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Mapping Between
Codons and Amino Acids



Background and Motivation

Flow of biological information Modified from refs [1] & [2]

Replication

Transcription

Translation

Protein

DNA

53 3' Sense strand
TGCACCATGGGGCTCAGCGACGGGTGGCACTTG
ACGTGGTACCCCGAGTCGCTGCCCACCGTGAAC

5'Template strand

UGCACCAUGGGGCUCAGCGACGGGUGGCACUUG '
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The Genetic Code

The genetic code

B Degenerate: synonymous
codons provide redundancy

B Optimal: minimizing
substitution and frame-shift

errors

B “One in a million”:
outperforms randomly

generated codes

The genetic code chart [3]

“Freeland1998. 4



Substitution Matrices

Substitution Matrices
B Nucleotide-based models
B Jukes and Cantor, Kimura . ..

B Protein-based models
m PAM, BLOSUM, WAG, ...

B Codon-based models
l[ Empirical codon mutation (ECM)]7 Goldman and Yang, ...

ECM matrix

B Proposed by Schneider et al.l in 2005
B 17,502 alignments from five vertebrates

B Estimated from 8.3 million aligned codons

lschneider2005empirical. 5



ECM Channel Model

Aminoacid | gpcoder _)X H Y Transcription Amino acid
Codon . Codon ~ and Translation

ECM "Channel"

ECM “Channel”“

B Mutation matrix describes a channel transition probability matrix P(y|x)

B Using SVD for matrix exponentiation
[P(yla))" =UE)"VT,

where U, V are unitary matrices and X is a diagonal matrix

[ Find the optimal exponent for error-free transmission ]

At et ONT Aeorr vt rtieal



Capacity of the ECM Channel

45 \ " Required rate (uniform distribution)
g ab Required rate (biological distribution)
'g Capacity
8_ 3.5r
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Exponent

Biological distribution ~ Optimal distribution

B Optimal exponent = 0.26
=> Mutation rate = 29%

B Capacity curve is very close to
the mutual information curve
—=> The biological

distribution is
optimally “chosen”
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Observations
B Dy (observed||optimal) = 0.0926 bit
—> Comparable with D1, (N(p; 0)||N(p; 20))

B Distribution among synonymous codons is similar



Mutation vs. Chemical Distances

Grantham’s? chemical distance matrix

B Composition, polarity, and molecular volume

B 20 x 20 distance matrix

(Compare the mutation and chemical distance matrices]

Classical multidimensional scaling (CMDS)

B Given pairwise dissimilarities, reconstruct a map that preserves
distances

B ECM matrix: 61 X 61 probability matrix

—=> pairwise point distances are computed assuming a Gaussian i.i.d.
“channel”

2Grantham1974.



2D-view of the codon distance matrix
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2D-View of the Chemical Distance Matrix
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B Synonymous codons are clustered together

B Highly probable mutation are between chemically similar amino acids
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Inconsistencies

Large chemical distance but small Small chemical distance but large

mutation distance: . .
mutation distance:

n C with “all others”

» G with E

= S with {P,T,A} = {P,T,A} with {Q,H,R}
{D,N} with E

{D,N} with G

{Q,H} with {W,Y}

» K with N

m {W,Y} with {F,L,M,I,V}

Explaining the inconsistencies?

B Another level of error protection (Coded Modulation, Multilevel Coding)

12



Set Partitioning

Ungerbock’s mapping by set partitioning

. (A0=8-PSK

o= O 5 0
BO
= v \ /
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(100)

(000) (101)
Co c2 Ct C3

(110) 111)
(c*c',c%)
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Multilevel code rates

B Every level is protected with a separate code

B Following the Chain Rule, code rates are obtained as the differences between

neighboring capacity curves

M =16 o
3;”‘710527(‘“%3,}\;0;” : —L I(X; — XgY)
M=si](Xy — Xy, Y| X7)
VAXp)ioomeeeey

: M=1 (X3, X4; Y| X1, X2)
F( Xy ¥ Xy K)o

25 T{(Xo;

C [bit/symbol]
no

1.5

| i M= (X YIX7 — X3)
05 {0 Y 2 = g

0 | 1 1 | | 1 1

i I I I
0O 2 4 6 8 10 12 14 16 18 20 22 2/1 26 28 30
E /Ny
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Set Partitioning of the Genetic Code

4-ary set partitioning

B Block partitioning is preferred: closest points are similar

B Start with the second position: it is the most informative

2nd — 1st — 3rd

MDA A AMAA AAAA

15



1st Partition Level

m A is the set of all codons A0 = Az = O)
m X1, X2, and X3 are the three codon positions Al = A(za = U)
I(Y; X) = I(Y; X1, X2, X3) A Al S

A3=A =@
= I(V;X2) +I(Y; X1|X2) + I(Y; X3| X1, X2) (@2 )
~—

1st partition 2nd partition 3rd partition

AN /U/"\\ /U/‘*\\ AN
ﬁ\\//\\/[\\ﬁ\ ﬁ\/M\\ﬁ\ / LA \/M\/N

RRRRC
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Capacities at the 1st Partition

61 — All
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m {P,S,T,A} sub group relatively smaller information
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Capacities at the 2nd Partition
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B Synonymous codons — small inter-distances — vanishing capacities

18
m {W, C} — high capacity even for large “SNR”



Level Capacities

The level capacity C! of the 1st partition level

C' = I(Y; X3) = I(Y; X1, X2, X3) — I(Y; X1, X3| X2)

Similarly, the capacity of the 2nd partition level, C?,
02 = I(Y;X1|X2) = I(Y;XI,X;;‘XQ) — [(Y;X:;‘XI,XQ)

where
I(Y; X3 X1, X2) = Eay 2, {1 (Y X3|@1, 72)}

C'! and C? specify the required code rates
C3 = I(Y; X3]X1, X2)

19



Level Capacities

61 —e— Al
== (Y; X3, X1|X2)
e 1
51 2
C3=I(Y; X3|X1, X2)
4_

Capacity [bit/symbol]

0.0 0.5 1.0 1.5 2.0
Exponent

What does C! = C? mean?
How to transmit 4 symbols using a channel capacity of 1 bit?
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Digital Information and Thermodynamic
Stability in Bacteria



Digital and analog information

Digital information

B Information to encode proteins and RNA

molecules

B Apparent from the quaternary alphabet

21



Digital and analog information

Digital information

B Information to encode proteins and RNA

molecules

B Apparent from the quaternary alphabet

A co-existent “analog” information

B Defined by sequence-dependent

physicochemical properties of the DNA polymer

B Dynamic structural and topological variations

B Facilitating and regulating the gene expression,

chromosome compaction, and replication

21



Shannon and Gibbs entropies

DNA Sequence
ATCGGTAACCCGGTAGGTAACGGTATT........

Shannon’s block entropy for a block size of N symbols is

Hy =— ZP§N)(i) logy P (4)

22



Shannon and Gibbs entropies

DNA Sequence
ATCGGTAACCCGGTAGGTAACGGTATT........

Shannon’s block entropy for a block size of N symbols is

Hy =— ZP§N)(i) logy P (4)

i

The Gibbs entropy is given by

Sg = —kp Z Pg (i) In Pg(i)

kp is the Boltzmann constant

Shannon entropy — digital information
Gibbs entropy — analog information — thermodynamic stability

22



Thermodynamic stability ‘7

Stability of DNA

m Stacking between adjacent bases AGTGGTAACCC
= Hydrogen bonding between TCACCATTGGG

complementary bases

Stability quantified by energy values

B SantalLucia’s unified free energy parameters for base pairs (N = 2)
B For N > 2, neighboring base steps are added

23



Thermodynamic stability

Stability of DNA

m Stacking between adjacent bases AGTGGTAA
= Hydrogen bonding between TCACCATTGGG

complementary bases

Stability quantified by energy values
B SantalLucia’s unified free energy parameters for base pairs (N = 2)
m For N > 2, neighboring base steps are added

Gibbs entropy = measure of thermodynamic stability

Energies are assumed to be distributed according to the Boltzmann distribution

23



Shannon vs. Gibbs entropy in E. col:

s Shannon vs. Gibbs: E. coli [250 kb window]
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Shannon vs. Gibbs entropy in B. subtilis and S. typhimurium

Shannon vs. Gibbs: S. typhimurium [500 kb window]
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Functional classes of genes
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Essential and Non-essential Genes



Features

Information-Theoretic features

Mutual Information (MI)

B Conditional Mutual Information (CMI)

Entropy (E)

B Markov Model (M)

Non-IT features

B GC content, length, and GC3
B Close-to-stop

B Number and position of stop codons in the other ORFs
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Information-Theoretic features

Mutual Information (MI)

B Widely used in computational biology and bioinformatics

m Identification of coding and non-coding DNA (Grosse et al., 2000 )

® As a phylogenetic metric ~ (date2003discovery )
m Genomic signature (bauer2008average )
m SNP identification (hagenauer2004genomic )

Mutual Information between X and Y

P(z,y)
I(X,Y) = P(z,y)logy ————
%% Y82 Pla)P(y)

Q={AT,C, G}
For a given gene:

m Mutual Information between consecutive bases
m Probabilities estimated from frequencies
m P(z,y)log, % as a feature

28



Information-Theoretic Features

Conditional Mutual Information (CMI)

B CMI measures conditional dependency between two variables

Conditional Mutual Information is defined as

I(X;Y]2) =) P(2) 3 D Pu(x,ylz)logy %

ZEX zeQYeN

_ o 2. ) log, PEP@ 2,y)
_gz‘z%;zp( % 9)1082 B PGy

Q={A,T,C,G}.

For a given gene:

s CMI between 1st (X) and 3rd (Y') positions conditioned on the 2nd (Z).

m Probabilities estimated from frequencies

P(z)P(z,z,y)

Plo.2)Play) 252 feature
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Information-Theoretic features

Markov Model (M)

Assumption: The gene sequence is generated by a Markov source
Order estimation — Construct the Markov chains — Score the genes

CMI based Markov order estimator

(Papapetrou2013)
Markov chain of order L

Transition probabilities of the Markov chains

B Two Markov chains of order mp and mpy
P(zp|Tp—1s- s Tne LTy L —1s---) B Transition probabilities estimated
=P(zn|Tn_1,-.-Tn_1r)
Observation:
for any m,

Ifm <L — CMI >0
If m > L —- CMI=0

If the gene sequence is b1, ba, bs, ..., by, the score is calculated as

N=li P(b, . ; |bibis1...b. 7 1)
Score = Z P(bibi+1...bi+i)log2( i P Gt )
i=1 (b;42)

30



Classifier design and evaluation

Machine learning algorithms

B Support Vector Machine (SVM)
B Random Forest

Performance evaluation

B Area Under the ROC Curve (AUC)

B 15 bacteria, 1 archeaon, and 4

eukaryotes

Unbalanced datasets

B #EGs < #NEGs — Undersampling

Prediction approaches

B Intra-organism prediction

m 80 % training
B 20 % testing

B Cross-organism prediction
B pairwise

B leave-one-species-out

31



Intra-organism predictions

10
E. coli
0.8
_'5 B 296 EGs and 4077 NEGs
>
S 06
§ i B Markov order: 5
% #»—+ Combined (AUC = 0.86)
E’ 0.4 e—e CMI| (AUC = 0.85) 1
& ¢ |e—e MI(AUC = 0.83)
0.2 A—A Markov (AUC = 0.83) |
& m—a Entropy (AUC = 0.78)
©-<¢ Stop + Len + GC (AUC = 0.61)
0.0 . n n T N
0.0 0.2 0.4 0.6 0.8 1.0
FP Rate (1 - Specificity)
Comparisons

= Ning et al. (sequence composition)— 0.82
m Li et al. (inter-nt distance)— 0.80
m Yu et al. (fractals) — 0.75
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Conclusions and Discussing Open Problems



Conclusions and open problems
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