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Mapping Between

Codons and Amino Acids
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Background and Motivation

Flow of biological information Modified from refs [1] & [2]
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The Genetic Code

The genetic code chart [3]

The genetic code

Degenerate: synonymous

codons provide redundancy

Optimal: minimizing

substitution and frame-shift

errors

“One in a million”:

outperforms randomly

generated codes

a

aFreeland1998. 4



Substitution Matrices

Substitution Matrices

Nucleotide-based models

Jukes and Cantor, Kimura . . .

Protein-based models

PAM, BLOSUM, WAG, . . .

Codon-based models

Empirical codon mutation (ECM) , Goldman and Yang, . . .

ECM matrix

Proposed by Schneider et al.1 in 2005

17,502 alignments from five vertebrates

Estimated from 8.3 million aligned codons

1schneider2005empirical. 5



ECM Channel Model

ECM “Channel”a

Mutation matrix describes a channel transition probability matrix P(y|x)

Using SVD for matrix exponentiation

[P(y|x)]F = U(Σ)F VT,

where U,V are unitary matrices and Σ is a diagonal matrix

Find the optimal exponent for error-free transmission

anigatu2014empirical.
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Capacity of the ECM Channel

Optimal exponent = 0.26

=> Mutation rate = 29%

Capacity curve is very close to

the mutual information curve

=> The biological

distribution is

optimally “chosen”

Biological distribution ≈ Optimal distribution
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Results

Observations

DKL(observed||optimal) = 0.0926 bit

=> Comparable with DKL(N(µ;σ)||N(µ; 2σ))

Distribution among synonymous codons is similar 8



Mutation vs. Chemical Distances

Grantham’s2 chemical distance matrix

Composition, polarity, and molecular volume

20× 20 distance matrix

Compare the mutation and chemical distance matrices

Classical multidimensional scaling (CMDS)

Given pairwise dissimilarities, reconstruct a map that preserves

distances

ECM matrix: 61× 61 probability matrix

=> pairwise point distances are computed assuming a Gaussian i.i.d.

“channel”

Pij =
1

2
erfc

(
Dij√

2σ

)

2Grantham1974.
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2D-view of the codon distance matrix

−60 −40 −20 0 20 40 60 80
−60

−40

−20

0

20

40

60

80

AAA

AAC

AAG

AAT

ACA
ACC

ACG

ACT

AGA

AGC

AGG

AGT

ATA
ATC

ATG

ATT

CAA

CAC

CAG

CAT

CCACCC

CCG

CCT

CGA

CGC

CGG
CGT

CTA

CTC

CTG
CTT

GAA
GAC

GAG

GAT

GCA

GCC
GCG GCT

GGA GGC

GGG

GGT

GTA GTC
GTG

GTT

TAC

TAT

TCA
TCC

TCG
TCT

TGC

TGG

TGT

TTA

TTC

TTG

TTT

N P

T

A

V

M
I

F L

W
Y

H

Q

K

R

E

D
G

S

c

10



2D-View of the Chemical Distance Matrix
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Taylor classification of amino acids [4]

Synonymous codons are clustered together

Highly probable mutation are between chemically similar amino acids
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Inconsistencies

Large chemical distance but small

mutation distance:

C with “all others”

G with E

S with {P,T,A}

{D,N} with E

{D,N} with G

{Q,H} with {W,Y}

K with N

Small chemical distance but large

mutation distance:

{W,Y} with {F,L,M,I,V}

{P,T,A} with {Q,H,R}

Explaining the inconsistencies?

Another level of error protection (Coded Modulation, Multilevel Coding)
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Set Partitioning

Ungerböck’s mapping by set partitioning
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Multilevel code rates

Every level is protected with a separate code

Following the Chain Rule, code rates are obtained as the differences between

neighboring capacity curves
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Set Partitioning of the Genetic Code

4-ary set partitioning

Block partitioning is preferred: closest points are similar

Start with the second position: it is the most informative

2nd → 1st → 3rd
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1st Partition Level

A is the set of all codons

X1, X2, and X3 are the three codon positions

I(Y ;X) = I(Y ;X1, X2, X3)

= I(Y ;X2)︸ ︷︷ ︸
1st partition

+ I(Y ;X1|X2)︸ ︷︷ ︸
2nd partition

+ I(Y ;X3|X1, X2)︸ ︷︷ ︸
3rd partition

A0 = A(x2 = C)

A1 = A(x2 = U)

A2 = A(x2 = A)

A3 = A(x2 = G)
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Capacities at the 1st Partition
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{P,S,T,A} sub group relatively smaller information
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Capacities at the 2nd Partition
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Synonymous codons → small inter-distances → vanishing capacities

{W, C} → high capacity even for large “SNR”
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Level Capacities

The level capacity C1 of the 1st partition level

C1 = I(Y ;X2) = I(Y ;X1, X2, X3)− I(Y ;X1, X3|X2)

Similarly, the capacity of the 2nd partition level, C2,

C2 = I(Y ;X1|X2) = I(Y ;X1, X3|X2)− I(Y ;X3|X1, X2)

where

I(Y ;X3|X1, X2) = Ex1,x2{I(Y ;X3|x1, x2)}

C1 and C2 specify the required code rates

C3 = I(Y ;X3|X1, X2)
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Level Capacities
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What does C1 = C2 mean?

How to transmit 4 symbols using a channel capacity of 1 bit?
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Digital Information and Thermodynamic

Stability in Bacteria
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Digital and analog information

Digital information

Information to encode proteins and RNA

molecules

Apparent from the quaternary alphabet

A co-existent “analog” information

Defined by sequence-dependent

physicochemical properties of the DNA polymer

Dynamic structural and topological variations

Facilitating and regulating the gene expression,

chromosome compaction, and replication
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Shannon and Gibbs entropies

DNA Sequence

ATCGGTAACCCGGTAGGTAACGGTATT........

Shannon’s block entropy for a block size of N symbols is

HN = −
∑
i

P (N)
s (i) log2 P

(N)
s (i)

The Gibbs entropy is given by

SG = −kB
∑
i

PG(i) lnPG(i)

kB is the Boltzmann constant

Shannon entropy → digital information

Gibbs entropy → analog information → thermodynamic stability
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Thermodynamic stability

Stability of DNA

Stacking between adjacent bases

Hydrogen bonding between

complementary bases

AGTGGTAACCC
TCACCATTGGG

Stability quantified by energy values

SantaLucia’s unified free energy parameters for base pairs (N = 2)

For N > 2, neighboring base steps are added

Gibbs entropy ⇒ measure of thermodynamic stability

Energies are assumed to be distributed according to the Boltzmann distribution

PG(i) =
nie
− E(i)

kBT∑
j
nje
− E(j)

kBT
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Shannon vs. Gibbs entropy in E. coli

A sliding window approach

4 kb shifts

block size = 3

Oric → Ter → Oric

Observations

Ter: less stable and more

random

Shannon and Gibbs

entropies: mostly

anti-correlated
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Shannon vs. Gibbs entropy in B. subtilis and S. typhimurium

Parameters

4 kb shifts

Window size = 500 kb

Oric → Ter → Oric

Phylogeny

S. typhi close to E. coli

B. subtilis is more

distant and

gram-positive
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Functional classes of genes

Functional classes of genes

Anabolic genes: biosynthesis

of macromolecules

Catabolic genes: degradation

of macromolecules

Aerobic genes: aerobic

respiration

Anaerobic genes: anaerobic

respiration
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Essential and Non-essential Genes
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Features

Information-Theoretic features

Mutual Information (MI)

Conditional Mutual Information (CMI)

Entropy (E)

Markov Model (M)

Non-IT features

GC content, length, and GC3

Close-to-stop

Number and position of stop codons in the other ORFs
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Information-Theoretic features

Mutual Information (MI)

Widely used in computational biology and bioinformatics

Identification of coding and non-coding DNA (Grosse et al., 2000 )

As a phylogenetic metric (date2003discovery )

Genomic signature (bauer2008average )

SNP identification (hagenauer2004genomic )

Mutual Information between X and Y

I(X,Y ) =
∑
x∈Ω

∑
y∈Ω

P (x, y) log2

P (x, y)

P (x)P (y)

Ω = {A, T,C,G}.

For a given gene:

Mutual Information between consecutive bases

Probabilities estimated from frequencies

P (x, y) log2
P (x,y)

P (x)P (y)
as a feature
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Information-Theoretic Features

Conditional Mutual Information (CMI)

CMI measures conditional dependency between two variables

Conditional Mutual Information is defined as

I(X;Y |Z) =
∑
z∈Σ

P (z)
∑
x∈Ω

∑
y∈Ω

Pk(x, y|z) log2

P (x, y|z)
P (x|z)P (y|z)

=
∑
x∈Ω

∑
y∈Ω

∑
z∈Σ

P (x, z, y) log2

P (z)P (x, z, y)

P (x, z)P (z, y)

Ω = {A, T,C,G}.

For a given gene:

CMI between 1st (X) and 3rd (Y ) positions conditioned on the 2nd (Z).

Probabilities estimated from frequencies

P (x, z, y) log2
P (z)P (x,z,y)
P (x,z)P (z,y)

as a feature
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Information-Theoretic features

Markov Model (M)

Assumption: The gene sequence is generated by a Markov source

Order estimation → Construct the Markov chains → Score the genes

CMI based Markov order estimator
(Papapetrou2013)
Markov chain of order L

P (xn|xn−1, . . . , xn−L,xn−L−1, . . . )

= P (xn|xn−1, . . . xn−L)

Observation:

for any m,

If m ≤ L→ CMI > 0

If m > L→ CMI= 0

Transition probabilities of the Markov chains

Two Markov chains of order mE and mN

Transition probabilities estimated

If the gene sequence is b1, b2, b3, ..., bN , the score is calculated as

Score =

N−L̂∑
i=1

P (bibi+1 . . . bi+L̂) log2(
P (bi+L̂|bibi+1 . . . bi+L̂−1)

P (bi+L̂)
)
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Classifier design and evaluation

Machine learning algorithms

Support Vector Machine (SVM)

Random Forest

Performance evaluation

Area Under the ROC Curve (AUC)

15 bacteria, 1 archeaon, and 4

eukaryotes

Unbalanced datasets

#EGs� #NEGs → Undersampling

Prediction approaches

Intra-organism prediction

80 % training

20 % testing

Cross-organism prediction

pairwise

leave-one-species-out
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Intra-organism predictions

0.0 0.2 0.4 0.6 0.8 1.0

FP Rate (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

T
P
 R

a
te

 (
S
e
n
si

ti
v
it

y
)

Combined (AUC = 0.86)

CMI (AUC = 0.85)

MI (AUC = 0.83)

Markov (AUC = 0.83)

Entropy (AUC = 0.78)

Stop + Len + GC (AUC = 0.61)

E. coli

296 EGs and 4077 NEGs

Markov order: 5

Comparisons

Ning et al. (sequence composition)→ 0.82

Li et al. (inter-nt distance)→ 0.80

Yu et al. (fractals) → 0.75
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Conclusions and Discussing Open Problems
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Conclusions and open problems
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https://www.nature.com/articles/nrg2085?draft=collection
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