ICCT in biology at the molecular and cellular level – some steps in unveiling the protection and prioritization in the DNA

Dawit Nigatu and **Werner Henkel** (collaboration with Patrick Sobetzko and **Georgi Muskhelishvili**) Jan 21, 2020

Transmission Systems Group Jacobs University Bremen http://trsys.faculty.jacobs-university.de/

BioTICC NSF workshop, Alexandria, VA

JACOBS UNIVERSITY

- Mapping Between Codons and Amino Acids
 - $\checkmark~$ A Channel Model from a Mutation Matrix
 - $\checkmark~$ Set Partitioning
- Digital Information and Thermodynamic Stability
- Essential and Non-essential Genes
- Conclusion and Discussing Open Questions

Mapping Between Codons and Amino Acids

Flow of biological information

The Genetic Code

The genetic code chart [3]

The genetic code

- Degenerate: synonymous
 codons provide redundancy
- Optimal: minimizing substitution and frame-shift errors
 - "One in a million": outperforms randomly generated codes

Substitution Matrices

Substitution Matrices

- Nucleotide-based models
 - Jukes and Cantor, Kimura ...
- Protein-based models
 - PAM, BLOSUM, WAG, ...
- Codon-based models

Empirical codon mutation (ECM), Goldman and Yang, ...

ECM matrix

- Proposed by Schneider et al.¹ in 2005
- 17,502 alignments from five vertebrates
- Estimated from 8.3 million aligned codons

¹schneider2005empirical.

ECM Channel Model

ECM "Channel"^a

- Mutation matrix describes a channel transition probability matrix $\mathbf{P}(y|x)$
- Using SVD for matrix exponentiation

$$\left[\mathbf{P}(y|x)\right]^F = \mathbf{U}(\mathbf{\Sigma})^F \mathbf{V}^\mathsf{T},$$

where \mathbf{U},\mathbf{V} are unitary matrices and $\boldsymbol{\Sigma}$ is a diagonal matrix

Find the optimal exponent for error-free transmission

^anigatu2014empirical

Biological distribution \approx Optimal distribution

- Optimal exponent = 0.26=> Mutation rate = 29%
- Capacity curve is very close to the mutual information curve
 - => The biological distribution is optimally "chosen"

Results

Observations

■ D_{KL} (observed||optimal) = 0.0926 bit

=> Comparable with $D_{KL}(N(\mu; \sigma)||N(\mu; 2\sigma))$

Distribution among synonymous codons is similar

Grantham's 2 chemical distance matrix

- Composition, polarity, and molecular volume
- \sim 20 × 20 distance matrix

Compare the mutation and chemical distance matrices

Classical multidimensional scaling (CMDS)

- Given pairwise dissimilarities, reconstruct a map that preserves distances
- ECM matrix: 61×61 probability matrix
 - => pairwise point distances are computed assuming a Gaussian i.i.d. "channel"

$$P_{ij} = \frac{1}{2} \operatorname{erfc}\left(\frac{D_{ij}}{\sqrt{2}\sigma}\right)$$

²Grantham1974.

2D-view of the codon distance matrix

10

2D-View of the Chemical Distance Matrix

Synonymous codons are clustered together

Highly probable mutation are between chemically similar amino acids

Inconsistencies

Large chemical distance but small mutation distance:

- C with "all others"
- **G** with **E**
- **S** with **{P,T,A}**
- {D,N} with E
- {D,N} with G
- {Q,H} with {W,Y}
- **K** with **N**

Explaining the inconsistencies?

Another level of error protection (Coded Modulation, Multilevel Coding)

Small chemical distance but large mutation distance:

- **{ W,Y}** with **{F,L,M,I,V}**
- {P,T,A} with {Q,H,R}

Set Partitioning

Ungerböck's mapping by set partitioning

Multilevel code rates

- Every level is protected with a separate code
- Following the *Chain Rule*, code rates are obtained as the differences between neighboring capacity curves

Set Partitioning of the Genetic Code

4-ary set partitioning

- Block partitioning is preferred: closest points are similar
- **Start with the second position:** it is the most informative

 $\mathbf{2nd} \rightarrow \mathbf{1st} \rightarrow \mathbf{3rd}$

1st Partition Level

Capacities at the 1st Partition

■ {P,S,T,A} sub group relatively smaller information

Capacities at the 2nd Partition

Synonymous codons \rightarrow small inter-distances \rightarrow vanishing capacities

• $\{W, C\} \rightarrow high capacity even for large "SNR"$

The level capacity C^1 of the 1st partition level

$$C^{1} = I(Y; X_{2}) = I(Y; X_{1}, X_{2}, X_{3}) - I(Y; X_{1}, X_{3}|X_{2})$$

Similarly, the capacity of the 2nd partition level, C^2 ,

$$C^{2} = I(Y; X_{1}|X_{2}) = I(Y; X_{1}, X_{3}|X_{2}) - I(Y; X_{3}|X_{1}, X_{2})$$

where

$$I(Y; X_3 | X_1, X_2) = \mathbb{E}_{x_1, x_2} \{ I(Y; X_3 | x_1, x_2) \}$$

 C^1 and C^2 specify the required code rates $C^3 = I(Y; X_3 | X_1, X_2)$

Level Capacities

What does $C^1 = C^2$ mean? How to transmit 4 symbols using a channel capacity of 1 bit?

Digital Information and Thermodynamic Stability in Bacteria

Digital and analog information

Digital information

 Information to encode proteins and RNA molecules

Apparent from the quaternary alphabet

Digital and analog information

Digital information

Information to encode proteins and RNA molecules

Apparent from the quaternary alphabet

A co-existent "analog" information

- Defined by sequence-dependent
 physicochemical properties of the DNA polymer
- Dynamic structural and topological variations
- Facilitating and regulating the gene expression, chromosome compaction, and replication

DNA Sequence

ATCGGTAACCCGGTAGGTAACGGTATT......

Shannon's block entropy for a block size of N symbols is

$$H_N = -\sum_i P_s^{(N)}(i) \log_2 P_s^{(N)}(i)$$

DNA Sequence

ATCGGTAACCCGGTAGGTAACGGTATT......

Shannon's block entropy for a block size of N symbols is

$$H_N = -\sum_i P_s^{(N)}(i) \log_2 P_s^{(N)}(i)$$

The Gibbs entropy is given by

$$S_G = -k_B \sum_i P_G(i) \ln P_G(i)$$

 k_B is the Boltzmann constant

 $\begin{array}{l} {\rm Shannon\ entropy} \rightarrow {\rm digital\ information}\\ {\rm Gibbs\ entropy} \rightarrow {\rm analog\ information} \rightarrow {\rm thermodynamic\ stability} \end{array}$

Stability of DNA

- Stacking between adjacent bases
- Hydrogen bonding between complementary bases

AGTGGTAACCC TCACCATTGGG

Stability quantified by energy values

- SantaLucia's unified free energy parameters for base pairs (N = 2)
- For N > 2, neighboring base steps are added

Stability of DNA

- Stacking between adjacent bases
- Hydrogen bonding between complementary bases

AGTGGTAACCC TCACCATTGGG

Stability quantified by energy values

- SantaLucia's unified free energy parameters for base pairs (N = 2)
- For N > 2, neighboring base steps are added

Gibbs entropy \Rightarrow measure of thermodynamic stability

Energies are assumed to be distributed according to the Boltzmann distribution

$$P_G(i) = \frac{n_i e^{-\frac{E(i)}{k_B T}}}{\sum_j n_j e^{-\frac{E(j)}{k_B T}}}$$

Shannon vs. Gibbs entropy in E. coli

Observations

Shannon vs. Gibbs entropy in B. subtilis and S. typhimurium

Functional classes of genes

Functional classes of genes

- Anabolic genes: biosynthesis of macromolecules
- Catabolic genes: degradation of macromolecules
- Aerobic genes: aerobic respiration
- Anaerobic genes: anaerobic respiration

Essential and Non-essential Genes

Features

Information-Theoretic features

- Mutual Information (MI)
- Conditional Mutual Information (CMI)
- Entropy (E)
- Markov Model (M)

Non-IT features

- GC content, length, and GC3
- Close-to-stop
- Number and position of stop codons in the other ORFs

Mutual Information (MI)

Widely used in computational biology and bioinformatics

- Identification of coding and non-coding DNA (Grosse et al., 2000)
- As a phylogenetic metric (date2003discovery)
- Genomic signature (bauer2008average)
- SNP identification

(hagenauer2004genomic)

Mutual Information between X and Y

$$I(X,Y) = \sum_{x \in \Omega} \sum_{y \in \Omega} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)}$$

 $\Omega = \{A, T, C, G\}.$

For a given gene:

- Mutual Information between consecutive bases
- Probabilities estimated from frequencies

•
$$P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)}$$
 as a feature

Conditional Mutual Information (CMI)

CMI measures conditional dependency between two variables

Conditional Mutual Information is defined as

$$\begin{split} I(X;Y|Z) &= \sum_{z \in \Sigma} P(z) \sum_{x \in \Omega} \sum_{y \in \Omega} P_k(x,y|z) \log_2 \frac{P(x,y|z)}{P(x|z)P(y|z)} \\ &= \sum_{x \in \Omega} \sum_{y \in \Omega} \sum_{z \in \Sigma} P(x,z,y) \log_2 \frac{P(z)P(x,z,y)}{P(x,z)P(z,y)} \end{split}$$

 $\Omega = \{A, T, C, G\}.$

For a given gene:

- CMI between 1st (X) and 3rd (Y) positions conditioned on the 2nd (Z).
- Probabilities estimated from frequencies

•
$$P(x, z, y) \log_2 \frac{P(z)P(x, z, y)}{P(x, z)P(z, y)}$$
 as a feature

Markov Model (M)

Assumption: The gene sequence is generated by a Markov source Order estimation \rightarrow Construct the Markov chains \rightarrow Score the genes

CMI based Markov order estimator

(Papapetrou2013)Markov chain of order L

$$P(x_n | x_{n-1}, \dots, x_{n-L}, x_{n-L-1}, \dots)$$

= $P(x_n | x_{n-1}, \dots, x_{n-L})$

Observation:

for any m, If $m \leq L \rightarrow \text{CMI} > 0$ If $m > L \rightarrow \text{CMI} = 0$

If the gene sequence is $b_1, b_2, b_3, \dots, b_N$, the score is calculated as

$$Score = \sum_{i=1}^{N-\hat{L}} P(b_i b_{i+1} \dots b_{i+\hat{L}}) \log_2(\frac{P(b_{i+\hat{L}}|b_i b_{i+1} \dots b_{i+\hat{L}-1})}{P(b_{i+\hat{L}})})$$

Transition probabilities of the Markov chains

- Two Markov chains of order m_E and m_N
- Transition probabilities estimated

Classifier design and evaluation

Machine learning algorithms

- Support Vector Machine (SVM)
- Random Forest

Performance evaluation

- Area Under the ROC Curve (AUC)
- 15 bacteria, 1 archeaon, and 4 eukaryotes

Unbalanced datasets

 $\blacksquare \ \#EGs \ll \#NEGs \rightarrow \text{Undersampling}$

Prediction approaches

- Intra-organism prediction
 - 80 % training
 - 20 % testing
- Cross-organism prediction
 - pairwise
 - leave-one-species-out

Intra-organism predictions

Comparisons

- Ning et al. (sequence composition) $\rightarrow 0.82$
- \blacksquare Li et al. (inter-nt distance) $\rightarrow 0.80$
- Yu et al. (fractals) $\rightarrow 0.75$

Conclusions and Discussing Open Problems

Conclusions and open problems

