO VARIABLES NODES

OF DEGREE i WITHIN THE CLASS Cj .

C1 C2 C3

λ(1)
4 = 0.00197 λ(2)

3 = 0.23982 λ(3)
2 = 0.93901

λ(1)
18 = 0.57263 λ(2)

4 = 0.76018 λ(3)
3 = 0.06099

λ(1)
19 = 0.21085

λ(1)
30 = 0.21455

TABLE II
OPTIMIZED CHECK NODE PROFILE FOR 3 PROTECTION CLASSES. THE

COEFFICIENTS ρ(j)i REPRESENT ρ(j)D WITH D : dj = i.

C1 C2 C3

maxρ(2)
d = 0.35 ρ(1)2 = 0.08977 ρ(2)2 = 0.35 ρ(3)1 = 0.00024

ρ(1)3 = 0.19637 ρ(2)3 = 0.35 ρ(3)2 = 0.93877
ρ(1)4 = 0.34911 ρ(2)4 = 0.30 ρ(3)3 = 0.06099
ρ(1)7 = 0.36475

maxρ(2)
d = 0.55 ρ(1)3 = 0.25248 ρ(2)3 = 0.45 ρ(3)1 = 0.00024

ρ(1)4 = 0.54860 ρ(2)4 = 0.55 ρ(3)2 = 0.93877
ρ(1)7 = 0.19892 ρ(3)3 = 0.06099

IV. SIMULATION RESULTS

In this section, simulation results for multi-edge type UEP-
LDPC codes with optimized check node connection profile are
presented. We designed UEP-LDPC codes of length n = 4096
with me = 3 protection classes, rate 1/2, and dvmax = 30
following the algorithm of [3]. The proportions of the classes
are chosen such that C1 contains 20% of the information
bits and C2 contains 80%. The third protection class C3
contains all parity bits. Therefore, we are mainly interested
in the performances of classes C1 and C2. The optimized
variable and check node degree distribution for the UEP-
LDPC code are given by λ(x) = 0.2130x + 0.0927x2 +
0.2511x3+0.2521x17+0.0965x18+0.0946x29 and ρ(x) = x8,
respectively.

In order to have a low-complexity systematic encoder,
we construct parity check matrices in lower triangular form
[12]. This approach also leads to a simplification in our
optimization procedure, i.e., given that the parity bits are in
the less protected class C3 and that they should be organized
in a lower triangular form, we start the optimization from
the less protected information bits class C2, since all the
connections between the variable nodes of class C3 and
the check nodes are completely determined by the lower
triangular form construction algorithm. Table I summarizes
the classes’ variable degree distributions λ(j)(x). We applied
the optimization algorithm for different values of maxρ(j)

d
to enable the observation of the varying UEP capabilities of
the codes. The resulting distributions are summarized in Table
II. All the simulations were done for a total of 50 decoding
iterations and the constructed codes were all realized through a
modification of progressive edge-growth (PEG) [13] algorithm
done in order to ensure that the optimized check node degree
is realized.

Figure 3 shows that the difference between the performances

338

of the protection classes is reduced as we increase the value
of maxρ(2)

d . This is an expected effect, since the greater
maxρ(2)

d , the greater is the amount of information that C2
exchanges with C1. Obviously, this is expected to enhance
the performance of C2 while lowering the one of C1. As a
benchmark, Fig. 3 also shows the performance of an LDPC
code (referred to as non-UEP) with the same degree distri-
butions of the UEP-LDPC (λ(x) = 0.2130x + 0.0927x2 +
0.2511x3+0.2521x17+0.0965x18+0.0946x29 and ρ(x) = x8)
constructed without optimizing the connections between the
classes.

Furthermore, Fig. 4 shows the BER as a function of the
number of decoder iterations at Eb/N0 = 1.25 dB for the
UEP code optimized with maxρ(2)

d = 0.35 and the non-UEP
code. Note that for a high number of iterations, the benchmark
code has almost no UEP while the code with an optimized
distribution has a constant UEP capability, something regarded
as infeasible in [3] and not observed in [6] for codes realized
by means of PEG.

0 0.2 0.4 0.6 0.8 1 1.2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

C
1
 maxρ

d
(2)=0.35

C
2
 maxρ

d
(2)=0.35

C
1
 maxρ

d
(2)=0.55

C
2
 maxρ

d
(2)=0.55

C
1
 non−UEP

C
2
 non−UEP

Fig. 3. Classes bit error rate of the optimized multi-edge unequal error
protecting LDPC codes for different values of maxρ(2)

d .

V. CONCLUDING REMARKS

In this paper, we introduced a multi-edge type analysis
of unequal error protecting LDPC codes. By means of such
an analysis, we derived an optimization algorithm that aims
at optimizing the connection profile between the protection
classes within a codeword. This optimization allowed us not
only to control the differences in the performances of the
protection classes by means of a single parameter, but also
to prevent the UEP capability of an LDPC code to vanish
after a moderate to large number of decoding iterations.

ACKNOWLEDGMENT

This work is funded by the German Research Foundation
(DFG).

0 10 20 30 40 50 60 70
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

iterations

B
E

R

MET C
1

MET C
2

non−UEP C
1

non−UEP C
2

Fig. 4. BER as a function of the number of decoder iterations for the multi-
edge UEP LDPC code at Eb/N0=1.25 dB.

REFERENCES

[1] W. Henkel, K. Hassan, N. von Deetzen, S. Sandberg, L. Sassatelli,
and D. Declercq, “UEP concepts in modulation and coding,” Hindawi,
Advances in Multimedia, Vol. 2010, Article ID 416797, 14 pages, 2010.
doi:10.1155/2010/416797.

[2] H. Pishro-Nik, N. Rahnavard, and F. Fekri, “Non-uniform error cor-
rection unsing low-density parity-check codes,” IEEE Transactions on
Information Theory, vol. 51, no. 7, pp. 2702–2714, 2005.

[3] C. Poulliat, D. Declercq, and I. Fijalkow, “Enhancement of unequal error
protection properties of LDPC codes,” EURASIP Journal on Wireless
Communications and Networking, vol. 2007, Article ID 92659, 9 pages,
doi:10.115/2007/92659.

[4] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Transac-
tions on Information Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[5] V. Kumar and O. Milenkovic, “On unequal error protection LDPC
codes based on Plotkin-type constructions,” IEEE Transactions on
Communications, vol. 54, no. 6, pp. 994–1005, 2006.

[6] N. von Deetzen and S. Sandberg, “On the UEP capabilities of several
LDPC construction algorithms,” IEEE Transactions on Communications,
vol. 58, no. 11, pp. 3041–3046, November 2010.

[7] T. Richardson and R. Urbanke, “Multi-Edge Type LDPC Codes,” Tech.
Rep., 2004, submitted to IEEE Transaction on Information Theory.

[8] ——, Modern Coding Theory. Cambridge University Press, 2008.
[9] S. Y. Chung, T. Richardson, and R. Urbanke, “Analysis of sum-

product decoding of low-density parity-check codes using a Gaussian
approximation,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 657–670, Feb. 2001.

[10] S. ten Brink, “Convergence behavior of iteratively decoded parallel
concatenated codes,” IEEE Transactions on Communications, vol. 49,
no. 10, pp. 1727–1737, Oct. 2001.

[11] G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT
analysis,” in Proceedings of the 50th Annual IEEE Global Telecommu-
nications Conference (GLOBECOM 07), November 2007, p. 32503254.

[12] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-
check codes,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 638–656, Feb. 2001.

[13] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular pro-
gressive edge-growth tanner graphs,” IEEE Transactions on Information
Theory, vol. 51, no. 1, pp. 386–398, January 2005.

339

