Analysis and Design of Modern Coding Schemes
for Unequal Error Protection and Joint

Source-Channel Coding

BY HUMBERTO VASCONCELOS BELTRAO NETO

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in Electrical Engineering

N

JACOBS
UNIVERSITY

Dissertation Committee:

Prof. Dr.-Ing. Werner Henkel, Jacobs University Bremen

Prof. Dr. Valdemar Cardoso da Rocha Jr., Universidade Federal de Pernambuco
Prof. Dr. Jon Wallace, Jacobs University Bremen

Prof. Dr. Gerhard Kramer, Technische Universitdt Miinchen

Prof. Dr. Ricardo Campello de Souza, Universidade Federal de Pernambuco

Date of Defence: July 16, 2012

School of Engineering and Science

To Lucia, Miriam, and Antonio

Acknowledgements

This work is the result of my research in the School of Engineering and Science at Jacobs
University Bremen developed in cooperation with the Department of Electronics and

Systems at the Federal University of Pernambuco.

First of all, I would like to thank my both advisors Prof. Dr.-Ing. Werner Henkel and
Prof. Dr. Valdemar da Rocha Jr. for their supervision and friendship. I am very grateful
not only for their orientation, but also for the confidence and academic liberty they gave
me. Furthermore, I want to thank Prof. Dr. Jon Wallace, Prof. Dr. Ricardo Campello,

and Prof. Dr. Gerhard Kramer for accepting to join the dissertation committee.

I also would like to thank my colleagues Neele von Deetzen, Khaled Hassan, Abdul
Wakeel, Fangning Hu, Jalal Etesami, Alexandra Filip, Khodr Saaifan, Oana Graur, and

Apirath Limmanee for their company, friendship, interesting discussions, and support.

I do not have enough words express my gratitude to Patricia Wand and Moritz Lehmann.
They were more than my flatmates and German teachers, they were my family. T also
have to thank my old and great friend Leandro Rocha, who even not being in Bremen,
was a constant and important presence in my life. My stay in Germany would not have

been half as enjoyable without them, and I can surely say they are friends for life.

This section would not be complete if I did not mention the people to whom I dedicate
this thesis: my mom Licia, my dad Antdénio, and my grandma Miriam. Even being
thousands of miles away, they were a constant presence and source of inspiration. I
would not have gone so far without them, who sometimes gave up their dreams so that

I could make mine come true. Thank you for everything!

Finally, T would like to thank the National Counsel of Technological and Scientific
Development (CNPq), the German Academic Exchange Service (DAAD), and the
German Research Foundation (DFG) for the financial support.

I hereby declare that I have written this Ph.D. thesis independently, unless where clearly
stated otherwise. I have used only the sources, the data, and the support that I have
clearly mentioned. This Ph.D. thesis has not been submitted for conferral of degree

elsewhere.

Humberto Vasconcelos Beltrao Neto
Bremen, July 2012

Abstract

In this thesis, we investigate systems based on error-correcting codes for unequal error
protecting and joint source-channel coding applications. Unequal error protection
(UEP) is a desirable characteristic for communication systems where source-coded
data with different importance levels is being transmitted, and it is wasteful or even
infeasible to provide uniform protection for the whole data stream. In such systems, we
can divide the coded stream into classes with different protection requirements. Among
the possible ways to achieve UEP, we focus on solutions based on error correcting codes.
Regarding UEP solutions by means of coding, we first introduce an analysis of a hybrid
concatenation of convolutional codes, which typically arises in the context of turbo
coding schemes with unequal-error-protecting properties. We show that the analysis of
such a system can be reduced to the study of serial concatenated codes, which simplifies
the design of such hybrid schemes.

Additionally, we also investigate the application of graph-based codes for systems with
UEP requirements. First, we perform a multi-edge-type analysis of unequal-error-
protecting low-density parity-check (LDPC) codes. By means of such an analysis,
we derive an optimization algorithm, which aims at optimizing the connection profile
between the protection classes within a codeword of a given unequal-error-protecting
LDPC code. This optimization allows not only to control the differences in the perfor-
mances of the protection classes by means of a single parameter, but also to design codes
with a non-vanishing UEP capability when a moderate to large number of decoding
iterations is applied.

As a third contribution to UEP schemes, we introduce a multi-edge-type analysis
of unequal-error-protecting Luby transform (UEP LT) codes. We derive the density
evolution equations for UEP LT codes, analyze two existing techniques for constructing
UEP LT codes, and propose a third scheme, which we named flexible UEP LT approach.
We show by means of simulations that our proposed codes have better performances
than the existing schemes for high overheads and have advantages for applications
where a precoding of data prior to the channel encoding is needed.

In the last part of the thesis, we investigate joint source-channel coding schemes where
low-density parity-check codes are applied for both source and channel encoding. The
investigation is motivated by the fact that it is widely observed that for communication

systems transmitting in the non-asymptotic regime with limited delay constraints, a

11

separated design of the source and channel encoders is not optimum, and gains in
complexity and fidelity may be obtained by a joint design strategy. Furthermore,
regardless of the fact that the field of data compression has reached a state of maturity,
there are state-of-the-art applications which do not apply data compression thus failing
to take advantage from the source redundancy in the decoding.

Within this framework, we propose an LDPC-based joint source-channel coding scheme
and by means of the multi-edge analysis previously developed, we propose an optimiza-
tion algorithm for such systems. Based on syndrome source encoding, we propose a
novel system where the amount of information about the source bits available at the
decoder is increased by improving the connection profile between the factor graphs of
the source and channel codes that compose the joint system.

Lastly, we show by means of simulations that the proposed system shows a significant
reduction of the error floor caused by the encoding of messages that correspond to
uncorrectable error patterns of the LDPC code used as source encoder in comparison

to existent LDPC-based joint source-channel coding systems.

Contents

2.1
2.2
2.3

24

2.5

2.6

3.1

3.2

3.3
3.4

4.1

Introduction

Basic Concepts

Communication system
Transmission model
Channel coding
2.3.1 Linear blockcodes
2.3.2 Convolutional codes
Low-density parity-check codes
2.4.1 Tterative decoding
2.4.2 Density evolution
2.4.3 Stability condition
2.4.4 Multi-edge-type LDPC codes
Luby transform codes
2.5.1 LT encoding
2.5.2 Tterative decoder
Extrinsic information transfer charts

Asymptotic Analysis of Hybrid Turbo Codes

Hybrid turbocodes
3.1.1 Tterative decoding of the parallel concatenated codes
3.1.2 TIterative decoding of the serially concatenated codes
3.1.3 Hybrid turbo code decoding
Global and local EXIT charts
3.2.1 Local EXIT charts
3.2.2 Global EXIT charts
Relation between local and global EXIT charts
Construction of the local EXIT chart from the

transfer characteristic of the inner and outer codes

Multi-Edge-Type Unequal-Error-Protecting LDPC Codes

Unequal-error-protecting LDPC codes
4.1.1 System model and notation

N ot 3

....... 10
....... 10
....... 11
....... 13
....... 15
....... 17
....... 19
....... 20
....... 21
....... 21
....... 22
....... 23

4.2 Multi-edge-type unequal-error-protecting LDPC codes
4.2.1 Edge-perspective notation L.
4.2.2 Asymptotic analysis L o oo
4.2.3 Optimization algorithm

4.3 Simulation results L
4.3.1 Low number of iterations
4.3.2 High number of iterations

4.4 Detailed mutual information evolution

5 Multi-Edge-Type Unequal-Error-Protecting LT Codes
5.1 Multi-edge-type unequal-error-protecting LT codes
5.1.1 Node-perspective degree distributions
5.1.2 Encoding and decoding L.
5.2 Construction algorithms for unequal-error-protecting LT codes
5.2.1 Weighted approach
5.2.2 Windowed approach 0L
5.2.3 Flexible UEP LT codes
5.3 Asymptotic analysis of multi-edge-type UEP LT codes
5.4 Simulation results

6 LDPC-based Joint Source-Channel Coding

6.1 Joint source-channel coding
6.2 LDPC-based joint source-channel system

6.2.1 Encoder

6.2.2 Decoder
6.3 Multi-edge notation for joint source-channel factor graphs
6.4 Asymptotic analysis
6.5 Optimization
6.6 Simulation results o

7 Concluding Remarks

A List of Mathematical Symbols
B List of Acronyms

Own Publications

Bibliography

ii

103

107

110

111

112

Chapter 1

Introduction

Digital communication systems are so ingrained in our every-day life that it becomes
increasingly difficult to imagine a world without it. They are everywhere from mobile
telephones to deep-space communication and have been developing at breathtaking
pace since 1948 with the publication of Shannon’s landmark paper “A mathematical
theory of communication” [1]. At a time when it was believed that increasing the
rate of information transmission over a channel would increase the probability of error,
Shannon proved in his channel coding theorem that this is not true. Communication
with a vanishing error probability is indeed possible as long as the transmission rate is

kept below the channel capacity. The way to achieve it: coding.

Since the development of the first non-trivial error-correcting codes by Golay [2] and
Hamming [3], a lot of work has been done on the development of efficient coding and
decoding methods for error control of transmissions over noisy channels. Nevertheless,
it was not until the 1990’s that practical capacity achieving coding schemes were
developed with the advent of turbo codes by Berrou, Glavieux, and Thitimajshima [4]
and the rediscovery of Gallager’s low-density parity-check codes [5]. Those two schemes
share in common the fact that their most used decoding algorithms are based on
iterative techniques and, together with Luby transform codes [6], are central to this
thesis where we investigate their application for unequal-error-protecting and joint

source-channel coding systems.

Unequal error protection is a desirable characteristic for communication systems where

source bits with different sensitivities to errors are being transmitted, and it is wasteful

or even infeasible to provide uniform protection for the whole data stream. There are
mainly three strategies to achieve unequal error protection on transmission systems: bit
loading, multilevel coded modulation, and channel coding [7]. In the present work, we
focus on the latter, more specifically on low-density parity-check and Luby transform
codes. Additionally, we present some results applicable to the design of concatenated

coding schemes used within an unequal error protection framework.

Last but not least, we study the problem of joint source-channel coding. The main
idea when dealing with the joint source-channel coding/decoding problem is to take
advantage of the residual redundancy arising from an incomplete data compression
in order to improve the error rate performance of the communication system. This
possibility was already mentioned by Shannon in [1] and quoted by Hagenauer in [8]:
“However, any redundancy in the source will usually help if it is utilized at the receiving
point. In particular, if the source already has redundancy and no attempt is made to
eliminate it in matching to the channel, this redundancy will help combat noise.” The
approach we chose for joint source-channel coding in this thesis is based on low-density

parity-check codes and syndrome source encoding.

The outline of this thesis is as follows: First, in Chapter 2, we introduce the com-
munication system and transmission model we are going to assume. Furthermore, we
present some basic concepts on coding that are essential for a full understanding of the
subsequent chapters. Chapter 3 describes the relation between the two different kinds of
extrinsic information transfer charts that arise in the analysis of a hybrid concatenated
turbo coding scheme used to achieve unequal error protection capabilities. From this
analysis, it is shown that both kinds of charts can be used to analyze the iterative
decoding procedure of such hybrid concatenated codes. Finally, it is shown that the
analysis of the hybrid turbo codes can be reduced to the study of the component serial

concatenated codes.

Chapter 4 deals with low-density parity-check codes with unequal-error-protecting
capabilities. It is known that irregular low-density parity-check codes are particu-
larly well-suited for transmission schemes that require unequal error protection of the
transmitted data due to the different connection degrees of its variable nodes. However,
this capability is strongly dependent on the connection profile among the protection
classes defined within a codeword. We derive a multi-edge-type analysis of low-density
parity-check codes to optimize such connection profiles according to the performance

requirements of each protection class. This allows the construction of low-density

1. INTRODUCTION 3

parity-check codes where the difference between the performance of the protection
classes can be adjusted and with an unequal error protection capability that does not

vanish as the number of decoding iterations grows.

In Chapter 5, a multi-edge framework for unequal-error-protecting Luby transform
codes similar to the one presented in Chapter 4 is derived. Under the framework
introduced, two existing techniques for the design of unequal-error-protecting Luby
transform codes can be evaluated and explained in a unified way. Furthermore, we
propose a third design methodology for the construction of unequal-error-protecting
Luby transform codes which compares favorably to the design techniques already

present in the literature.

The multi-edge framework applied in chapters 4 and 5 is then used in Chapter 6 to the
joint source-channel coding problem. The approach followed in this chapter relies on
a graphical model where the structure of the source and the channel codes are jointly
exploited. More specifically, we are concerned with the optimization of joint systems
that perform linear encoding of the source output and channel input by means of low-
density parity-check codes. We present a novel system where the amount of information
about the source bits available at the decoder is increased by improving the connection
profile between the factor graphs of the source and channel codes that compose the joint
system and propose the application of low-density parity-check codes to the syndrome-
based source encoding. Furthermore, we propose an optimization strategy for the

component codes based on a multi-edge-type joint optimization.

Chapter 7 summarizes the results of this thesis and considers possible future work.

Chapter 2
Basic Concepts

The present chapter describes the system model considered in the development of this
thesis. Furthermore, it introduces concepts, notation, and techniques which will be

necessary for the understanding of the forthcoming chapters.

2.1 Communication system

The digital communication system model considered throughout this thesis was first
established by Shannon in [1]. Figure 2.1 shows the components of such a model at

both the transmitter and receiver sides including the transmission channel.

S Source Channel
ouree encoder encoder Modulator
Channel
Source Channel
User decoder decoder Demodulator

digital channel model

Figure 2.1: Basic digital communication system block diagram.

6 2.1. COMMUNICATION SYSTEM

Throughout this work, we assume that the source is digital with output consisting of
a stream of binary symbols over GF(2). However, systems with analog sources can be
easily included into this framework assuming that the source output has been digitized

before its delivery to the source encoder.

As a first step prior to transmission, the information received from the source is
compressed by the source encoder, i.e., the source encoder turns its representation
into one with fewer symbols. The compression consists in reducing the redundancy
present in the source output to a minimum in order to transmit only the information
essential for the reconstruction of the original source output at the receiver. The
compressed information is then delivered to the channel encoder which adds redundancy
to the received symbol sequence in order to protect it against the effects of distortion,
interference, and noise present in the communication channel. The channel encoded

sequence is then modulated and transmitted.

The role of the modulator is to turn the output of the channel encoder into a form
suitable for transmission. For wireless transmissions for example, the size of the
transmitting antenna is proportional to the wavelength of the signal to be transmitted.
This means that in order to use antennas of reasonable size, the original bit stream
should be represented by a high-frequency signal. We will consider that the modulator,
channel, and demodulator form a single block which we will refer to as the digital

channel as indicated in Fig. 2.1.

After its arrival at the receiver, the transmitted information is first demodulated
and then forwarded to the channel decoder. The channel decoder makes use of the
redundancy introduced at the transmitter side to correct possible errors introduced by
the transmission channel. After that, the information is finally decompressed by the

source decoder and delivered to the user.

This simplified model of a digital communication system is sufficient to describe the
work presented in this thesis. Except when specifically stated, we assume that the
input to the channel encoders are sequences of binary digits perfectly compressed by
the source, i.e., with no leftover redundancy. This is equivalent to assuming that the
occurrences of both binary symbols are i.i.d. and have the same probability. Later, we
deal with the problem of how to combine source and channel en- and decoders in order

to take advantage of any redundancy resulting from an imperfect compression.

2. BASIC CONCEPTS 7

2.2 Transmission model

The transmission of information between the transmitter and receiver takes place over
a communication channel. Broadly speaking, a channel is a physical medium through
which the information is transmitted or stored. For our purposes, we will adopt an
information theoretic approach and follow the channel definition of [9], i.e., we define
a channel as a system consisting of an input alphabet X', an output alphabet), and
a probability transition matrix p(y|x) that expresses the probability of observing the
output symbol y given that the symbol x was transmitted, i.e., a matrix of conditional

probabilities of y given x.

Among the myriad of channel models present in the literature, we are mainly interested
in three models: the binary symmetric channel (BSC), the binary erasure channel
(BEC), and the binary input additive white-Gaussian-noise (BI-AWGN) channel . The

formal definition of these three models is given as follows

Definition 1 (Binary symmetric channel) A binary symmetric channel (BSC) is
a channel with input alphabet X = {0,1}, output alphabet Y = {0,1}, and the following

set of conditional probabilities

A graphical representation of the BSC can be seen in Fig. 2.2.

The BSC channel is maybe the simplest channel model, but still it captures most of
the features of the general transmission problem. The next definition regards another
simple but important model: the binary erasure channel (BEC). Introduced by Elias in
[10], this model is particularly well-suited to modeling channels where the transmission
is done by means of packets that are either received correctly or completely lost. Since
this kind of transmission is ubiquitous in the Internet, the BEC, which was previously

regarded as a toy example, became a real-world channel model.

Definition 2 (Binary erasure channel) A binary erasure channel (BEC) is a chan-
nel with input alphabet X = {0,1}, output alphabet Y = {0,1,7}, where 7 indicates an

8 2.2. TRANSMISSION MODEL

erasure, and the following set of conditional probabilities

L—p
0 > 0
p
1 » 1
l=p
Figure 2.2: Binary symmetric channel. Figure 2.3: Binary erasure channel.

The last channel model we introduce is the binary input additive white-Gaussian-noise
channel (BI-AWGNC). We define the BLAWGNC as follows

Definition 3 (Binary input additive white Gaussian-noise channel) A binary
input additive white Gaussian-noise channel (BI-AWGNC) is a channel with input
alphabet X = {—1,+1} and output alphabet Y = R, with the following set of conditional

probabilities

p(ylz) = éan exp [~y — 2)2/(202)] | (2.1)

where o2 is the variance of a zero-mean Gaussian noise sample n that the channel adds
to the transmitted value x, so that y = x +n. The graphical model of the BI-AWGN

channel can be seen in Fig. 2.4.

Note that for the transmission over the BILAWGN channel, we consider that each of
the binary digits emitted by the channel encoder ¢ € {0, 1} is mapped to channel inputs
x € {—1,+1} prior to the transmission following the rule x = (—1)¢, so that x = +1

when ¢ = 0.

An important figure of merit of communication channels is their capacity. The capacity

of a channel is defined as the maximum amount of information that can be transmitted

2. BASIC CONCEPTS 9

Figure 2.4: Binary input additive white Gaussian-noise channel.

per channel use. In order to mathematically define the channel capacity, we need to

introduce two basic information theory definitions: entropy and mutual information.

Definition 4 (Entropy) The entropy (or uncertainty) of a random variable X with
probability mass function p(x) is defined as

ZP z)log, p(x (2.2)

Furthermore, the conditional entropy between two random wvariables (X,Y) can be
defined as

H(X[Y) ==Y p(x,y)log; p(a[y). (2.3)

z,y

The entropy may be interpreted as the amount of information we receive when observing
the outcome of a random variable X, i.e., the uncertainty we have about the outcome
of X. Given the concept of entropy, we can present a central definition in information

theory.

Definition 5 (Mutual information) Let X and Y be two random wvariables. The
mutual information I(X;Y) between X and Y is defined as

I(X;Y)=H(X)- HX|Y). (2.4)

The mutual information is simply the reduction of the uncertainty about the outcome
of X that we get from knowing the outcome of Y. This posed, the capacity of a channel
with input X and output Y is defined as

C=maxI(X;Y). (2.5)

p(z)

The channel capacity has a central role in information theory due to the fact that

10 2.3. CHANNEL CODING

Shannon demonstrated in its noisy-channel coding theorem [1] that communication
with infinite reliability is possible as long as the transmission rate is kept below the
capacity of the communication channel. A more detailed approach to channel capacity,

including its computation for a series of important channel models can be found in [9].

2.3 Channel coding

Channel coding is an essential feature of modern communication and storage systems.
In a world where data needs to be transmitted at ever increasing speeds, it becomes
essential to find coding schemes capable of providing reliable communication with
the highest possible transmission rate. The noisy-channel coding theorem states that
reliable communication at rates up to the channel capacity is possible, but its proof is

unfortunately not constructive.

The search of practical coding schemes able to approach capacity has been subject of
a lot of research, and until the 1990’s it was thought that capacity achieving codes
were impractical. With the invention of turbo codes and the rediscovery of low-density
parity-check codes, it was demonstrated that codes that operate very close to capacity

are indeed practical.

In this section, we lay down some principles of channel coding, which will be necessary

to understand the underlying principles of these capacity achieving codes.

2.3.1 Linear block codes

In this work, we assume that the information emitted by the source is a sequence of k
binary symbols u = (ug, uq,...,ur—_1). A block code is a bijective mapping that maps
each length-k message block into a length-n codeword ¢ = (cg,c1,...,cn—1). If the
linear combination of any pair of codewords from a block code is also a codeword, the
code is said to be a linear block code. We can define linear block codes using vector

space theory as follows [11]

Definition 6 (Linear block code) A block code of length n and 2F codewords is
called a linear C(n, k) code if and only if its 2% codewords form a k-dimensional subspace
of the vector space of all the n-tuples over the field GF(2).

2. BASIC CONCEPTS 11

Let V,, denote the vector space of all the n-tuples over the field GF(2) and G be a
(k x n) matrix whose rows form a basis of a k-dimensional subspace of V,,. It is not
difficult to see that the k rows of G span the linear code (n, k). The matrix G is called

the generator matrix of the code C(n, k). The rate of a code is defined as
Definition 7 (Code rate) The rate of a binary block code is defined as follows

R= . (2.6)

Note that every codeword is a linear combination of the rows of the generator matrix,

i.e., for a message vector u the corresponding codeword c is given by
c=u-G, (2.7)

where the “” denotes the inner product over GF(2). Another important matrix used
in the decoding of linear block codes is the ((n — k) x n) parity-check matrix H. The
parity-check matrix is defined as the null-space of the code C(n,k), i.e., for every

codeword c in C(n, k) the following equality holds
c-HT=0. (2.8)

Suppose that we transmitted the codeword ¢ and received the vector r = ¢ + e, where

e is called the error vector. According to Eq. 2.8, we have

r-H =(c+e) H =c - H +e-H =e-HT, (2.9)
-0

that is, we can detect an error in the transmission by computing the inner product
between the received vector and the transpose of the parity-check matrix. The above
definitions are sufficient for the purposes of this thesis. A more elaborated description

of linear block codes can be found in [11].

2.3.2 Convolutional codes

Convolutional codes were proposed by Elias in [12] as an alternative to block codes. In
contrast to block codes, the n output symbols of a convolutional encoder at a certain

time do not only depend on the current k£, but also on the past M input symbols,

12 2.3. CHANNEL CODING

u
c®
4

Figure 2.5: Four-state, rate 1/2, convolutional code encoder.

where M is referred to as the memory of the code. Our goal in this section is to
introduce a simple description of convolutional codes, their encoding, and mathematical

representation. A more detailed presentation can be found in [11,13].

The most common way of introducing convolutional codes is through the block diagram
representation of their encoder. Figure 2.5 depicts a binary convolutional encoder. The
boxes represent the memory elements, and the state of a convolutional encoder is defined
to be the contents of its binary memory elements. Note that for the encoder of Fig. 2.5,
we have n = 2 outputs for each k = 1 input, so it is a rate-1/2, four-state convolutional
encoder. Unlike block codes, the input and output of convolutional codes are (infinite)

sequences.

A linear convolutional code may be represented using generator polynomials. In general,
there are k x n generator polynomials, which are degree M polynomials ggj)(D) whose
coefficients are the response at output j to an impulse applied at input i. For example,
the encoder of Fig. 2.5 has impulse responses g() = [1 1 1] and g® = [1 0 1], where
we omit the index i, since there is only one input. Thus, its generator polynomials are
g =1+ D+ D? and g® = 1+ D2, where D is equivalent to the discrete time delay

operator 27 L

A compact way to represent the encoding of convolutional codes is through the following

matrix expression
C(D)=U(D)G(D), (2.10)

where U(D) = [uM (D), u® (D), --- ,ul)(D)] is the k-tuple of input sequences, C(D) =

[cM(D),c@(D),--- ¢ (D) is the n-tuple of output sequences, and G(D) is the
()

k x n matrix with g;”/ (D) as the elements at line ¢ and column j. The matrix G(D)

is called the code’s generator matrix. For the code of Fig. 2.5 we have G(D) =

2. BASIC CONCEPTS 13

11 e

Figure 2.6: Trellis of the rate-1/2, NSC, convolutional code of Fig. 2.5.

[14+ D+ D? 1+ D?], thus, Eq. 2.10 can be written as

(D) cP(D)=u-+D+D* 1+D?%. (2.11)

Convolutional encoders are mostly represented as non-recursive non-systematic convo-
lutional (NSC) or as recursive systematic convolutional (RSC) encoders. We say that
an encoder is recursive if it presents a feedback in its realization and, as a consequence,
has a generator matrix G(D) with at least one rational function among its entries.
Conversely, a non-recursive encoder does not have any feedback on its realization, and
thus, its G(D) matrix does not have any rational function among its entries. The

encoder of Fig. 2.5, for example, is a non-recursive non-systematic encoder.

As finite-state machines, convolutional encoders have a trellis representation where each
encoded sequence is represented by a path on the trellis. Figure 2.6 shows the trellis
corresponding to the convolutional encoder of Fig. 2.5. Convolutional codes have several
trellis-based decoding algorithms, e.g., list decoding [13], Viterbi algorithm [14], and
the BCJR algorithm [15]. A detailed description of the decoding of convolutional codes

is out of the scope of the thesis, and we will simply refer to the given literature.

2.4 Low-density parity-check codes

Low-density parity-check (LDPC) codes are linear block codes whose parity-check
matrix is sparse. Due to its central role in the development of this thesis, we proceed

to a more thorough exposure of the theory involving this class of block codes. LDPC

14 2.4. LOW-DENSITY PARITY-CHECK CODES

codes can be conveniently represented by bipartite graphs' where a set of nodes, the
variable (or symbol) nodes, represent the code bits and the other set, the check (or

constraint) nodes, represent the parity-check equations which define the code.

The number of edges connected to a node is called the degree of the node. A graph is
said to be (d,,d.)-regular if all variable nodes have the same degree d, and all check
nodes have the same degree d.. Figure 2.7 depicts the regular factor graph of a block

code with the following parity-check matrix

1001011110
0110010111
H=|]1101101001 (2.12)
0010111101
1111100010

Throughout this work, we will focus on irregular LDPC codes, since they are known to

approach the capacity more closely than regular LDPC codes. An ensemble of irregular

Figure 2.7: Factor graph of a (3,6) regular block code of size n = 10.

LDPC codes is specified by a codeword size and two degree distributions. Let n be the
codeword size of an LDPC code and A; be the number of variable nodes of degree i,
so that >, A; = n. Similarly, let P; be the number of check nodes of degree 4, so that
>, P =n(l — R), where R is the design rate?. Following a polynomial notation, we

have

A(z) = ZAia:i , Px)= ZP,xZ ,
i=1 i=1

ie.,, A(z) and P(x) are integer coefficient polynomials which represent the number

!The graph representation of linear block codes is also known as Tanner graphs or factor graphs.
We will use those terms interchangeably through this work.
2The design rate is the rate of the code assuming that all constraints are linearly independent.

2. BASIC CONCEPTS 15

of nodes of a specific degree. Such polynomials are known as variable and check
node degree distribution from a node perspective, respectively. It is also possible, for

convenience, to make use of normalized degree distributions

For the asymptotic analysis, it is more convenient to utilize the degree distributions

from an edge perspective defined by

N i1 A’(gj) . /N\’(gj) o) — il PI(JE) B ,5/(33)
e ZA “xm v T Z” O ION

Note that, A; (p;) is the fraction of edges connected to variable (check) nodes of degree
i, i.e., A; (p;) is the probability that a randomly and uniformly chosen edge is connected
to a variable (check) node of degree i. The design rate of an irregular LDPC code is

given by
1
Jo plx)dzx

fol Az)dz

2.4.1 [Iterative decoding

The algorithm employed for decoding LDPC codes throughout the thesis is the belief
propagation algorithm (BP), which is a soft-input soft-output bitwise iterative decoding
algorithm. The operation of the BP algorithm consists in determining the a posteriori
probability of each message symbol based on the received signal, code constraints, and
channel conditions. The reliability of each symbol at the end of each iteration is then
used as an input to the next iteration. The reliability measure used here is the log-
likelihood ratio (LLR).

Before presenting the BP algorithm, we need to introduce some notation. Let N (c) de-
note the neighborhood? of a check node ¢. Similarly, let M (v) denote the neighborhood
of a variable node v. The set N'(c) with the node v excluded is indicated by N (¢)\v. Let
Guv—sc be the messages sent from a symbol node v to the check node ¢. Finally, let r._,,

be the message sent from the check node ¢ to the variable node v. Having introduced

3The neighborhood of a node is composed of all its adjacent nodes. Two node are said to be adjacent
if they are connected through an edge.

16 2.4. LOW-DENSITY PARITY-CHECK CODES

the notation, we can now describe the four parts of the BP algorithm following the
concepts introduced in [16] and the presentation of [17]: initialization, check nodes

update, variable nodes update, and termination as follows.

Algorithm 1 Belief propagation

1. Initialization- Let z, denote the represented value of a symbol node v and y,
be the channel observation regarding x,. At the initialization step, each variable
node computes an initial LLR L(y,|z,) = In(p(yy|zs = 0)/p(yy|zy = 1)). Then,
every variable node sends to their neighbors the message

L(Qv—)c) = L(yv|$v) .

2. Check nodes update- The cth check node receives the messages L(g,—.), where
v € N(c), and updates the messages L(r._,,) according to

L(q,,
L(remsy) =2+ tanh~* H tanh <M>

2
v'eN (c)\v

3. Variable nodes update- The vth variable node receives L(r.,), where ¢ €
M(v), and updates L(qy—.) according to

L(%}—)C) = L(yv|$v) + Z L(rc’—w) .
ceM(v)\c

4. Termination- The decoder computes the a posteriori information regarding
the symbol v through the sum of the channel information and all the messages
transmitted to v by its neighboring check nodes,

Av = L(yv’wv) + Z L(Tc—w) .
ceM(v)

The algorithm stops if a valid codeword is found, i.e., the hard decision X of the
vector A = (A4, Ag, ..., Ay), where

Ty =

A 0, if A, >0;
1, otherwise,

fulfills the condition XHT = 0, or a predetermined maximum number of iterations
is reached.

2. BASIC CONCEPTS 17

Notice that the BP algorithm is optimal for cycle-free graphs. Since the majority of
the known practical codes (and the codes we are dealing with belong to this set) do not
have a cycle-free bipartite graph representation, the BP algorithm will be sub-optimal

in such cases. A more detailed description of the BP algorithm can be found in [16].

2.4.2 Density evolution

The common way to access the performance of iterative decoders is by means of density
evolution. When dealing with iteratively decoded LDPC codes, density evolution aims
at tracking the evolution of the error probability of the variable nodes at each iteration,
which is a function of the probability density functions of their incoming messages.
Since this method turns out to be computationally prohibitive, the probability density
functions are typically approximated by a single parameter. The mutual information
between the variables associated with the variable nodes and the message received or

emitted by them is typically chosen as such a parameter.

The use of mutual information leads to a description of the convergence behavior of
a code by means of mutual information transfer functions. These transfer functions,
usually referred to as extrinsic mutual information transfer functions, enable a simple
convergence analysis of iteratively decoded systems [18] and the design of regular and
irregular LDPC codes [19,20]. In the forthcoming description, we assume infinitely
long LDPC codes (asymptotic assumption) and that the messages exchanged within
the decoding graph are Gaussian (Gaussian approximation) [20]. The asymptotic
assumption allows us to consider that the messages arriving at a node through different

edges are independent, since the corresponding graph will be cycle-free.

Under this independence assumption, the variance of the outgoing message of a degree-

2

d, variable node can be written as o

= 02, + (dy — 1)02, where 02, is the variance
of the received channel message, and o2 is the variance of the messages sent by the
neighboring check nodes. Note that for antipodal transmission over the AWGN, the

2 i3 the

variance of the received channel message is given by o% = 4/02, where o2

variance of the Gaussian noise. Furthermore, under the Gaussian approximation, the
mutual information between the outgoing message of a degree-d,, variable node and its

represented value at iteration [is given by

o =7 (784 (= DI TP (213)

18 2.4. LOW-DENSITY PARITY-CHECK CODES

where I.;_; is the mean mutual information between the messages sent from a degree-
d. check node at iteration [—1 and the represented value of v. The J(.) function relates
variance and mutual information and is defined in [21] as

(6—02/2)?
e 202

o V2m0

The function J(o) cannot be expressed in closed form, but it is monotonically increas-

[e.9]

J(o)=1- logy[1 + e~¢]d¢ . (2.14)

ing and thus invertible. According to [22], Eq. (2.14) and its inverse can be closely
approximated by

2Ho

J(o) ~ (1 — 27 o 2 (2.15)

1

1 a1
D) = (g loga(1 — I7) ¥ (2.16)

with Hy = 0.3073, Hy = 0.8935, and Hj = 1.1064.

For the computation of I..;_1, note that a degree-d. check node and a degree-d,, variable
node can be modeled as a length-d. single parity-check code (SPC) and a length-d,
repetition code (REP), respectively. Thus, we can make use of the duality property for
SPC and REP codes derived in [19] and write I.;_; as

=17 (= D0 L) (2.17)

For irregular LDPC codes, the mutual information between the outgoing messages of
variable and check nodes and its represented values can be computed by averaging it
over the different degrees. This posed, the mutual information between the messages
sent from the check to variable nodes and from variable to check nodes at iteration [and
their represented values, computed by means of density evolution using the Gaussian

approximation, are given by

dﬂmaz

fa= 3 n7 (il + G- D) | (218)
=2

dcmam

Ig=1- Z pid <\/(Z —1J 11— [U,l)2> ; (2.19)

=2

2. BASIC CONCEPTS 19

and d

spectively. The density evolution for LDPC codes can then be written as a function

where d are the maximum degrees of variable and check nodes, re-

VUmazx Cmazx

of the mutual information at the previous iteration, the noise variance, and degree
distributions as,
I = F(\(x), p(x), 00, 1) - (2:20)

Using Eq. (2.20), we can predict the decoding behavior and also optimize the degree
distributions of an irregular LDPC code. The optimization is performed under the con-
straint that the mutual information between the variables nodes and their represented

values should increase at every decoding iteration until its convergence to unity, i.e.,

F(\z),p(x),02,1,) > I,, VI, €[0,1) . (2.21)

2.4.3 Stability condition

In order to guarantee the convergence of the error probability to zero as the number
of decoding iterations tends to infinity, a given degree distribution (A, p) has to fulfill
the stability condition. This condition was first derived in [23] for general binary-input
memoryless output symmetric channels and is a important constraint to be considered
in the optimization of the degree distributions of LDPC codes. In the following, we
present the stability conditions for the BIAWGN and BSC channels. A formal proof of

these conditions can be found in [23,24].

Theorem 1 (Stability condition) Assume we are given a degree distribution pair
(A, p). The stability condition for the binary-input AWGN channel is given by
1

N(0)p' (1) < ezt |

where o2 denotes the variance of the Gaussian noise. For the binary symmetric channel

the stability condition can be written as
O VIC p———
2y/p(1 —p)

where p is the crossover probability of the BSC channel.

20 2.4. LOW-DENSITY PARITY-CHECK CODES

2.4.4 Multi-edge-type LDPC codes

Multi-edge-type LDPC codes [24,25] are a generalization of irregular and regular LDPC
codes. Diverting from standard LDPC ensembles where the graph connectivity is
constrained only by the node degrees, in the multi-edge setting, several edge classes
can be defined, and every node is characterized by the number of connections to edges
of each class. Within this framework, the code ensemble can be specified through
two node-perspective multinomials associated to variable and check nodes, which are

defined respectively by [24]

v(r,x) = Z VparPxd and p(x) = Z,udxd, (2.22)

where b, d, r, and x are vectors which are explained as follows. First, let m, denote
the number of edge types used to represent the graph ensemble and m,. the number of
different received distributions. The number m, represents the fact that the different
bits can go through different channels and thus, have different received distributions.
Each node in the ensemble graph has associated to it a vector x = (1, ..., %y,) that
indicates the different types of edges connected to it and a vector d = (dy,...,dy,)
referred to as edge degree vector which denotes the number of connections of a node to

edges of type i, where i € (1,...,m,).

For the variable nodes, there is additionally the vector r = (rq1,..., 7y,), which rep-
resents the different received distributions and the vector b = (by,..., by,), which
indicates the number of connections to the different received distributions (b is used
to indicate the puncturing of a variable node). In the sequel, we assume that b has
exactly one entry set to 1 and the rest set to zero. This simply indicates that each
variable node has access to only one channel observation at a time. We use x4 to
denote []"4 azfi and rP to denote T[], rfi. Finally, the coefficients v, g and pq are
non-negative reals such that if n is the total number of variable nodes, v, gn and pgn
represent the number of variable nodes of type (b,d) and check nodes of type! d,

respectively. Furthermore, we have the additional notations defined in [24]

Ip(x)
al’j '

ov(r,x)
al’j

Vg, (r,%) = and iz, (x) = (2.23)

Note that, in a valid multi-edge ensemble, the number of connections of each edge type

"We will frequently refer to nodes with edge degree vector d as “type d” nodes.

2. BASIC CONCEPTS 21

Figure 2.8: Multi-edge graph with two different edge types and one received distribution.

should be the same at both variable and check nodes sides. This gives rise to the socket

count equality constraint, which can be written as
Ve (1) =, (1) =1, (2.24)

where 1 denotes a vector with all entries equal to 1, with length being clear from the

context.

2.5 Luby transform codes

First introduced by Luby in [6], Luby transform (LT) codes form together with Raptor
[26] and Online codes [27] the class of the so-called rateless codes. Rateless codes are
particularly suitable for the transmission of data through channels that can be repre-
sented by the binary erasure channel with unknown erasure probabilities, a situation
where traditional erasure correcting codes turn out to be suboptimal. Rateless codes are
also very interesting for multicast transmission, since they eliminate the requirement

for retransmission.

2.5.1 LT encoding

The encoding algorithm for LT codes can be described as follows. Suppose we like to
encode a message composed of k input symbols. Each output symbol is formed by
first determining its degree i according to a probability distribution Q(z) = Zle Ozt
where €2; denotes the probability of 7 being chosen. The output symbol is then formed
choosing ¢ input symbols uniformly and at random and performing an XOR, operation

on them. The process is repeated until a sufficient number of output symbols n = vk

22 2.5. LUBY TRANSFORM CODES

C1 C2 C3 Cyq Cs Cé Cr C8 Co C10

Figure 2.9: Factor graph representing the result of LT encoding for a code with k¥ = 8 and
~v = 10/8.

arrives at the receiver. The quantity v > 1 is called the overhead. We can describe the
formation of an output symbol following the LT encoding in a step by step manner as

follows:

1. Randomly choose the output symbol degree i from the degree distribution Q(x).
2. Choose uniformly and at random ¢ symbols among the original £ input symbols.

3. Form the output symbol performing the exclusive-or of the chosen i symbols.

The encoding procedure can be depicted as a bipartite graph with &k variable nodes
and n check nodes. Figure 2.9 shows the bipartite graph resulting from the encoding

of k = 8 input symbols into n = 10 output symbols (y = 10/8).

2.5.2 Iterative decoder

The decoding algorithm of LT codes can easily be described with help of the graph

induced by the encoding as follows

1. Find an output symbol ¢;, for j = 1,...,n, that is connected to only one input
symbol v;. In case there is no output symbol fulfilling this condition, the decoding
is halted and more output symbols will be required for successful decoding.

(a) Determine v; as v; = ¢,
(b) Add the value of v; to all its neighboring output symbols,

(c) Remove v; together with all edges emanating from it from the graph.

2. BASIC CONCEPTS 23

2. Repeat (1) until every v;, for i = 1,... k, is recovered.

Note that it is supposed here that the decoder knows the degree and the set of
neighbors of each output symbol. Strategies to accomplish this can be found in [6].
The description done so far considers LT codes where every input symbol has the same
protection requirements (equal error protection LT codes). In Chapter 5, we present
modifications to the LT encoding procedure in order to derive LT codes with unequal

error protection capability.

2.6 Extrinsic information transfer charts

Introduced by ten Brink in [28], extrinsic information transfer (EXIT) charts are
a simple but powerful method to investigate the convergence behavior of iterative
decoding. Let I, denote the average mutual information between the bits represented
by the variable nodes and the a priori LLR values at the decoder input. In the same
way, let I. denote the mutual information between the bits represented by the variable

nodes and the eztrinsic log-likelihood values at the decoder output.

An EXIT chart is a graphical representation of the transfer functions I, = T'(1,) of
the constituent decoders inside the same plot, i.e., it shows the relation between the
a priori information at the input and the extrinsic information at the output of both
constituent decoders of a iterative system. Drawing both transfer curves into the same
plot is only possible due to the fact that the extrinsic information of one constituent

decoder becomes the a priori information of the other at each decoding iteration.

Herein, we consider systems with two constituent decoders, and consequently, our EXIT
charts will be two-dimensional. Nevertheless, for systems with more than two con-
stituent decoders, two-dimensional EXIT charts can be constructed if all the decoders
have the same transfer functions, e.g., symmetric multiple concatenated codes [29].
In the following, we construct the EXIT chart of a regular LDPC code to clarify the

concepts we just mentioned.

The structure of an LDPC decoder is depicted in Fig. 2.10 [30]. The edge interleaver
connects the variable (VND) and check nodes (CND). Throughout the decoding, each
component decoder in Fig. 2.10 converts a priori log-likelihood ratios (L-values) into a

posteriori L-values. If we subtract the a priori L-values from the resulting a posteriori

24 2.6. EXTRINSIC INFORMATION TRANSFER CHARTS

output
from int eclige .
interleaving
channel variable) check
node H node
decoder 4 decoder
VND CND

11 ¥

Figure 2.10: Iterative decoder structure of an LDPC code.

L-value, we obtain what is called the extrinsic L-value. In the following iteration, the
extrinsic L-value sent by a component decoder is used as a priori information by the

other one.

Assuming a Gaussian approximation for the messages exchanged between variable and
check nodes, the transfer function of a degree-d, variable node is given by Eq. (2.13)

substituting I.;—1 by I, i.e.,

Lynp = J (VA3 + (dy ~ DT T)P) - (2.25)

Similarly, replacing I, ;1 by I, in Eq. (2.17), we can write the transfer function of a

degree-d. check node as

Lonp =1-J (Vd. = DT 0 - 1) . (2.26)

With the transfer functions for both the VND and CND, we can construct the EXIT
chart of the system shown in Fig. 2.10 and hence predict the convergence behavior of
the code. In our example, we consider a regular LDPC with d, = 3 and d. = 6. The
resulting EXIT chart is depicted in Fig. 2.11.

Figure 2.11 shows the curves I, ynp versus I, ynp (solid line) and I, cnp versus
I. cnp (dashed line). Note that only I,y np is a function of the channel condition,
since only the variable nodes have access to the channel observation. This means
that for every different noise variance 0’,2” we have a different curve I.ynp versus
I, vnp and consequently, a different EXIT chart. The reason to plot the extrinsic

transfer function of the check nodes on reversed axis is that it allows us to construct

2. BASIC CONCEPTS 25

e
\]

<
o

Decoding

7 trajectory |
/
,./ \

I.vnp or IocnD
(@)
Ut

0.4 ; lacnp(Ue,onD) 1
0.3} i
0.2F i
0.1Ff i

O Il Il Il Il
0 0.2 0.4 0.6 0.8 1

I,vnp or IccnD

Figure 2.11: EXIT chart for the (d,,d.) = (3,6) regular LDPC code ensemble at Ej /Ny =
1.25 dB.

the decoding trajectory of the iterative system, since the extrinsic information of one
decoder becomes the a priori information of the other. The decoding trajectory depicts

the amount of information being exchanged between the constituent decoders.

If we increase the signal-to-noise ratio, the upper curve shifts upwards opening the
“tunnel” between the two curves and thus speeding up the convergence, since a lower
number of iterations will be needed to achieve the point (1,1), which indicates full
knowledge of the transmitted bits. Conversely, if the signal-to-noise ratio is lowered,
the “tunnel” becomes narrower. If both curves intersect, the decoding trajectory does
not go all the way to the point (1,1), what means that the iterative decoder won’t
converge. As for LDPC codes, it is possible to construct EXIT charts for a vast variety
of iterative decoded systems such as serial and parallel concatenated codes. For such

systems, we refer the reader to [31] for a very comprehensive and detailed description.

Chapter 3

Asymptotic Analysis of Hybrid
Turbo Codes

This chapter describes the relation between the two different kinds of EXIT charts that
arise in the analysis of a hybrid concatenated turbo coding scheme used to achieve
unequal-error-protecting capabilities. From this analysis, it is shown that both kinds
of charts can be used to analyze the iterative decoding procedure of such hybrid
concatenated codes. Finally, it is shown that the analysis of the hybrid turbo codes

proposed in [32] can be reduced to the study of its component serial concatenated codes.

3.1 Hybrid turbo codes

Turbo codes [4] were originally defined as parallel concatenated codes (PCCs), i.e., a
parallel concatenation of two binary convolutional codes with the parallel branches
separated by one interleaver of appropriate size, decoded by an iterative decoding
algorithm. Later, Benedetto et al. [33] introduced a serial concatenation of inter-
leaved codes. Those serially concatenated codes (SCCs) in general exhibit lower error
floors than PCCs, but SCCs usually converge further away from channel capacity.
A further form of concatenated code, hybrid concatenated codes (HCCs), consists
of a combination of parallel and serial concatenation, offering the opportunity to
exploit the advantages of parallel and serially concatenated codes. There are several

different hybrid concatenated structures proposed in literature, e.g., [34,35]. Herein,

27

28 3.1. HYBRID TURBO CODES

we study the hybrid scheme proposed in [32], which is depicted in Fig. 3.1. This
kind of concatenation consists of a parallel concatenation of two serially concatenated
interleaved codes and arise in the context of turbo coding schemes with unequal-error-

protecting properties.

In [36], the authors showed that a pruning procedure can be employed to adapt the rate
and distance for different protection levels in UEP turbo codes. Pruning can simply
be accomplished by a concatenation of a mother code and a pruning code, which leads
to a selection of only some paths in the decoding trellis. In Fig. 3.1, the codes G
and G91 can be referred to as the pruning codes and G2 and Gao as the mother codes
of such a UEP scheme. As a tool for investigating the iterative decoding behavior
of this hybrid concatenation, we make use of ten Brink’s EXIT charts [28]. We can
however define two different EXIT charts for the studied concatenation. The first one,
which we call local EXIT chart, examines the iterative decoding behavior of the serial
concatenated codes. The second one, which we call global EXIT chart, deals with the
exchange of information between each parallel branch during the decoding procedure.
Our objective is to derive the relation between these different charts, showing that the
design of hybrid turbo codes can, by means of the local EXIT chart, be reduced to that

of serially interleaved concatenated codes.

In the following, all component codes of the hybrid concatenation shown in Fig. 3.1 are
assumed to be recursive systematic convolutional codes. The interleavers in the upper
and lower branch are denoted as II; and Ily, respectively. Since the output of each
parallel branch is systematic, the information bits only have to be transmitted once.

The example codes we use in this chapter are given by

Gll = G21 - (1 %) (31)
and ,
Lo g
Gig = Gog = i . (3.2)
0 1 1+D?2

In this example, the outer codes have rates R1; = Ro; = 1/2 and the inner codes rates

are Ris = Ros = 2/3. The systematic coded bit stream is formed as follows

c = (6171(1) 6172(1) 6173(1) 6272(1) 62’3(1)
61,1(2) 61,2(2) 61’3(2) 62’2(2) 62’3(2) PN),

3. ASYMPTOTIC ANALYSIS OF HYBRID TURBO CODES 29

Ci,1
u u x x) ci=| ¢
1 Gll 1 Hl 1 G12 1 (1,2)

C1,3

C2,1
uz X2 x’2 Coy = C2,2
Ga1 11, Giao (cas)

Figure 3.1: Encoder structure of a hybrid turbo code.

where ¢11(1) = u(1), ¢1,1(2) = u(2) and so on. Note that c¢z1(.) is not transmitted,
since we do not want to transmit the systematic information twice. Thus, the overall
rate of our example code is R = 1/5. The decoding of such codes is divided into a
local decoding corresponding to each serial branch, and a global decoding where the
parallel branches exchange extrinsic information between them. In the following, we
explain the local decoding operation and then show how to connect the partial results
for each parallel branch to form the global decoding system. As component decoders,
we assume a posteriori decoders (APP decoders, e.g., BCJR, logMAP) which have two

inputs and two outputs in form of log-likelihood ratios (L-values).

3.1.1 TIterative decoding of the parallel concatenated codes

Both decoders of the parallel concatenation receive as first input the channel observation
(intrinsic information). As this information can be interpreted as a priori information
concerning the coded stream, we will call it L,(¢;) where the indices j =1 and j = 2
refer to the upper and lower branch, respectively. The second input represents the
a priori information concerning the uncoded bit streams denoted by L,(11;). The
decoder outputs two L-values corresponding to the coded and uncoded bit streams
denoted by L(¢;) and L(1;), respectively. Figure 3.2 shows the corresponding system.
For systematic codes, the decoder outputs are composed of the two a priori values and
some extrinsic information gained by the decoding process. In order to avoid statistical
dependencies, the two decoders only exchange the extrinsic L-values corresponding to
the uncoded bit stream L.(0;) = L(0;) — La(0) — La(¢;).

30 3.1. HYBRID TURBO CODES

from channel L(ﬁ) from channel
upper decoder lower decoder
La(é1) L(é1) L. (¢2) L(&y)—
L@) Lo 1L Li(in) L(i)
—1] Txs~-
+
HP

Figure 3.2: Decoder structure of the parallel concatenation present in the hybrid turbo code.

3.1.2 TIterative decoding of the serially concatenated codes

For a serial concatenation with interleaver II;, let u; and x; be the input and output
of the outer encoder, and let X;- and c; be the input and output of the inner encoder,
respectively. For each iteration, the inner decoder receives the intrinsic information
L.(¢;) and the a priori knowledge on the inner information bits La(ﬁ;). Accordingly,
the inner decoder outputs two L-values corresponding to the coded and uncoded bit
streams denoted by L(¢;) and L(X}), respectively. The difference L(X’;)— La(X}), which
combines extrinsic and channel information, is then passed through a bit deinterleaver
to become the a priori input L,(X;) of the outer decoder. The outer decoder feeds
back extrinsic information Le(X;) = L(X;) — La(X;) which becomes the a priori knowl-
edge La(fc;) for the inner decoder. It is worth noting that the a priori information
concerning the uncoded input of the outer decoder is zero all the time, since there is
no information from this side of the decoder!. Furthermore, the outer decoder does
not pass information corresponding to the uncoded, but to the coded bits to the inner
decoder, since the (interleaved) coded output of the outer encoder corresponds to the
uncoded input of the inner encoder. The decoder structure of the upper branch (j = 1)

is depicted in Fig. 3.3.

!This is assumed here because we are dealing solely with the decoding procedure of one serial branch.
When dealing with the whole hybrid system, L.(X}) will vary, since it is the information exchanged
between the parallel branches.

3. ASYMPTOTIC ANALYSIS OF HYBRID TURBO CODES 31

from channel

inner decoder
L.(¢y) L(¢y)—
outer decoder
L.(x) LE)—0—TI;! Lak1) L(%)
_La(ﬁl) L(fll)
Hl X

Figure 3.3: Decoder structure of the upper branch for the hybrid turbo code

3.1.3 Hybrid turbo code decoding

Once we know how the serial and parallel decoding is performed, we are able to describe
the decoding procedure of the whole system. At first, the channel provides information
about the outputs corresponding to the two inner encoders, i.e., Ly(¢1) and L,(€2).
By now, assume the upper branch to be decoded first. Thus, the upper inner decoder
calculates the estimated vector of L-values L(X]), subtracts its a priori L-values L,(X)),
and then passes it to the outer decoder (note that for the first iteration L,(%}) = 0). The
outer decoder receives Ly (%) = IT; (L(X]) — La(X})), calculates its estimated L-values
L(x1), and then passes the extrinsic information Le¢(%X1) = L(X1) — La(X1) to the upper
inner decoder. This procedure is performed for a certain number of iterations n; 1.
At the end of these iterations, the upper branch calculates the extrinsic information
regarding the information bits Le(t1) = L(01) — La(11) — La(€1) and passes it on to the
lower branch. Note that L,(t;) = 0 is zero when this value is calculated for the first
time. The decoding of the lower branch starts with the activation of the outer decoder,
which receives a priori information from the upper branch L,(ty) = II,(Lc(1)) and
from the channel L,(X2). Note that, since the inner encoder is systematic, the channel
information regarding the output of the outer encoder is the systematic part of the inner
encoder output, thus it can be passed on to the outer decoder without activating the
inner decoder. The outer decoder computes the values L(x3) and passes the extrinsic
information Le(X2) = L(X2) — La(X2) on to the lower inner decoder. The inner decoder
then subtracts its a priori values L,(X5) = Ila(Le(X2)) from its estimated values and
forwards it to the outer decoder. The lower branch is decoded with n; o iterations
ending with an activation of the outer decoder, which subtracts the initial channel

information L,(¢2) and the a priori values coming from the upper branch L,(a2) from

32 3.2. GLOBAL AND LOCAL EXIT CHARTS

La & inner decoder L(¢
&) Lo(e) L(é1) e

outer decoder

L.(x}) L(ki) H@ 1 L.(%1) L(x1)

L,(ay) L(ty)

I

Figure 3.4: Decoder structure of a serial concatenation inside an APP decoder.

its estimation L(tp). This whole process is executed for nj 4 iterations, called global
iterations. Each subsequent decoding of a branch is performed as described for the
lower branch, since the a priori information for each branch will be non-zero, i.e., it
is formed by the extrinsic information from the other branch. The iterations within
the branches are called local iterations. As we stated before, the hybrid turbo code
can be seen as a parallel concatenation of two serially concatenated codes. In that
way, the lower and upper decoders of the parallel concatenation can be represented as
constituent blocks as shown in Fig. 3.4. Those blocks are then connected as shown in
Fig. 3.2.

3.2 Global and local EXIT charts

In order to analyze the iterative decoding procedure, we can construct EXIT charts
corresponding to the local as well as to the global iterations. In [32], the authors studied
the convergence behavior of hybrid turbo codes by means of global EXIT charts, but
the local charts and the interaction between the latter and global charts were not
explored. In this section, we study the construction of the local charts and review the

construction of the global one.

3.2.1 Local EXIT charts

The construction of the local EXIT charts consists in drawing the transfer characteristic

of a serial concatenated coding scheme [37]. In the previous section, we mentioned that

3. ASYMPTOTIC ANALYSIS OF HYBRID TURBO CODES 33

1 T T T T

— - — upper outer decoder

09+ lower outer decoder
inner decoder

0 01 02 03 04 05 06 07 08 09 1
Ia,iaje,o

Figure 3.5: Local EXIT chart of the example hybrid turbo code for Ej,/No= -1.22 dB. For this
SNR, it can be noticed from this chart that the system will converge for n;, 4 > 3.

for the serially concatenated codes the a priori information concerning the uncoded
input of the outer decoder is zero during the whole decoding procedure. When we deal
with the whole system, this is not valid anymore, since at the end of each local decoding,
one parallel branch shall send information concerning the uncoded bits to its adjacent
branch. That is, when dealing with the whole hybrid turbo code, we now state that
the information concerning the uncoded input of the outer decoder is constant during

the local decoding (decoding within each serial branch).

Figure 3.5 illustrates this situation by representing the local EXIT chart of a hybrid
turbo code for a total of four global iterations (n; ; = 4), where the vertical axis denotes
the extrinsic (a priori) information of the inner (outer) decoder I.; (I,,) and the
horizontal axis denotes the a priori (extrinsic) information of the inner (outer) decoder
I.; (Ieo). The solid and the dashed thin lines represent the transfer characteristic of
the upper and lower outer decoder, respectively. The bold line represents the transfer
characteristic of the inner decoder which remains unchanged during the decoding
procedure. This is due to the fact that the a priori information in the beginning

of the decoding procedure is solely due to the intrinsic information, which remains

34 3.2. GLOBAL AND LOCAL EXIT CHARTS

constant during the global decoding procedure.

The transfer characteristic of the outer decoder starts at the abscissa zero (first local
decoding operation) and is increased at the beginning of each further local decoding.
This is due to the fact that at each local iteration, new information regarding the
uncoded bits (I,(1)) will be received from the adjacent parallel branch. It is this gain
of information that enables us to generate a different transfer characteristic curve for
each local decoding operation. From now on, we will refer to this set of information
transfer curves of the outer decoder for different I, (1) (together with the transfer curve
of the inner decoder) as local EXIT charts.

Each global iteration is represented by a pair of curves for the outer decoders (one
dashed line together with one solid line). The convergence of the decoding procedure
for the represented SNR can be inferred from Fig. 3.5, since there will be an “open
tunnel” between the transfer characteristic of the inner and outer decoders for n; 4 > 3,
i.e., the mutual information exchanged between them will converge to one in a limited

number of iterations.

3.2.2 Global EXIT charts

For the construction of the global EXIT chart, we consider each serial decoding struc-
ture of a branch as one component decoder in a parallel concatenation. The global
EXIT chart depicts the mutual information concerning the a priori values L,(11;) and
the extrinsic values Le(@;) = L(0j) — La(tj) — La(¢;j). The global EXIT chart for
Ey/Ny = 1 dB is shown in Fig. 3.6.

Note that due to the different code rates for the global and local systems, the corre-
sponding local EXIT chart is depicted in Fig. 3.5 for E,/Ny = —1.22 dB, i.e.,

Ey B

5
— = — 101 —. .
Ny ldB,R=1/5 Ny dB,R:1/3+ Ologao 3 (3:3)

As expected from the analysis of the corresponding local EXIT chart depicted in

Fig. 3.5, the iterative decoding converges.

3. ASYMPTOTIC ANALYSIS OF HYBRID TURBO CODES 35

Y
o
ot

T
1

e
wW
T
1

0001 02 03 04 05 06 07 08 09 1

]a,17 Ie,2

Figure 3.6: Global EXIT chart with decoding trajectory for the example hybrid turbo code
with n4 1 = nie =2 and Ey/Ng = 1 dB (lower decoder activated first).

3.3 Relation between local and global EXIT charts

The analysis of both local and global EXIT charts provides a good insight into the
iterative decoding procedure. Since they lead to the same conclusion about the decoder
convergence, a mathematical relation between them is to be expected. The derivation

of this relation is the subject of the present section.

The local EXIT charts relate the a priori and extrinsic information concerning the
codewords of the outer decoder, i.e., they show the relation between I(x;L,(X)) =
I o(%x) and I(x;Le(X)) = I o(%). Applying Eq. (2.4) for finitely long sequences, the
mutual information between some data sequence x and the corresponding L-values

L(x) can be written as

I =1I(x;L(X)) = E{1 —logy(1 + ¢ %o L@} (3.4)

The global EXIT chart, instead, plots the relation between the mutual information of

a priori and extrinsic values regarding the information bits, i.e., I(u; La(0)) = I, (1)

36 3.3. RELATION BETWEEN LOCAL AND GLOBAL EXIT CHARTS

and I(u; Le()) = I j(01) where j = 1 (upper branch), 2 (lower branch).

In the local EXIT charts, we should now focus on the points where I, ,(x) = 0, i.e., the
points where the a priori information regarding the output bits of the outer encoder
is zero. In this situation, all the knowledge that the outer decoder has about X comes
from the information regarding G provided by the other branch. Since the code is

systematic, it is not difficult to see that
I.o(X) = Ro - I (1) , (3.5)

where R, is the rate of the outer code and j = 1 or 2 depending whether the upper or

lower decoder was activated in the corresponding local decoding, respectively.

Equation (3.5) relates two quantities that are depicted in different EXIT charts, thus
it can be used to link both representations. On the one hand, from the local EXIT
chart, we will be able to calculate the global decoding trajectory from the points of zero
ordinate (I, (%) = 0), since at these points, all the knowledge that the outer decoder
has about x comes from the information regarding t. Then, using Eq. (3.5), we can
compute the corresponding I (). On the other hand, by directly evaluating the global
EXIT chart where the decoding trajectory and the transfer curve of the active branch
meet, one can compute the points of the local EXIT chart where I, ,(x) = 0. This
situation is shown in Fig. 3.7 for the local and global EXIT charts depicted in figs. 3.5
and 3.6. Note that since the R, = 0.5, I (%) = 0.5 I, j(1), where j = 1 for the upper

branch (dashed arrows) and j = 2 for the lower one (solid arrows).

Figure 3.8 depicts the local EXIT chart for Ey/Ny = —1.77 dB (or Ey/Ny = 0.5 dB
if we refer to the whole system). From this chart, we can observe that the decoding
will not converge for this SNR due to the intersection between the transfer curves of
the inner and outer decoder. It is worth noting that, in this example, the more local
iterations are performed, the closer the transfer curves of the outer decoder lie to each
other. This reflects the fact that there is no further gain of information about . This
is depicted in the corresponding global EXIT chart of Fig. 3.9 when the transfer curves
of each branch intersect. Note that, as stated in Eq. (3.5), the point in the local chart
to where the transfer curves converge is exactly half of the ordinate of the point where

the transfer curves of the global EXIT chart intersect.

3. ASYMPTOTIC ANALYSIS OF HYBRID TURBO CODES 37

1 T T T T

— - — lower outer decoder
0.9 H upper outer decoder
m— inner decoder

0.7 : //-////

0 0.6 s /e

04l

4 05 06 07 08 09 1

a,ine,o

0.8

0.7t

o~ 0.6
<
~
T 05¢

[0
~o04f

0.3t i : : T

0.2 i
0.1 i

06001 02 03 04 05 06 07 08 09 1

Ia717 Ie72

Figure 3.7: Depiction of the relation between the points I, ,(X) = 0 in the local EXIT chart and
the global decoding trajectory for the example hybrid turbo code. The charts were constructed
for E/No = 1 dB (related to the global system) with the lower decoder being activated first.

3.4. CONSTRUCTION OF THE LOCAL EXIT CHART FROM THE

38 TRANSFER CHARACTERISTIC OF THE INNER AND OUTER CODES
1 T T T T
— - — upper outer decoder
0.9+ lower outer decoder
inner decoder
0.8
0.7
o 0.6
o]
o5t
~ 0.4}
0.3
02F,
/
0.1}
0601 02 03 04 05 06 07 08 09 1

Ia,i: Ie,o

Figure 3.8: Local EXIT chart for the example hybrid turbo code for E,/No=0.5 dB (relating
to the whole system). Local decoders do not converge for this SNR.

3.4 Construction of the local EXIT chart from the

transfer characteristic of the inner and outer codes

We still need to show how to construct the local EXIT charts from the transfer
characteristic of the inner and outer codes. This reduces the design of good hybrid
turbo codes to the well-known design of serially concatenated convolutional codes [37].
In order to construct the whole local EXIT chart, we must be able to compute the
a priori information regarding the message bits (1, (1)), since for each I, j(t1) (that
remains constant during each local decoding operation) we will have a different transfer

curve for the outer decoder.

The problem can be formulated as follows: given I, ,(X), o o(X), and I, j(@1), compute
I. (@) (which will be used as a priori information regarding the message bits in the
next local decoding). It should be clear that I, ,(%x) and I, o(X) can be evaluated from
the EXIT chart of the serial concatenation for a given I, ;(1). Note that I, (i) is
calculated recursively, that is, I, 1 ()9 = I, 5(@)®9) for it,g > 1, and I, (1) "9) =

I 1 (0)®97Y) for it, g > 1, with I, 2()(Y) = 0 where it, g is an integer and stands for

3. ASYMPTOTIC ANALYSIS OF HYBRID TURBO CODES 39

0 01 02 03 04 05 06 07 08 09 1

O i i

Ia,l, Ie,2

Figure 3.9: Global EXIT chart of a hybrid turbo code for E; /Ny = 0.5 dB.

the current global iteration?.

The soft output of the outer decoder concerning the information bits can be written as
Le(ﬁ) = L(ﬁ) - La(ﬁ) - Lch(ﬁ) ’ (36)

where L, (1) is the intrinsic information concerning the uncoded bits. As indicated by
simulations, we assume the involved random variables to have a symmetric Gaussian
distribution. Under the Gaussian assumption and assuming independence between the
random variables involved, we can write
2 2 2 2
ol =0, —0s— 05, (3.7)
where the variances o2, th, and o2 are calculated inverting the .J(.) function, i.e.,

o = ST (@)%, 08, & T (T (), 0 = T H(I(0))?

where I, (4) = I(u; Ley()) and I() = I(u; L()). Note that I, (1) can be inferred

2Note that we are assuming the lower branch to be decoded first.

3.4. CONSTRUCTION OF THE LOCAL EXIT CHART FROM THE
40 TRANSFER CHARACTERISTIC OF THE INNER AND OUTER CODES

from the local EXIT chart from the point where the inner decoder information transfer
curve intersects the ordinate axis. I(@1) can be calculated from the local EXIT chart in

the following way.

Since L(X) = La(X) + Le(%X), and assuming that L,(%) and Le(%X) are independent

Gaussian distributed variables, we can write

0% = 0ao+ Oco (38)
where 02, & J 1 (Lo(%))? and 02, & J '(Ieo(X))?. Since I,o(%) and Ieo(X) are
known, we can compute I(x;L(x)) = I(X) = J(o0,). Finally, note that I(X) contains

information regarding both parity and information bits. Thus, we can write
I(%) =I(0) - Ry + 1(p) - (1 — R,) , (3.9)

where R, is the rate of the outer code and I(p) is the information regarding the
parity-check bits. Assuming that the L-values carry approximately the same amount

of information for every bit, we can say that I(a) ~ I(p) and then

I(4) ~ I(%) . (3.10)

Note that Eq. (3.5) can also be derived from (3.9) by noticing that in the points of the
local EXIT chart where I, (%) = 0, the information about the parity bits equals zero,
ie., I(p) = 0. By means of egs. (3.7), (2.14), (3.8), and (3.10), we can compute the
extrinsic information regarding the message bits (1) and then compute the transfer
curve of the outer decoder when I,(a) # 0 thus deriving the complete local EXIT
chart. With the local EXIT chart and Eq. (3.5), we are able to predict the convergence
behavior of the global system without the need of constructing the whole global EXIT
chart. That is, the convergence of the system may be predicted locally by analyzing
the local EXIT charts. This reduces the analysis of the global system to the study of
a serial concatenated code, since the convergence behavior of the global system can be
predicted from the local EXIT chart.

Chapter 4

Multi-Edge-Type Unequal-Error-
Protecting LDPC Codes

Herein, a multi-edge-type analysis of LDPC codes is described. This analysis leads
to the development of an algorithm to optimize the connection profile between the
different protection classes defined within a codeword. The developed optimization
algorithm allows the construction of unequal-error-protecting low-density parity-check
(UEP LDPC) codes where the difference between the error rate performance of the
protection classes can be adjusted. Concomitantly, it enables the construction of LDPC
codes with UEP capabilities that do not vanish as the number of decoding iterations

Srows.

4.1 Unequal-error-protecting LDPC codes

When the performance of an LDPC code is considered, it is widely noticed that, at least
for a limited number of decoding iterations, that the connection degree of a variable
node affects the error rate of the symbol it represents, i.e., a higher connection degree
lowers the probability of an erroneous decoding of a variable node. This observation
led to the investigation of irregular LDPC codes for applications where unequal error
protection is desired [38—40], since these codes inherently provide different levels of
protection within a codeword due to the different connection degrees of its variable

nodes. Other strategies to generate UEP LDPC codes include adapting its check node

41

42 4.1. UNEQUAL-ERROR-PROTECTING LDPC CODES

degree distribution as done in [41], and using an algebraic method based on the Plotkin
construction developed in [42]. In the present chapter, we consider only UEP LDPC
codes designed by means of the optimization of its variable node degree distribution

while the check node degree distribution is fixed.

The UEP LDPC codes considered herein were introduced by Poulliat et al. in [39].
The idea behind the development of these codes is based on dividing a codeword

into different protection classes and defining local variable degree distributions, i.e.,
(4)

. (F))
each protection class is described by a polynomial A\U)(z) = Zfi’g‘” N 271 where

/\Z(j) represents the fraction of edges connected to degree ¢ variable nodes within the
protection class C;. Based on the observation that the error rate of a given protection
class depends on the average connection degree and on the minimum degree of its
variable nodes, the authors propose an optimization algorithm where the cost function
is the maximization of the average variable node degree subject to a minimum variable
()

Umin *

applied in the derivation of the UEP LDPC codes considered in this chapter can be
found in [39].

node degree d A detailed description of the hierarchical optimization algorithm

Furthermore, the authors in [39] interpret the unequal-error-protecting properties of an
LDPC code as different local convergence speeds, i.e., the most protected class is the one
that converges with the smallest number of decoding iterations to its right value. This
assumption is made in order to cope with the observation that, even though irregular
LDPC codes present UEP capabilities for a low number of message-passing iterations
regardless of the construction algorithm used, this capability vanishes for some LDPC
constructions as the number of iterations grow. This phenomenon was also observed
in [42], where the authors argue that no difference between the performance of the
protection classes can be detected after 50 iterations. On the other hand, the results

presented in [40] show significant UEP capabilities even after 200 decoding iterations.

This discrepancy was studied in [43], where it is pointed out that the connection degree
among the variable nodes belonging to different protection classes is a determining
property for the preservation of the UEP capabilities of an LDPC code when the number
of message passing iterations for decoding grows. More specifically, the authors show
that LDPC codes defined by the same pair of degree distributions present different UEP
capabilities for a moderate to large number of decoding iterations when constructed by
means of distinct computer-based design algorithms. For example, codes constructed
with the random [23] and ACE [44] algorithms preserve the UEP capability indepen-

4. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES 43

dently of the number of decoding iterations, while this same capability vanishes as the
number of decoding iterations grows for codes constructed by means of the PEG [45]
or the PEG-ACE [46] algorithms.

These observations motivated us to investigate the application of a multi-edge-type
analysis for UEP-LDPC codes, since it allows to distinguish of messages exchanged
among the different protection classes during the iterative decoding. This ability to
distinguish messages according to its originating protection class provides us with
the means for controlling the connectivity among the different classes. This enables
not only the construction of LDPC codes with non-vanishing UEP capabilities for a
moderate to large number of iterations, but also to control the difference in the error-
rate performance among the protection classes. Before proceeding to the actual multi-
edge-type analysis, we introduce some notation that will be useful in the forthcoming

description.

4.1.1 System model and notation

2
n

BPSK signaling is assumed. The unequal-error-protecting LDPC codes considered

The transmission of information over an AWGN channel with noise variance o> using
herein are binary, systematic, rate R = k/n irregular LDPC codes with variable
and check nodes degree distributions defined by A(z) = Y5 \;z'~! and p(z) =
Z?;’g‘”‘ pix'~1 where d and d

of the code, respectively. The bits within a codeword are divided into N, disjoint

are the maximum variable and check node degrees

VUmazx Cmax

protection classes (C1,Cy,...,Cy,) with decreasing levels of protection. Furthermore,
we consider that all the n —k redundant bits are associated with the less protected class
Cy, and that the vector @ = {aq, ..., an, 1} represents the fraction of information bits

associated with the first N. — 1 protection classes.

4.2 Multi-edge-type unequal-error-protecting
LDPC codes

Unequal-error-protecting LDPC codes can be included in a multi-edge framework in a
straightforward way. This can be done by distinguishing between the edges connected

to the different protection classes defined within a codeword. According to this strategy,

44 4.2. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES

the edges connected to variable nodes within a protection class are considered to be all
of the same type. For example, consider the factor graph of Fig. 4.1 where the arrows
represent the received channel information and the variable nodes are divided into 2
disjoint protection classes C; and Cy represented by the gray and white variable nodes,
respectively. A multi-edge-type description arises by letting the edges connected to the
variable node of class C; and Cs be defined as type-1 (depicted by solid lines) and
type-2 (depicted by the dashed lines) edges, respectively.

Figure 4.1: Multi-edge-type factor graph of a code with 2 protection classes.

Considering that each variable node has access to only one channel observation and
that there are no punctured bits, (i.e., b = (0,1) for all variable nodes), the variable
and check node multinomials for this example are given by

3 239 15, 3

1 3 1
v(r,x) = ?rlaff + ?m;% + ?rlxg, u(x) = Z 210 + ?xlx% + ZT1T5 -

It is worth noting that as opposed to the variable nodes, the check nodes admit connec-
tions with edges of different types simultaneously as can be inferred from Fig. 4.1. In the
following, we will divide the variable nodes into m, protection classes (C1,Cs, ..., Cp,,)

with decreasing levels of protection, i.e., m, = N,.

4.2.1 Edge-perspective notation

The connection between the protection classes occurs through the check nodes, since
they are the only nodes that can have different types of edges attached to them.
Consider irregular LDPC codes with node-perspective variable and check node multi-
edge multinomials v(r,x) = > vp arPx? and p(x) = 3 pax9, respectively. In the

following, we consider unpunctured codes and that the variable nodes have access to

4. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES 45

only one observation. Furthermore, variable nodes within the protection class C; are

only connected to edges of type j.

In order to optimize the amount of connection between the protection classes, it will
be more convenient to work with the edge, instead of the node perspective. We now

define the following edge-perspective multi-edge multinomials

’Umaz

. 1/1, i
A (r,x) = 2270 Z)\ = Z Agit, (4.1)

ij

. ux)
P00 = Zp , (4.2)
5‘33

where the rightmost term of Eq. (4.1) is obtained letting d; = i. Furthermore, /\Z(j)

) denote

denote the fraction of type j edges connected to variable nodes of degree i, p4
the fraction of type j edges connected to check nodes with edge degree vector d, x4 =
|) x-i with d; = 0, and 1 denotes a vector with all entries equal to 1 with length
being clear from the context. In the next section, we will use egs. (4.1) and (4.2) in the
derivation of the optimization algorithm for the connection profile among the protection

classes of an UEP LDPC code.

4.2.2 Asymptotic analysis

Our main objective is, given a UEP LDPC code with overall variable (A(z)) and
check node (p(x)) degree distributions, to optimize the connection profiles between
the different protection classes in order to control the amount of protection of each
class. A second goal is to be able to construct UEP LDPC codes with non-vanishing
UEP capabilities when a moderate to large number of decoding iterations is used. The
algorithm we derive here can be applied for any irregular pair of degree distributions.
However, in order to reduce the search space of the optimization, we suppose from now
on that the LDPC code to be optimized is check-regular, i.e., all the check nodes have

the same degree d..

Despite having the same degree, each check node may have a different number of edges
belonging to each of the m,. classes. To understand this, consider for example a check
node with an associated edge degree vector d = (dy,ds, ..., d,,), where d; is the number

of connections to the protection class i and fol d; = d.. If we then consider a code

46 4.2. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES

with m. = 3 protection classes, each check node is connected to di edges of class 1,
ds edges of class 2, and ds edges of class 3, where dy, d3, and d3 are not necessarily
equal. This posed, we can compute the evolution of the iterative decoding by means
of density evolution. We assume standard belief propagation decoding of LDPC codes
where the messages exchanged between the variable and check nodes are independent
log-likelihood ratios having a symmetric Gaussian distribution (variance equals twice

the mean).

Let I éjl) (Ic(jl)) denote the mutual information between the messages sent through type-j
edges at the output of variable (check) nodes at iteration [and the associated variable

node value. We can write I gl) and Igl) as

dvmax

- 7 (ot + =0T R) | (13)

demaz
9 =1-5 S 4 \/d — 1[I 2+ S dg g1 (1 - 1))

=1 d:d;=i s#£j
(4.4)

Equation (4.3) can be derived from Eq. (2.18) replacing A; by)\(J) and I.;_; by I c(l) 1
since we are considering each protection class individually, and variable nodes in class j
only receive messages from check nodes through edges of type j. Similarly, Eq. (4.4) can
be derived from Eq. (2.19) with the addition of an extra term (rightmost sum) in order
to consider the messages arriving from protection classes others than j. Furthermore,
the coefficients p; in Eq. (2.19) are replaced by the sum Zd:dj:i p((ij) in order to take

into account all possible edge degree vectors d with d; = i.

As done in Section 2.1.2 for irregular LDPC codes, we can combine egs. (4.3) and (4.4)
summarizing the density evolution as a function of the mutual information of the
previous iteration, the mutual information contribution from the other classes, noise

variance, and degree distributions, i.e.,

Ic(]l) - (Avpg)7o- I(]) Ic,l—l)a (4.5)

no cl 1

dvmax me

where the bold symbols represent sequences of values defined as A = {{)\ } U Y

4. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES 47

]] deaCL‘ e o y
p((ij) = {pfij:)dj:i}izl yand I 1 = {Ic(,sl)—l}gnzl with s # j. By means of Eq. (4.5),
we can predict the convergence behavior of the iterative decoding and then optimize
the degree distribution p\)(x) under the constraint that the mutual information must

increase with the number of iterations, i.e.,

F(\p{,02,19,1) > 10). (4.6)

4.2.3 Optimization algorithm

In [42] and [43], it was pointed out that the UEP capabilities of a code depend on the
amount of connection among the protection classes, i.e., if the most protected class
is well connected to a less protected one, the performance of the former will decrease
while the performance of the latter will be improved. For example, let us assume a
code with 2 protection classes and d. = 4. The possible values for the check nodes’
edge degree vectors d = (di,dg) are (0,4), (1,3), (2,2), (3,1), and (4,0). On the one
hand, if a code has a majority of check nodes with d = (4, 0), the first protection class
will be very isolated from the second one, which will lead to an enhanced performance
difference between the two classes. On the other hand, if a large amount of the check
nodes are of type d = (2,2), the protection classes will be very connected, which favors
the overall performance but mitigates the UEP capability of a code at a moderate to
large number of decoding iterations. This example suggests that to control the UEP
capability of an LDPC code and to prevent this characteristic from vanishing as the
number of decoding iterations grows, it is necessary to control the distribution of the

check nodes’ edge degree vectors, i.e., optimize pl)(x).

These observations about the influence of the connection between the protection classes
on the UEP characteristics of a code can be further analyzed by means of a detailed
computation of the mutual information, which may be performed by considering the
edge-based mutual information messages traversing the graph instead of node-based
averages. Such an analysis and its results will be presented in Section 4.4. In this
section, we introduce an algorithm developed to optimize the connection profile between
the various protection classes present in a given UEP LDPC code, i.e., p(j) (x). Initially,
the algorithm computes the variable node degree distribution of each class)\(j)(r,x)
based on the node-perspective overall variable node degree distribution S\(x) from the
given UEP LDPC code and the number of nodes in each protection class. The way this

computation is done will be outlined in the following example.

48 4.2. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES

Example 1 Consider a length-100, rate-1/2, UEP LDPC' code with m. = 3 protection
classes, wvariable node degree distribution from a mode perspective given by S\(x) =
0.0521% 4 0.227 + 0.22° + 0.5522, and a = (0.2,0.8). The first protection class will
then be formed by the first 10 variable nodes with higher degree, and the second class
by the remaining 40 systematic variable nodes. Following this strategy, the first class
contains 5 degree-10 and 5 degree-7 variable nodes. The second protection class is
formed by 15 degree-7, 20 degree-5, and 5 degree-2 variable nodes. Finally, the third
protection class is composed of the redundant bits and has only degree-2 variable nodes.

This results in the following multi-edge degree distribution
v(r, @) = 0.05r121° + 0.05r 2] + 0.15r1 28 4+ 0.2r 25 + 0.05r 23 4+ 0.5r 23 .
Applying Eq. (4.1), we obtain
AN (7,) = 0.58824r 2 4 0.411761r 28

A®) (1, x) = 0.48837r 25 + 0.46512r 23 + 0.046517 25

A (r 2) = riag .

o
Once the degree distributions)\(j)(r,x) for j = 1,...,m, are known, the algorithm
proceeds sequentially optimizing the distributions p@)(x) for j = 1,...,m,, proceeding

from the least protected class to the most protected one. This scheduling is done to
control the amount of messages from the less protected classes that are forwarded to
the more protected ones, i.e., the check nodes should have the minimum number of
connections to the least protected classes in order to avoid that unreliable messages are

forwarded to better protected ones.

Since we are using linear programming with a single objective function, we chose it to
be the minimization of the average check node degree within the class being optimized,
i.e., it minimizes the average number of edges of such a class connected to the check
nodes. This minimization aims at diminishing the amount of unreliable messages (i.e.,
the ones coming up from the less protected variable nodes) that flows through a check

node.

In addition to it, in order to control the amount of connection among the protection

4. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES 49

classes, we introduce the set of vectors 6U) = (5{, e ,5;:) for j = 2,..., m, defined as
follows. Given a check node with edge degree vector d = (dy,...,dy,), each coordinate
(5{ defines the maximum allowed d;, for ¢ # j when d; > 0. For example, assume an
UEP LDPC code with m, = 3 protection classes, §®) = (2,3,3), and 6 = (2,4). This
implies that a check node with connections to the protection class Cs (i.e., d3 > 0) can
be connected to a maximum of 5{’ = 2 edges of type 1, 55’ = 3 edges of type 2, and 5§’ =3
edges of type 3. In turn, each check node with connections to Cy but no connections
to C3 can be connected to a maximum of 5% = 2 edges of type 1 and 5% = 4 edges of
type 2. Roughly speaking, each vector 6\) adjusts the degree of connection between
C; and the more protected protection classes Cj/, j'° < j while setting the maximum

allowed d;. We will refer to the vectors 6U) as interclass connection vectors!.

Given o2 and 6Y) for j = 2,...,me, the check node profile optimization algorithm for
a given UEP LDPC code with parameters 5\(33), n, R, a, and d., can be written as
stated in Algorithm 2. The optimization is successful, when a solution p\¥)(x) is found

which converges for the given 2 and 8). Note that the optimization can be solved by

Algorithm 2 Check node profile optimization algorithm

For j=m.tol
1. Compute AU (z)
)

2. Minimize the average check node degree chzl 5 4. dj=s p((ij under the

following constraints,
de j
Cl :Zszl d:dj=s pg) =1 ’
Co:di <8, Vi=1,....j andd:d; >0,

Cs :F(\p 02, 1,I)> 1,
VIelo1),

Cy ¥Vd:1<dy <d.andj >,
pg) is fixed .

end

'Note that in the optimization algorithm proposed herein, it makes no sense to define a vector IS
since the distribution p(l)(x) is completely determined by the optimization of the other protection
classes.

50 4.3. SIMULATION RESULTS

linear programming since the cost function and the constraints (C1) and (C3) are linear
in the parameters pg). The constraints (C2) and (C4) are the interclass connection
and the previous optimization constraints, respectively. Once we have optimized the
check-node profile, the code can be realized through the construction of a parity-check

matrix following the desired profile.

4.3 Simulation results

In this section, simulation results for multi-edge-type UEP LDPC codes with optimized
check node connection profile are presented. We designed UEP LDPC codes of length

n = 4096, m, = 3 protection classes, rate 1/2, and d = 30 following the algorithm

VUmazx
of [39]. The proportions of the classes are chosen such that Cy contains 20 % of the
information bits and Cy contains 80 %. The third protection class C3 contains all parity

bits. Therefore, we are mainly interested in the performances of classes C; and Cs.

The variable and check node degree distribution for the designed UEP LDPC code are
given by A(z) = 0.2130z + 0.092722 + 0.25112% + 0.2521z'7 + 0.09652'® + 0.09462%°

8 respectively. All parity-check matrices were realized using protograph-

and p(x) = x
based constructions [47]. In order to show the role of the interclass connection vector,
we optimized the multi-edge check node degree distribution of the above described
UEP LDPC code for different interclass connection vectors. This resulted in four codes
(referred to as codes I, II, III, and IV) with different sets of 60) according to Table 4.1.
The multi-edge distributions from an edge perspective for the optimized codes are

shown in Tables 4.2 and 4.3.

4.3.1 Low number of iterations

In this subsection, we describe simulation results for a total of 7 decoding iterations
aiming at systems with computational complexity and decoding time constraints (as

most of the practical decoding schemes).

Table 4.1: Interclass connection vectors for four optimized multi-edge-type UEP LDPC codes.
I II 111 v

6% [(22,7 (227 (24,7) (0,2,7)
6@ | (65) (45 (65) (6,5)

4. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES 51

Table 4.2: Local variable degree distributions. The coefficients /\Ej) represent the fraction of
edges connected to variables nodes of degree ¢ within the class Cj.

¢ C Cs
A =0.00197 | AP =0.23982 | AP = 0.93901
AW = 057263 | AP =0.76018 | AP = 0.06099
Ay =0.21085
A = 0.21455

Figure 4.2 shows the performance of codes I and II. The difference between these codes
results from the interclass connection vector of Cs. Since Code II has a lower 67, the
classes C; and (9 are more isolated from each other. This can be concluded from
Table 4.3 by the presence of check nodes with edge degree vector d = (9,0,0) in Code
II, which indicates check nodes connected only to type-1 edges. Due to its higher
isolation, it is expected for Code II that C; has a better performance while the error

rate of (5 is worsened as can be observed from Fig. 4.2.

100 T T

BER

4 —&6—(C4 Code 1
10 L O Oy Code T |iiiiirisionininsiinininiiiin O
—6o—C4 Code II : :
10_5 —0—-Cy Code 11
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Ey /Ny (dB)

Figure 4.2: Error performance of codes I and II for 7 decoding iterations.

Table 4.3: Multi-edge check node degree distributions from an edge perspective. The coefficients pfij) represent the fraction of edges

of class j connected to check nodes of type d.

¢S

I II II1 v
p((il) P£12) ((13) p((il) p((f) 33) pg) P£12) 33) p((il) P£12) 33)
0 0 0 0 0 0 0 0 0 0 0.19681 1
0.20589 | 0.27553 | 1 0.20589 | 0.27553 | 1 0 0 0 0 0 0
0 0 0 0 0 0 0.34315 | 0.91844 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0.099360 | 0.16621 | 0O 0.43308 | 0.72447 | O 0 0 0 0.035770 | 0.059840 | 0O
0.23258 | 0.24900 | 0O 0 0 0 0.12189 | 0.081560 | O 0.24449 | 0.26175 0
0.46217 | 0.30926 | O 0 0 0 0 0 0 0.71974 | 0.48160 0
0 0 0 0.36103 0 0 0.53496 0 0 0 0 0

SLTINSHY NOLLVTININIS €7

4. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES 53

Note that varying 67 does not change the degree of connection of C; and Cy to Cs.
This can be inferred from Table 4.3 which shows that the fraction of edges connected

to check nodes of type d = (2,2,5) remains constant for both codes.

Let us now compare the performances of codes I and III. Since code III has an interclass
connection vector 8 = (2,4,7) while Code I has 66 = (2,2,7), the variable nodes
within protection class Cs will be more connected to the least protected bits of C3 in
the former code. In fact, from Table 4.3, we see that for Code IIT about 92 % of the
type 2 edges are connected to check nodes of type d = (2,4, 3) while only 27 % type-2
edges have connections to check nodes connected to C3 on Code I. This worsens the

performance of Cy for Code III as depicted in Fig. 4.3.

Note however that regardless of its higher isolation, C7 in Code III does not have a
lower error rate than in Code I for high signal-to-noise ratios. This is explained by the
fact that C; on Code I profits from its higher connection degree to Co while in Code
II1, C is very isolated from the other protection classes and also does not profit much

from the connections to C'y due to the poor performance of the latter.

10° ; ;

BER

_4||—%—C1 Code 1
10 & —&—-Cy Code I
—*—C; Code III

—%— -Cy Code 111

02 04 06 08 1 12 14 16
Ey /Ny (dB)

Figure 4.3: Error performance of codes I and III for 7 decoding iterations.

54 4.3. SIMULATION RESULTS

These observations can be inferred from Fig. 4.3. This indicates that there is a limit
where the isolation of a protection class starts to be counterproductive to its perfor-

mance.

For the next simulation, we set 6©) = (0,2,7) and 6 = (6,5). This gives rise to
Code IV where the protection class C7 is not connected to any check node that has
connections to the less protected class C'5. At the same time, 'y and C5 have a high
connectivity between themselves. This has two expected effects. First, since C7 and Cs
are well connected, there is not such a huge difference between their performances as
in Code III. Second, as both C7 and C5 have the lowest connection degree to C3 among
all designed codes, their performances are expected to be enhanced in comparison to
codes I, II, and III. Those observations are confirmed by the simulations depicted in
Fig. 4.4. Furthermore, the isolation from Cj is indicated by the multi-edge check node
degree distribution from an edge perspective of code IV (Table 4.3).

100 T T T T T T
10_1, o P
10_2 .. S
o .
= 3¢
-3
10 LN TP
4
—&6— (1 Code I
4
1077 H| —0m Gy Code T [5G 0
—#— (4 Code IV . .]
_5 —%— - Cy Code IV
02 04 06 0.8 1 12 14 16

Ey /Ny (dB)

Figure 4.4: Error performance of codes I and IV for 7 decoding iterations.

Finally, Fig. 4.5 compares the performances of Code IV and a code constructed by

means of ACE [44] without any optimization of the interclass connection degree. We

4. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES 55

chose ACE as computer-based construction algorithm due to the fact that it is shown
in [43] that it generates LDPC codes with good UEP capabilities. Note that our
multi-edge UEP LDPC code shows better performances for both protection classes,
the considered signal-to-noise ratio range, and number of decoding iterations. For the
most protected class Cy, our scheme has a coding gain of 0.25 dB for a BER = 3- 1074,
while for the protection class Ca, code IV exhibits a gain of more than 0.75 dB for
BER'’s smaller than = 2 - 1072 when compared with the ACE code.

100 T T T T T T

BER

—#*— (1 Code IV
107" H —x— ¢y Code 1V
¢, ACE ‘ ‘]
st - G2 ACE
0.2 0.4 0.6 0.8 1 1.2 14 1.6

Ey/No (dB)

Figure 4.5: Error performance of Code IV and a code constructed by means of ACE without

optimization of the interclass connection degree for a total of 7 decoding iterations.

4.3.2 High number of iterations

Herein, we present the results of simulations performed for a high number of decoding
iterations. We show that by means of our developed multi-edge check node degree
distribution optimization algorithm, it is possible to construct unequal error protecting
LDPC codes with non-vanishing UEP capabilities for a moderate to large number of
decoding iterations. All the bit-error curves depicted in this subsection were obtained

for a total of 50 decoding iterations.

56 4.3. SIMULATION RESULTS

We divide the codes of Table 4.1 into 2 sets. The set composed by codes I and 11T has
non-vanishing UEP capabilities for a moderate to large number of decoding iterations.
In the second set, Code I shows UEP capabilities for high signal-to-noise ratios and code
IV does not show any significant difference between the performance of the protection
classes for a high number of decoding iterations. Figures 4.6 and 4.7 show the simulation
results for both sets for a total of 50 decoding iterations. A close analysis of such
results together with the distributions of Table 4.3 leads to the conclusion that the
isolation between the protection classes is in fact a key parameter to be observed if a

non-vanishing UEP capability is desired for a moderate to large number of decoding

iterations.
100 T T T T T T
-1
10 ,*—_‘*——*-—_A__*___—_*~
TR L L
O ik
-2
LK R T A U S
[aef
£}
m
-3 =0
10 ...
4| | — Cy Code II
10 "k O Oy Code I |11ttt NG
—%— €, Code III ’ ’
_5[| —%— Cy Code III

02 04 0.6 08 1 12 14 16
Ey /Ny (dB)

Figure 4.6: Error performance of codes IT and III for 50 decoding iterations.

Note that while ¢y and Cs have a large interconnection degree for codes I and IV
(there is no check node with connections solely to one of the protection classes), codes
IT and III have check nodes only connected to Cy variable nodes (check nodes with edge
degree vector d=(9,0,0)). On the one hand, to isolate the systematic protection classes
enhances the difference between their performances. On the other hand, the higher the

performance difference, the more penalized the less protected systematic class will be.

4. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES Y

107"
10720 ST]
-3
% 10 NG NG
m
X
10_4 Ll —&—C1 Code I | .. NG NG]
—O— 3 Code I . .
—%— (1 Code IV
—%— (5 Code IV
107° . : : . .
0.2 0.4 0.6 0.8 1 1.2 14

Ey /Ny (dB)

Figure 4.7: Error performance of codes I and IV for 50 decoding iterations.

The simulations of figs. 4.6 and 4.7 indicate that if an UEP LDPC code is desired for
applications where a moderate to large number of decoding iterations will be used, a
high isolation degree between the systematic protection classes is not a desired feature,
since it penalizes too much the performance of both protection classes, i.e., there is a

compromise between class isolation and average performance.

In order to show that our optimization can also generate good performance UEP LDPC
codes with non-vanishing UEP capabilities for a large number of decoding iterations,
we optimized a 3-class code with interclass connection vectors 66 = (4,4,4) and
6 = (4,5) referred to as Code V. For this code, the least protected class is evenly
connected to Cy and Cy. Nevertheless, since Code IV has 6 = (6,5), and Code V has
6 = (4,5), the protection classes C; and Cy are more connected in the former code.
As a consequence, Code V has UEP capabilities for a high number of decoding iterations
while Code IV has not. This can be concluded from figs. 4.7 and 4.8. Figure 4.8 shows
the bit-error ratio curve of Code V together with the performance of the ACE code
already described in the previous section. While presenting a comparable performance
for low SNR’s, code V has a better performance than the ACE code for E,/Ny > 1 dB.

58 4.3. SIMULATION RESULTS

10° , f

10_1 I T S S S S

10_2 ...
0~
2l
. -3

10 ,,,

_4 C, ACE
10 2 CQ ACE | NN
—8— (1 Code V
10,5 e CQ Code V
0.2 0.4 0.6 0.8 1 1.2 1.4

Ey/Ny (dB)

Figure 4.8: Comparison between the error performance of Code V and a code constructed by
means of ACE without optimization of the interclass connection degree. Simulation done with
a total of 50 decoding iterations.

109 :

—8—C1 Code V

-1 : —H0— CQ Code V

BER

1076 1 : 1
0 20 40 60 80 100
iterations

Figure 4.9: BER as a function of the number of decoder iterations for the multi-edge UEP
LDPC code at Ep/Ng = 1.25 dB.

4. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES 59

Lastly, Fig. 4.9 shows the bit-error ratio of Code V as a function of the number of
decoding iterations at a signal-to-noise ratio of 1.25 dB. Note the resilience of the UEP
capabilities as the number of iterations grows. Similarly to codes I, II, III, and IV, we
constructed Code V using a protograph-based construction, since as opposed to PEG
and ACE algorithms, it can generate LDPC codes with a very irregular check node

degree distribution.

In summary, for applications with a low number of decoding iterations, it is desirable
to keep the most protected classes as isolated as possible from the least protected
protection class. However, when a high number of decoding iterations is to be applied,
there is a significant performance improvement when the protection class composed of
the parity bits is evenly connected with the protection classes formed by the systematic
bits. Notwithstanding, for both cases, the higher the isolation between the systematic

protection classes, the higher will be the difference between their performances.

4.4 Detailed mutual information evolution

The analysis of the unequal-error-protecting capabilities of the optimized codes pro-
posed in this chapter can be done by means of mutual information (MI) evolution.
However, as pointed out in [48], the MI analysis as developed in Section 2.1.2 for
regular and irregular LDPC codes generally cannot be applied to the study of multi-
edge-type LDPC codes. The reasoning behind this fact is twofold. First, eqgs. (2.18)
and (2.19) consider an average MI computed for the whole ensemble defined by the
degree distributions pair A\(x) and p(z). This means that the different UEP capabilities
of the codes studied here could not be detected, since they share the same overall
degree distributions. Second, the analysis based solely on A(z) and p(x) considers
the convergence behavior of the codewords to its right value as a whole, not allowing
to investigate the convergence of the protection classes separately. To overcome such

limitations, [49] proposes a detailed MI evolution analysis based on the results of [48].

Before describing the detailed mutual information evolution, recall that during the
iterative decoding of LDPC codes, variable and check nodes act as serially concatenated
decoders exchanging extrinsic information. The extrinsic mutual information between
the output of a variable node and its corresponding codeword bit (I.,ynp) becomes a
priori information for its neighboring check nodes (I, cnp). Analogously, the extrinsic

mutual information between the output of a check node and its corresponding codeword

60 4.4. DETAILED MUTUAL INFORMATION EVOLUTION

bit (I cnp) becomes a priori information for its neighboring variable nodes (15 vnp)-
Using Eq. (2.13), we can write the extrinsic mutual information between the sth output

message of a degree-d,, variable node and its corresponding codeword bit as [48]

dy

I.vnpis =J Z [V Lo vnp))? + [T) | (4.7)
r=1,r#s

where I, ynpj, is the a priori mutual information of the message received by the
variable node through the rth edge and I., = J(o.,). For degree-d. check nodes, we

can use Eq. (2.17) and approximate its extrinsic mutual information by

de

Ieoenpis=1—J Z [T = Lyenpp)? | s (4.8)
r=1,r#s

where I, cnpj, is the a priori mutual information of the message received on its rth

edge.

In the following, we present the extrinsic information transfer analysis described in [49]
and [43]. The algorithm aims at computing the a posteriori MI of each variable
node (instead of node-based averages) at the end of each decoder iteration. This
allows to evaluate of the decoding convergence of each protection class. The algorithm
was proposed originally for the analysis of LDPC codes designed with protographs.
However, we will apply it substituting the protograph base matrix by the parity-
check matrix of our LDPC codes. We will denote each element at location (i,7) of
the parity-check matrix by h; ;. Furthermore, I.vnp(i,7), Ie,cnp(i,7) denote the
extrinsic mutual information between the message sent by V; to C;, and from C; to
V; respectively, and the associated codeword bit. The detailed MI is summarized
in Algorithm 3. Note that the difference between Algorithm 3 and the standard MI
evolution for LDPC codes is that the former omits the averaging through the degree
distributions. Thus, it is possible that codes belonging to the same ensemble have a
different detailed MI evolution. This is an essential feature when investigating UEP

capabilities of a given LDPC code realization.

By tracking the mean a posteriori MI (I,py,) of each protection class, we can study the
UEP capabilities of a given LDPC code, i.e., it can be investigated if distinct protection
classes have different error protection capabilities for given channel conditions and

number of decoding iterations. For example, in Fig. 4.10, we depict the difference

4. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES 61

Algorithm 3 Detailed mutual information evolution

1. Initialization
Compute the channel information I, = J(o.p,) with

2. Variable-to-check update

(a) Fori=1,...,n—kand j=1,...,n,if h; ; =1, calculate

Ievnp(i,j) =J > T avn(s,)P+ [T Ten)?) |
SEM(1),s71

where M(i) is the set of check node incident to variable node v;.
(b) If hyj =0, levnp(i,j) = 0.
(c) Fori=1,...,n—kand j=1,...,n,set Iocnp(i,7) = Le,ynD(%,J).

3. Check-to-variable update

(a) Fori=1,...,n—kand j=1,...,n,if h; ; =1, calculate

Leonp(iyj) =1-J Y [T = Laonnli,9)?]
SEN(4),57#7

where N (j) is the set of variable nodes incident to check node ¢;.
(b) If hij =0, le.cnp(i,j) = 0.
(c) Fori=1,...,n—kand j=1,...,n,set I, ynp(%,5) = I..onD(i,J).

4. A posteriori mutual information evaluation

For j =1,...,n — k, calculate

Loppo(§) = J > T Uavnp(s,)2 + [T (L))
SEM(i)

5. Repeat steps 1 to 4 until a maximum desired number of iterations is
reached.

62 4.4. DETAILED MUTUAL INFORMATION EVOLUTION

between the mean for the variable nodes a posteriori MI of a certain protection class
and its maximum achievable value for each protection class of codes I and IV as a
function of the number of decoding iterations at Ej,/Ny = 1 dB. As done in [43] and [49],
this difference is depicted, since for values near to 1, small differences in the MI can

lead to significant differences in the error rate performance [21].

109
10" B N R
2 ®
- AN
210 Lk O
) S]
S 0 0I0= 0160 0 D 64
| 3]
— 10 L o\ o\ N
*
4 v\. —&— C; Code I
10 T S T P —0—C Code T |
X —#— () Code V|
! —%— - Cy Code TV |
107° . L :
0 5 10 15 20
iterations

Figure 4.10: Distance of the variable node a posteriori MI to the maximum MI as a function
of the number of decoder iterations at Ej, /Ny =1 dB.

For the protection class C' of codes I and IV, there is no detectable gap to the optimum
mutual information (1 — I,pp,,) for more than 7 and 5 decoder iterations, respectively.
The same occurs to the protection class Cs of code IV when more than 9 iterations
are considered. This indicates that for code IV, the BER tends asymptotically to
zero for both protection classes after a moderate number of decoding iterations and
thus, there will be no UEP at this SNR (E,/Nog = 1 dB). However, (1 — I,p,,) of the
protection class Cy of code I has a constant non-zero gap to 1 for a number of decoding
iterations greater than 10, which indicates that this code has UEP capabilities for a
moderate to large number of iterations at this SNR. These conclusions are supported

by the simulations depicted in Fig. 4.7. It is worth noting that the results in Fig. 4.10

4. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LDPC CODES 63

show the convergence behavior of the protection classes for a specific SNR. The fact
that class Cy of code I does not converge for E,/Ng = 1 dB shows that, for this SNR,
C1 and (s show different convergence behaviors and thus will have different protection
levels, i.e., UEP. It should not be concluded from Fig. 4.10 that code I has a bad overall

performance for a high number of iterations (see Fig. 4.7).

Since the MI analysis assumes cycle-free codes and a Gaussian approximation of the
messages exchanged between the variable and check nodes, its results are just approx-
imations. Nevertheless, as shown by our simulations, they provide good predictions

regarding the UEP capabilities of a code.

Chapter 5

Multi-Edge-Type Unequal-Error-
Protecting LT Codes

In the present chapter, a multi-edge framework for unequal-error-protecting LT codes
is derived by distinguishing between the edges connected to each protection class
on the factor graph induced by the encoding. As UEP LDPC codes, unequal-error-
protecting LT codes are interesting coding schemes for systems where the source bits

being transmitted have different sensitivities to errors.

The development of unequal-error-protecting rateless codes was first presented by Rah-
navard et al. in [50], where the authors propose the partitioning of the block to be
transmitted into protection classes with symbols on distinct classes having different
probabilities of being chosen during the LT encoding. Another UEP scheme was
presented in [51], where the authors achieve UEP properties by means of a windowing
technique. Herein, we show that these two schemes can be interpreted as particular
cases of multi-edge-type unequal-error-protecting LT codes, which provides us with a
common framework for comparison. Furthermore, we propose a third construction
algorithm for UEP LT codes which compares favorably to the existing techniques

examined herein.

65

66 5.1. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LT CODES

U1 U2 U3 Vg U7 Ug

o BRI LS BOCREPt A
3 A ~ Y AR .
‘ ~ ., - .
> ’ ot RS .
0 / . v . S
A . K [} S .
e < ! oo
/ . .
. - .3 d -~ A
’ LY

IR Seoe
w e ROV
DREION O
PEERRISTS S
[D D
[l S <
- -

C1 C2 C3 Cyq Cs Cé Cr C8 Co C10

Figure 5.1: Multi-edge graph with two different edge types for an LT code with & = 8 and
~v=10/8.

5.1 Multi-edge-type unequal-error-protecting LT codes

A multi-edge-framework for unequal-error-protecting LT codes can be developed in
a similar way as discussed for LDPC codes. The edges connected to symbols of a
protection class in the bipartite graph induced by the encoding are considered to be all

of the same type.

For example, in Fig. 5.1, we divided the input symbols (variable nodes) into two
classes. The first three variable nodes belong to the first class. Consequently, all
the edges connected to those symbols are defined as type-1 edges (depicted by solid
lines). Additionally, the last five variable nodes form another protection class, whose
connected edges are defined as type-2 edges (depicted by dashed lines). Note that as
for UEP LDPC codes, only the check nodes (output symbols) admit connections to
edges of different types simultaneously. The multi-edge degree distributions for the

code depicted in Fig. 5.1 are given by

1 2 4 1
v(x) = gxi’ + gx‘ll + gxg + gxg , (5.1)
2 4 1 1 2
p(x) = ot + gaws + cates + gmad + Sad (5.2)

Note that for LT codes, the multi-edge-type variable node distribution is not a function
of the vector r. This is explained by the fact that the factor graph representation of
the encoding does not include any channel observation, i.e., all the entries of the vector
b are equal to 0. In the following, we will divide the variable nodes into m, protection

classes (C1,Cy,...,Cy,) with monotonically decreasing levels of protection.

5. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LT CODES 67

5.1.1 Node-perspective degree distributions

We now determine the multi-edge-type variable and check node degree distributions
v(x) and pu(x) for UEP LT codes. In order to determine u(x) = 4 pax9, we need
to compute the fraction of check nodes of type d, i.e., the coefficients ugq. Recall that
according to the encoding algorithm of LT codes, the probability of an output symbol
having degree i is ; (in the UEP context, we call Q(z) = Zle Q' the overall output
symbol degree distribution). Given that the degree of an output symbol corresponds
to the number of edges connected to it, i.e., i = Z;n:“"l d; where d; denotes the number

of edges of type j connected to a check node, we have

(a1) - G2) -~ o)
(%)

Mk o,

)

di! - dp,! (k1 — dy)! o — dpy)1

pd = € -

=Q;- (5.3)
where k; is the number of input symbols of class j, and jq is the probability of an output
symbol (check node) having edge degree vector d = (dy,...,dy,). Equation (5.3) is
derived by considering the LT encoding which is a choice without replacement, i.e., a

degree-i output symbol has exactly ¢ distinct neighbors.

In order to simplify our description, we consider that the encoding of LT codes is
analogous to a choice with replacement. Such an approximation becomes more exact
as the number of symbols in each protection class increases, since as k; grows, it will
become more and more unlikely to choose the same input symbol more than once during

the encoding of an output symbol. In this case, we have

— o e dme
Hd = QZ dl'dz' . dme!wl w2 Wm,) (54)
where w; = %’ is the probability of an input symbol of the class C; being chosen among

the k£ input symbols and ¢ = Z;n:‘il d;. The check node degree distribution is then given
by

7

1

: di, d m

) = 2 G g e (55)
d €

In order to compute the variable node degree distribution v(x) = >4 vax9d, first recall

that according to our previous definitions, the variable nodes belonging to C; are only

68 5.1. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LT CODES

connected to type-j edges. This means that for the variable nodes, the edge degree
vectors d have only one non-zero component, e.g., for the two-class case d = (dy,0) or

(0, dg).

Let vy, represent vq when d; is the only non-zero component of d. By simple combi-
natorial arguments, the probability of a variable node of class C; having degree d; is

given by

Bivk\ 4, Al
Vi, = < Jd7 >p;(1—pj>ﬁﬂ’“ G (5.6)
J

where 8; = pg;(1) is the average of type-j edges connected to a check node, v =
n/k, and p; = 1/k; is the probability of an input symbol being chosen among the k;
symbols of C;. Note that the product 3;vk represents the total number of type-j edges
present in the multi-edge graph induced by the LT encoding. The variable node degree

distribution can then be written as

i) = 30 (7)1 - gyt (57)

d.
d,j J

Since the edge degree vectors d for the variable nodes have only one non zero compo-

nent, Eq. (5.7) reduces to

Me ﬁj'Yk

Z Z <517k> d; (1 _pj)ﬁﬂk—djx;lf_ (5.8)

j=1d;=1

Equations (5.5) and (5.8) are quite general and apply for any unequal error protecting
LT code with m. protection classes. In order to clarify the concepts in a simple manner,
in our example and finite length simulations, we will consider codes with only two
protection classes, i.e., codes with m, = 2. In this particular case, egs. (5.5) and (5.7)

can be written as

dy +d
X)= Y Qaydy - < 1d 2>wf1(1 —wn)® -ty (5.9)
dy,dz !
Bjvk Bivk\ a i
J

j=1d;=1

5. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LT CODES 69

5.1.2 Encoding and decoding

The encoding algorithm of multi-edge-type LT codes is similar to the encoding of
traditional LT codes described in Section 2.5.1. However, instead of selecting the output
symbol degree i according to (x) = Zle Q;2", we must select an edge degree vector
d according to pu(x) =) 4 pax9. After that, an output symbol with edge degree vector
d = (di,...,dn,) is formed by selecting uniformly and at random d; input symbols
from Cj for j =1,...,m,, and performing a bitwise XOR operation between them. In
summary, the multi-edge LT encoding of an output symbol can be described in a step

by step manner as follows

1. Randomly choose the output symbol edge degree vector d = (dy,...,dn,) ac-
cordingly to the degree distribution p(x).

2. For j = 1,...,m,, choose uniformly and at random d; symbols among the k;

input symbols of protection class Cj.

3. Form the output symbol performing the exclusive-or of the chosen i = Z;”:el d;

symbols.

The output symbol is then transmitted, and the encoding process is repeated until a
sufficient number of symbols is obtained at the receiver or a pre-defined number of vk
output symbols is generated. The decoding algorithm for multi-edge-type LT codes is

exactly the same as the iterative decoder for LT codes described in Section 2.5.2.

5.2 Construction algorithms for unequal-error-protecting
LT codes

Herein, we proceed to a multi-edge-type analysis of the unequal-error-protecting LT
codes presented in [50] and [51] and propose a novel construction strategy for such a

class of codes.

5.2.1 Weighted approach

The first strategy (to which we will refer as the weighted approach) for the construc-
tion of UEP LT codes was introduced in [50]. In that work, the authors proposed

70 5.2. CONSTRUCTION ALGORITHMS FOR UNEQUAL-ERROR-PROTECTING LT CODES

the partitioning of the k variable nodes into m. sets (protection classes) of sizes
ark, ask, .. me k such that Z] 1a; = 1. Let g; be the probability of an edge being
connected to a particular variable node within the set j. By introducing a bias on the
probabilities! qj, some sets of symbols become more likely to be selected during the
encoding procedure, which makes the symbols that compose that set more protected,

i.e., the biasing gives rise to an unequal-error-protecting capability.

Consider for example the two-class case. For this case, the authors in [50] divide the
input symbols into two sets: more important bits (MIB) and less important bits (LIB)
composed by ak and (1 — «)k symbols, respectively. Furthermore, they set ¢; = kkﬂ
%. The difference between the

performances of the MIB and LIB can then be controlled by varying k;;. Note that

andqu%forsom60<kL<1andkM:

kar = 1 corresponds to the equal-error-protecting LT codes (also referred to as non-
UEP LT codes).

For the two-class case, the encoding algorithm is defined as follows. First, define
the output symbol degree i according to a degree distribution (), and define d; =
min([aikps], ak) and do = i — dy. Second, choose dy and ds symbols among the MIB
and the LIB, respectively. Finally, the output symbol is generated performing a bitwise
XOR operation over the ¢ = di 4+ do selected input symbols. One drawback of this
algorithm is that the extension for the m, > 2 case is not trivial. We solve this
problem including the weighted scheme in the multi-edge framework and applying the
encoding algorithm for multi-edge-type UEP LT codes described in Section 5.1.2.

The multi-edge framework derivation is straightforward once we note that for the
weighted scheme, the probability of an input symbol of set j being chosen among
the k input symbols (w;) can be written as: w; = gjk;. Replacing these values into
Eq. (5.4), we obtain the coefficients of the multi-edge check node degree distribution of
the weighted scheme. Since the selection of the input symbols within a protection class
during encoding remains uniform and random, the variable node degree distribution is
obtained by setting p; = ﬁ in Eq. (5.10). In summary, the multi-edge-type degree
distributions for the weighted approach are given by

Z Q . (k‘Oélfh) T (kame Qme)dme Xd ; (511)

me

'For equal-error-protecting LT codes, ¢1 = ... = gm, = %

5. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LT CODES 71

- S X[G (-5 e

j=1d;=1

5.2.2 Windowed approach

The second UEP LT code construction strategy investigated in the present chapter
(from now on referred to as the windowed approach) was introduced in [51]. Similar
o [50], the windowed approach partitions the input symbols into protection classes
composed by ki, ks, ..., kn, symbols such that ky + ka + -+ + k., = k. As for the
weighted approach, a decreasing protection level for the classes is assumed, i.e., the ith
class is more important than the jth class if ¢ < j. Furthermore, another partitioning
of the input symbols (which the authors call windows) is considered. The ith window
is defined as the set of the first w; = 23:1 k; input symbols and consequently, the
most important symbols form the first window while the whole block comprises the

final m.th window.

In the windowed scheme, each output symbol is encoded first selecting a window j
following a probability distribution I'(x) = z;ﬂ:‘il ['j2?, where I'; is the probability of
the jth being chosen. Once the jth window is defined, each output symbol is formed
according to the regular LT encoding algorithm considering only the symbols inside the

selected window and following a degree distribution QU)(z) = Z Q

The derivation of the multi-edge-type check node degree distribution for the windowed
approach is not as direct as for the weighted. Nevertheless, it can be shown by means
of simple combinatorics that the coefficients puq for the windowed approach are given
by

Z' Me .]
P = a0yt ! >0 [T 1 —sen(}_d)
Me j=2 r=1 s>7
+ T 1 —sgn(>do)] (5.13)

where ¢ = > d; and a; = k;j/k. The reasoning behind Eq. (5.13) can be made
clearer if we consider the m, = 3 case. In this case, consider the probability ugq of

selecting an edge degree vector d = (dy,dy,ds). If the window w; is selected (which

72 5.2. CONSTRUCTION ALGORITHMS FOR UNEQUAL-ERROR-PROTECTING LT CODES

happens with probability I'y), we can write

(1) - — e =
Qd1+d2+d3F1, if d2 = d3 =0 ; (514)

0, if do>0 or d3>0.

Hd =

Note that Eq. (5.14) can be written in a compact form as

pa =908, 4 0Tl — sgu(ds + d3)] . (5.15)

Suppose now that the window ws is selected. In this case, we can write
(d1+da+d3)! (2) di d . .
dy 1dad3! (Qd1+d2+d3F2a11a22> , if dy=0,

0, if d3>0.

pa = (5.16)

Note that the equation for case ds = 0 can be derived multiplying Eq. (5.4) by I'y and

substituting w; by a; for j = 1,2. In compact notation, we can write Eq. (5.16) as

fa = (dy + da + d3)! < (2)

& d
dy1dylds! Qi iy ras L2071 09 [1 — Sgn(d3)]>) (5.17)

where the leftmost term indicates the number of permutations of (d; +ds +d3) elements
with the repetition of dy, do, and d3 elements, Qézl)Jr dy-+ds 18 the probability of choosing
a degree (di + do + d3) according to the distribution Q) (z), I'y is the probability of
the window ws being selected, and «; is the probability of choosing a determined input

symbol among all the elements of protection class j.

Lastly, suppose now that the window ws is selected. Once again, we can use Eq. (5.4)
and write

Q®

(di + da + d3)! dy ds d
e (U T T e (5.18)

Hd = Ty ds)

In summary, adding egs. (5.15), (5.17), and (5.18) we have

g = (dl +dy + dg)!{ (2)

dy . d 3 di _d2 d
dy!dy!d3! Qdl-l-dQ-l-dsrzoqlOé?2 ’ [1 o sgn(dg)] + lel)-l-d2+dsr3a11a22a33}

+ Q0 gy, 11— sen(da + dy)] (5.19)

5. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LT CODES 73

which can be written as

3

[hd = d1'd2'd3 ZQ]Had* 1—sgnZd +Q Fl[l—sgnZd

j=2 §>7 s>1
(5.20)

where 7 = Z?:l d;. If we apply the same reasoning to the windowed approach with
me protection classes, we obtain Eq. (5.13). The variable node degree distribution can
be obtained as for the weighted case, i.e., substituting with p; = 1/k; in Eq. (5.9). In

summary, the multi-edge degree distributions for the windowed approach are given by

1
X):Zd:dlldglf..dme! ZQU JHadT [1—sgn(} dy)

7j=2 5>j
+ QE)Fl[l - sgn(z dy))x9 (5.21)
s>1
me Bivk ds Bivk—d;
T 5 D [A T I (IR L P2
= ldj—l JkT Oéjk‘ J

5.2.3 Flexible UEP LT codes

We showed in the previous subsections that both the weighted and the windowed
schemes rely on the modification of the probability of occurrence of an output symbol
of type d, i.e., they modify the coefficients ug of a non-UEP LT code (Eq. (5.4)) in
order to favor the selection of some class of input symbols during encoding. In the
following, we propose a scheme that works by biasing the coefficients ugq in order to
increase the average number of edges of the most protected classes. In fact, we transfer

edges from one less important class to another more important one.

In order to understand the idea, consider an LT code with two protection classes. Its

check node degree distribution can be written as

(X)) =p(1,0)T1 + po,1) T2 + M(2,0)95% + 1,1 T1T2+
(0273 + HE.0ZT + T B0 i) T3 (5.23)

where (4, 4,) = pta for d = (d1,d2) and iy, = max(i[€2; > 0). In order to keep the

74 5.2. CONSTRUCTION ALGORITHMS FOR UNEQUAL-ERROR-PROTECTING LT CODES

original overall output symbol degree distribution (), the coefficients puq must satisfy

the following condition
Zud =, for all d: Zdj =1q. (5.24)
d j=1

In the two-class case for example, (1 0y + f40,1) = 21, p2,0) + H(1,1) + K0,2) = 22, and
so on. We like to keep the overall degree distribution constant is order to keep the

overall performance of the rateless scheme unchanged.

The idea of our proposed scheme is to increase the probability of selection of the most
important input symbols by increasing the occurrence probability of output symbols
which are more connected to input symbols of the most sensitive class. For example,
in the two-class case we increase the values of the coefficients (g, 4,) With di > d2
while observing the condition given in Eq. (5.24). More generally, in order to favor the
selection of the most important input symbols during encoding, we increase the values
of the coefficients 1, d,.....d,.,) With dj > dj11 (since it is assumed that the class Cj is

more important than Cjq) for j =1,...,me — 1 while observing condition (5.24).

Our proposed strategy to favor the selection of the most important symbols during
the LT encoding is described as follows. Consider an output symbol with edge degree
vector d = (dy,...,dj—1,d;,...,dn,) where 0 < dj_1 < dj. The fraction of output
Let a = dj—1 and b = d;. In

order to favor the selection of symbols in the most protected class j — 1, we can convert

symbols of this kind is given by pa—(d,,...d;_1.d;,....dm,)-
a fraction A; of the output symbols with d = (di,...,a,b,...,d,,,) where 0 < a < b
into symbols with d = (dy,...,b,a,...,dy,,). Following this strategy, it is not difficult
to see that since a < b, the selection during LT encoding of input symbols of class j — 1
will become more likely, while the selection of the symbols on class j will become less
probable. According to this scheme, we can define an LT code with the check node

degree coefficients ,ugEP as follows.

Let A = (As,..., Ay,) be a vector whose components A; denote the fraction of the
check node degree coefficients g with d; > d;_1 to be reduced in order to favor the
selection of bits of class j — 1 during the LT encoding. Given A and an LT code with
overall degree distribution (z), an UEP LT code with m. protection classes can be

generated according to the following algorithm

The following example should clarify the flexible UEP LT construction algorithm.

5. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LT CODES 75

Algorithm 4 Flexible UEP LT construction algorithm
1. Compute u(x) according to Eq. (5.5)

2. for j = m. to 2
for all d with puq > 0
if0< dj_l < dj
a = dj_l
b=d;

UEP _ ..
0y by me) = P yeasbyeme) = DG [(dyab,..ime)

UEP _ -
'u(dl,...,b,a,...,me) = HK(dy,...,b,a,...,me) + AJ H(dy,...,a,b,...,me)

else

WP = g

end

end

pa = i7"

end

Example 2 Consider an LT code with overall degree distribution Q(x) = 0.15x +
0.5522 + 0.302% and consider A = (0.3). We intend to construct a two-class unequal-
error-protecting LT code where 10 % of the input symbols belong to the most protected
class, i.e., a1 = 0.1. The coefficients ugq for the non-UEP case can be computed by
means of Eq. (5.9) with wy = a1 and we = 1—a. In order to generate a UEP LT code,
we compute the coefficients ugEP of the UEP LT multi-edge-type check node degree
distribution according to Algorithm 4. In the present example, for d = (di,ds) = (1,2)
and Ay = 0.3 we have

M%ﬁf = p2,1) 03102 (5.25)
M%gf = pa,2) — 0.3p@2) - (5.26)

For every other d, ”E{iﬁgz) = [i(dy,dz)- The multi-edge check node degree distributions of
the original and UEP LT codes are depicted in Table 5.1.

Table 5.1: Flexible UEP LT construction example.
d TOD] @] 02 | @0 | 03 [B0 | @) | @2 @D
d 0.135 | 0.015 | 0.4455 | 0.0055 | 0.2187 | 0.0003 | 0.0081 0.0729 | 0.099
ugEP 0.135 | 0.015 | 0.4455 | 0.0055 | 0.2187 | 0.0003 | 0.02997 | 0.05103 | 0.099

76 5.3. ASYMPTOTIC ANALYSIS OF MULTI-EDGE-TYPE UEP LT CODES

The flexible UEP LT approach has advantages of both the weighted and the windowed
approach. First, the difference between the performance of the different protection
classes can be controlled through the vector A by adjusting its components, i.e., the
higher Aj, the greater the difference between the performance of classes j and j — 1.
Second, its encoding procedure is easily generalized for the case m,. > 2, a characteristic

that the weighted approach does not possess.

Additionally, our scheme is more suitable than the windowed one for applications where
a precoding is needed, e.g., Raptor codes. This happens due to the fact that it only
uses one precoding for the whole data, while the windowed approach has to precode
all defined protection classes separately [51]. This means that while in the windowed
scheme each different class of input symbols have to be separately precoded, in our
scheme the precoding can be done considering the whole set of input symbols at once.
Furthermore, using only one precoding avoids finite-length effects that can arise from

separately encoding protection classes with a low number of bits.

In the following section, we develop an asymptotic analysis of multi-edge-type UEP LT
codes and show how the three different approaches presented herein behave when the
number of input symbols tends to infinity (kK — oo). Moreover, we use the asymptotic
analysis to show the role of the parameter A on the performance of the different

protection classes of an UEP LT code constructed using our proposed algorithm.

5.3 Asymptotic analysis of multi-edge-type UEP LT codes

The asymptotic analysis of multi-edge LT codes can be done by means of density
evolution. However, note that in a multi-edge type analysis, the computation of one
density for each edge type is required. With this in mind, we point out that the iterative
decoding algorithm of LT codes is analogous to the belief-propagation decoding of
messages transmitted through an erasure channel where all the variable symbols are
considered to be erased and the check node values are given by the output symbols
they represent. This analogy allows us to use the results derived for the BEC channel

for computing the probability of an LT code input symbol not being recovered.

5. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LT CODES 77

Theorem 2 (LT decoding failure probability) The erasure probability yl(j) of an
input symbol of class j of a multi-edge LT code with node-perspective degree distribution

pair (v(x), pu(x)) at iteration | > 0 is given by
y = ve, (=P =yt 1y (5.27)

where Vg, (J% =1, pV)(z) = Hia (1 de 4 and p(]) denotes the fraction of type
j edges connected to check nodes of type d.

Proof: Let G denote the bipartite graph induced by an LT encoding. Consider a
subgraph G{ of G formed by a variable node v/, chosen uniformly and at random
among the ones of class j and all its neighbors within distance 2I. Asymptotically,
the subgraph G{ is a tree [52] of depth 2[that represents the dependency between the
value assumed by v/ and the messages sent by the other variable nodes after | message
passing decoding iterations. Let the variable node v/ be the root (depth 0) of G{ and
assume that yl(j) is its erasure probability. Consider now that the nodes at depth 2 in
Gj are the roots of independent Gj ; trees. Consider the variable-to-check messages in
the [th iteration. By assumption, each such message is an erasure with probability y(])

and all messages are independent. Recall that in a multi-edge framework, each check
node of type d = (dy,da, ..., d,,) is connected to dy edges of type 1, da edges of type 2,
and so on. Since we are considering a BP decoding, by definition, a check-to-variable
message emitted by a check node of degree i along a particular edge is an erasure iff
any of the ¢ — 1 incoming messages is an erasure. Thus, the erasure probability of an
outgoing message of a check node at depth [with edge degree vector d sent through an
edge of type j is equal to 1 — (1 — yl(i)l)dl e (1- yl(])l) e (1— yl(inf)) me . Since the
outgoing edge has probability pg) to be connected to a check node of type d, it follows
that the expected erasure probability of a check-to-variable message in the [th iteration
is equal to 1 — pU)(1 — yl(i)l, U yl(Tf)) where pU)(x) = Zp)x4. Now consider
the erasure probability of the root node at iteration [. By definition, a variable node
will be considered erased if all its incoming messages are erasures. Since a variable
node of class j has only connections to edges of type j, the probability of a variable
node of degree d; being erased is (1 — p;(1 — yl(i)l, AU yl(Tf)))dJ’. Averaging over
the variable node degree distribution v, we conclude that the erasure probability of
an input symbol of class j at iteration [is given by v, (1 — p;(1 — yl(i)l, AU yl(Tf)))

as claimed.

78 5.3. ASYMPTOTIC ANALYSIS OF MULTI-EDGE-TYPE UEP LT CODES

10° 4
107 LN I
10720 N
10700]
g 1074 | —+—C1 Weighted
M — % —C, Weighted

10_5 —%— (1 Windowed
— % — (5 Windowed
10 "L C) Flexible Ay = 0.2
— =« — (5 Flexible Ay = 0.2
107 Ll —o— Flexible Ag = 03] T
— & —C, Flexible Ay = 0.3

0.8 0.9 1 1.1 1.2 1.3

Figure 5.2: Asymptotic performance of the weighted, windowed, and the proposed flexible
UEP LT construction strategies.

Equation (5.27) together with the degree distributions (v(x), u(x)) allows us to compute
the asymptotic (k — oco) performance of a multi-edge UEP LT code with overall output
symbol degree distribution (x). Herein, we consider multi-edge UEP LT codes with
the overall output symbol degree distribution proposed in [26]

Q(z) = 0.007969z + 0.49357022 + 0.166220x> + 0.07264642 4 0.0825581°
+ 0.0560582° + 0.03722927 + 0.0555902° + 0.025023254 4- 0.0031352%¢. (5.28)

Figure 5.2 shows the asymptotic performance of the three different unequal-error-protecting

LT codes construction strategies presented in this paper.

The parameters for the weighted (k,, = 2.077) and the windowed (I'y = 0.084) ap-
proaches are optimized for an overhead v = n/k = 1.05 according to [51]. The flexible
UEP LT asymptotic analysis was carried out for As = 0.2 and Ay = 0.3. Note that as
we increase the value of Ay the difference between the performance of both protection
classes increases. Furthermore, the MIB in our proposed algorithm with Ay = 0.3 have

a better performance than the weighted and windowed approach for v > 1.025. Finally,

5. MULTI-EDGE-TYPE UNEQUAL-ERROR-PROTECTING LT CODES 79

100 gttt

070 W]
0720 W T]
w3l T T RN
a'et : :
R
0 L NG TR A
O N]
C Flexible UEP LT ;
10_6 L. Cz Flexible UEP LT| "~~~ 70 S
—+—C3 Flexible UEP LT
_7 EEP LT
10 1 1 1 1
0.8 0.9 1 1.1 1.2 1.3

v

Figure 5.3: Asymptotic performance of the flexible UEP LT construction for 3 protection
classes.

we present in Fig. 5.3 the asymptotic analysis results for an UEP LT code designed
according to our proposed algorithm with o = (0.1,0.3,0.6) and A = (0.4,0.8).

5.4 Simulation results

In this section, we present the finite-length simulation results for the weighted, win-
dowed, and our proposed scheme for generating UEP LT codes. Figure 5.4 shows the
bit-error rates after performing LT decoding. The parameters for both the weighted,
windowed, and the flexible UEP LT approaches are the same as with the asymptotic
analysis depicted in Fig. 5.2, i.e., for the weighted approach we set k,, = 2.077, for the
windowed I'; = 0.084 with both windows using the same degree distribution Q(z), and
for the flexible UEP LT we set Ay = 0.3. We assume the transmission of & = 5000 input
symbols divided into two protection classes. The first protection class is composed of
10 % of the input symbols (k; = 0.1k), and the second protection class contains the
other ko = k — ky input symbols.

80 5.4. SIMULATION RESULTS

b N st R

BER

—x— 1 Weighted
-5 —%— - Cy Weighted

1070 7 G Wemhed e N I
—#— (1 Windowed
-6 —%— - C5 Windowed e
10°°L] o o Pt 0| N
Q CQ Flexible AQ =0.3
1077 ‘ ‘ ‘
0.95 1 1.05 1.1 1.15 1.2

v

Figure 5.4: Simulation results of the weighted and flexible schemes for k£ = 5000.

Note that for the finite-length simulation, the flexible UEP LT strategy reaches a
lower BER for the most protected class than the other approaches for high overhead
values. As predicted by the asymptotic analysis, the windowed approach has a better
performance for low-overheads. This is due to the precoding effect of the windowed
scheme, e.g., in the two-class case the windowed scheme is equivalent to first generating
I'1vk symbols of class one (a precoding) and then proceeding to the regular LT-
encoding. The results indicate that the flexible approach is preferred for applications
where a lower BER is required, while the windowed can be used for unequal recovery

time (URT) applications more efficiently [51].

Nevertheless, for applications where a precoding is needed, our scheme is more suitable
than the windowed, since it only uses one precoding for the complete data block
while the windowed approach has to precode all defined protection classes separately
[51]. Furthermore, a single precoding avoids finite-length effects that may arise from
separately encoding protection classes with a low number of bits. Additionally, flexible
UEP LT codes can easily be generalized for applications with more than two protection

classes, a characteristic which is not supported by the weighted approach.

Chapter 6

LDPC-based Joint

Source-Channel Coding

It is widely observed that for communication systems transmitting in the non-asymptotic
regime with limited delay constraints, a separated design of source and channel codes
is not optimum, and gains in complexity and fidelity may be obtained by a joint design
strategy. The approach for joint source-channel coding pursued in this chapter relies on
a graphical model where the structure of the source and the channel codes are jointly
exploited. More specifically, we are concerned with the optimization of joint systems
that perform a linear encoding of the source output and channel input by means of

low-density parity-check codes.

Herein, we present a novel LDPC-based joint source-channel coding system where the
amount of information about the source bits available at the decoder is increased by
improving the connection profile between the factor graphs of the source and channel
codes that compose the joint system. Furthermore, we propose an optimization strategy

for the component codes based on a multi-edge-type joint optimization.

6.1 Joint source-channel coding

The “separation principle” between source and channel coding is one of the milestones
in the development of Information Theory. A consequence of the direct source-channel

coding theorem laid by Shannon in his 1948 paper [1], this principle states that there

81

82 6.1. JOINT SOURCE-CHANNEL CODING

is no loss in asymptotic performance when source and channel coding are performed
separately. It is though widely observed that for communication systems transmitting
in the non-asymptotic regime with limited delay constraints, the separation principle
may not be applicable and gains in complexity and fidelity may be obtained by a joint
design strategy [53].

The main idea when dealing with the joint source-channel (JSC) coding problem is to
take advantage of the residual redundancy arising from an incomplete data compression
in order to improve the error rate performance of the communication system. This
possibility was already mentioned by Shannon in [1] and quoted by Hagenauer in [8]:
“However, any redundancy in the source will usually help if it is utilized at the receiving
point. In particular, if the source already has redundancy and no attempt is made to

eliminate it in matching to the channel, this redundancy will help combat noise.”

One of the possible approaches to JSC coding, and the one we will pursue in this
chapter, relies on a graphical model where the structure of the source and the channel
codes are jointly exploited. We are particularly interested in systems that perform
linear encoding of sources by means of error-correcting codes. The strategy of such
schemes is to treat the source output u as an error pattern and perform compression
calculating the syndrome generated by u, i.e., the source encoder calculates s = uH7”,
where H is the parity-check matrix of the linear error-correcting code being considered

and the syndrome s is the compressed sequence.

Compression schemes based on syndrome encoding for binary memoryless sources were
developed in the context of variable-to-fixed length algorithms in [54] and [55]. After-
wards, Ancheta [56] developed a fixed-to-fixed linear source code based on syndrome
formation. Due to the limitations of the practical error-correcting codes known at that
time, this line of research was left aside by the advent of Lempel-Ziv coding [57, 58].
Regardless of the fact that the field of data compression has reached a state of maturity,
there are state-of-the-art applications that do not apply data compression, thus failing
to take advantage of the source redundancy in the decoding. This is mainly due to a
lack of resilience of data compressors to transmission errors and to the fact that such
state-of-the-art compression algorithms just have an efficient performance with packet
sizes much longer than the ones typically specified in modern wireless standards (e.g.,

Universal Mobile Telecommunications System) [59].

Such shortcomings together with the availability of linear codes capable of operating

6. LDPC-BASED JOINT SOURCE-CHANNEL CODING 83

near the Shannon limit, most notably turbo and low-density parity-check codes, have
been motivating the search for new data compression algorithms to compete with the
state-of-the-art methods. The compression of binary memoryless sources using turbo
codes was first addressed in [60], where the authors proposed the use of punctured
turbo codes to perform near-lossless compression and JSC. Thereafter, Hagenauer et
al. [61] introduced a lossless compression algorithm using the concept of decremental
redundancy, which was then extended in [62] to include the transmission of the com-

pressed data through a noisy channel.

An alternative approach to the source compression by means of error correcting codes
is the syndrome-source compression using low-density parity-check codes together with
belief propagation decoding presented in [59], which was further extended in [63] to
cope with a noisy channel. In contrast to general linear codes, an LDPC code has a
sparse parity-check matrix and can thus be used as a linear compressor with linear
complexity in the blocklength. In addition, syndrome source-coding schemes can be

naturally extended to joint source-channel encoding and decoding configurations.

One of the schemes proposed in [63] for JSC was a serial concatenation of two LDPC
codes, where the outer code works as a syndrome-source compressor and the inner
code as the channel code. The codeword resulting from such a concatenation is then
jointly decoded using the source statistics by means of the belief propagation algorithm
applied to the joint source-channel factor graph. Despite of its introduction in [63], it
was in [64] that this scheme was first studied for a JSC application (Caire et al. did not
explore it in [63], rather focusing on the LOTUS codes introduced therein). Simulation
results in [65] showed the presence of error floors in the error-rate curves, which are a
consequence of the fact that some output sequences emitted by the source form error
patterns that cannot be corrected by the LDPC code used as source compressor. These
problems can be mitigated either by reducing the source compression rate or increasing

the codeword size, but such solutions also come with some drawbacks.

First of all, increasing the size of the codeword would undermine one of the advantages
of the JSC scheme, namely the possibility of a better performance in a non-asymptotic
scenario. Second, reducing the compression rate is clearly also not desirable, since it
pushes the system performance away from capacity. Another possible solution would
be the use of the closed-loop iterative doping (CLID) algorithm in conjunction with a
library of LDPC codes for source encoding [66], a solution that comes naturally at the

expense of an increase of the encoding complexity. Considering the above mentioned

84 6.2. LDPC-BASED JOINT SOURCE-CHANNEL SYSTEM

problems and known solution options, we can now state the main goal of this chapter:
the construction of an LDPC-based joint source-channel coding scheme that overcomes
such complexity /performance problems of the existing JSC schemes based on syndrome-

source encoding.

6.2 LDPC-based joint source-channel system

In [63], the authors proposed two configurations for a joint source-channel encoding
system using LDPC codes for both source compression and channel coding. The first
proposed structure was based on a serial concatenation of two LDPC codes where the
outer and the inner codes perform syndrome-source compression and channel coding,
respectively. The second structure was based on a single systematic LDPC code,
where the source output composed the systematic part of the codeword and was
punctured prior to transmission so that only the nonsystematic part was sent through

the communication channel.

In the concatenated approach, a codeword c was defined by
_ _ T
c=s5-Ge=u-H, - G,

where G is the [x m LDPC generator matrix of the channel coder, Hg. is the [x n
parity-check matrix of the LDPC code applied for source coding, s is the 1 x [source
compressed sequence, and u is the 1 x n source output. The factor graph defined by

such an encoding scheme is depicted in Fig. 6.1. The variable and the check nodes of the

i i i

sc cc
L L3

l m— 1
Source LDPC Channel LDPC

Figure 6.1: Joint source-channel factor graph.

source LDPC (left) represent the source output and the compressed source sequence,

6. LDPC-BASED JOINT SOURCE-CHANNEL CODING 85

respectively. Since we will consider only binary sources, the variable nodes represent
binary symbols. In this system, each check node of the source LDPC is connected
to a single variable node of the channel code (right) forming the systematic part of
the channel codeword (the connections are represented by bold edges). Since only m
variable nodes are transmitted, the overall rate is n/m. Furthermore, L3¢ and L&
denote the log-likelihood ratios representing the intrinsic information received for the

source (v =1,...,n) and channel (v =n+1,...,n + m) variable nodes, respectively.

Considering a two-state Markovian source and performing standard belief propagation
on the graph of Fig. 6.1, the simulation results in [65] showed the presence of error floors
in the error-rate curves, which are nothing but a consequence of the fact that some
output sequences emitted by the source form error patterns that cannot be corrected
by the LDPC code used as source compressor. The proposed solution to cope with this
residual error was either reducing the compression rate, or increasing the source output
block length. As we already pointed out, these solutions are not very attractive, since
the reduction of the compression rate pushes the system performance away from its
asymptotic capacity, and the a large block length undermines the application of the
proposed JSC system for cases where state-of-the-art compression algorithms turn out

to be ineffective i.e., systems with source data divided in small block lengths.

Our idea to cope with the problem and thus generate a JSC system with competitive
performance, even for small source block lengths, while keeping the advantage of the
simplified syndrome-source compression is to improve the amount of information about
the source bits available at the decoding by inserting new edges connecting the check
nodes of the channel code to the variable nodes of the source code. We depict this idea

in Fig. 6.2, where the inserted edges are represented by dashed lines. The reasoning of

Soures TOPC ’ Channel LDPC

Figure 6.2: Joint source-channel factor graph with inserted edges.

86 6.2. LDPC-BASED JOINT SOURCE-CHANNEL SYSTEM

this strategy is that such an edge insertion will provide an extra amount of extrinsic
information to the variable nodes of the source LDPC which will significantly lower the
error floor due to uncorrectable source output patterns. We will limit our investigation
to memoryless binary sources, but our system can easily be extended to sources with
memory if we consider the use of the Burrows-Wheeler transform [67] prior to the

syndrome-source compression as done in [66] for the case of pure data compression.

6.2.1 Encoder

To understand our proposed serial encoding strategy, consider the representation of
the factor graph depicted in Fig. 6.2 by a m x (n + m) matrix H. According to this

notation, we have the following matrix representation for the JSC system of Fig. 6.2

where H, is the [x n source encoder parity-check matrix, He. is the (m—1) x m parity-
check matrix of the channel code, I is an [x [identity matrix, and L is a (m —1) X n
matrix, to which we will refer as linking matrix. Note that for the system depicted
in Fig. 6.1, L = 0. The linking matrix L represents the connections among the check

nodes of the channel code to the variable nodes of the source code.

The encoding scheme of our proposed system diverts slightly from the serial approach
of [64]. The difference lies in the fact that the word to be encoded by the channel code
is formed by the concatenation of the source output u and its syndrome s computed

by the source code, i.e., a codeword c is defined by
c=[us|Gy = [u,u-H;Fc]-GL , (6.1)

where Hy, is the [x n parity-check matrix of the LDPC code applied for source coding,
s is the 1 x [source compressed sequence, u is the 1 x n source output, and Gy, is a
(n+1) x m matrix such that the row space of G, is the null space of [L, H.], i.e., G,
is the generator matrix of a linear systematic code whose parity-check matrix is given
by the horizontal concatenation of the matrices L and H... In the following lemma,

we show that every codeword of the code spanned by G, is a codeword of the code

6. LDPC-BASED JOINT SOURCE-CHANNEL CODING 87

spanned by the null space of H, i.e.,

Lemma 1 Let H = [H,., 1,07, [L,H.]"]T denote the parity-check matriz of the
system depicted in Fig. 6.2, H, = [L,H,.], and [u,s] be the concatenation of the source
output u and its syndrome-compressed sequence s. A codeword ¢ formed by the encoding
of the vector [u,s] by the linear code spanned by the null space of the matriz Hy, is also

a codeword of the linear code spanned by the null space of H.

Proof: Let G denote the systematic generator matrix of the null space of the ma-

trix Hz. Since the code spanned by the rows of Gy is systematic, its codewords

can be written as ¢ = [u,s,p|, where u = [ug,uq,...,u,—1] represents the source
output, s = [sg, S1,...,5_1] denotes the syndrome compressed sequence, and p =
[P0, D1y -« s Pm—i—1] IS & vector whose elements are the parity bits generated by the

inner product between [u,s] and Gp. For every codeword c, the following equation
holds
c- HE =C- [LyHcc]T =0. (6.2)

Recall now that according to our compression rule, and since our operations are defined

over GF(2), we can write

[u07u17 cee 7un—1] : Hg‘c = [807817 cee 781—1]

[U(),ul,. .. ,un_l] . HEC + [80,81,. .. ,81_1] -I=0, (63)

where I is an [x [identity matrix, and 0 is a vector whose elements are all equal to

zero. Note that Eq. (6.3) can be written as
[’LL(], Ulye oo s Up—1,50,S1y--- ,81_1] . [Hsc, I]T =0. (6.4)

Consider now the I x (n+m) matrix [Hg., I, 0]. According to Eq. (6.4), for every vector

P = [P0; D1, -+ s Pm—i—1], We can write
T
[UO,Ul, «eo oy Un—1,50,515-++,51-1,P0, P15 - - - 7pm—l—l] . [H867170] =0)

ie.,

c-[H,,I0T=0. (6.5)

88 6.2. LDPC-BASED JOINT SOURCE-CHANNEL SYSTEM

Finally, consider the inner product
¢ H' =c- [[He, 10", [L,H." " = [¢ [He, 10", [L,H"] . (6.6)
Substituting egs. (6.2) and (6.5) into Eq. (6.6), we have
c-H =0 ,

i.e., a codeword c of the code spanned by the null space of Hy, is also a codeword of

the code spanned by the null space of H.
O

In our proposed system, the overall rate will be kept constant when compared to the
system of Fig. 6.1, since the first n bits of ¢ will be punctured prior to transmission. The
encoding algorithm of our proposed joint source-channel system can be summarized as

follows:

1. Given a source output vector u, compute s = u - H;fc.
2. Compute v = [u,s], i.e., the horizontal concatenation of vectors u and s.
3. Generate the codeword ¢ = v - G,.

4. Transmit c after puncturing its first n bits.

Steps 1 and 3 are the source and channel encoding steps, respectively. Since Hg,. is
sparse, the source encoding has a complexity that is linear with respect to the block
length. Furthermore, applying the technique presented in [68] for encoding LDPC codes
by means of their parity-check matrix, the complexity of the channel encoding can be

made approximately linear.

6.2.2 Decoder

The decoding of the LDPC-based joint source-channel system is done by means of the
belief propagation algorithm applied to the factor graph of Fig. 6.2, whose structure is
known to both, the encoder and the decoder. We assume that the decoder knows the

statistics of the source. For example, for memoryless Bernoulli sources, the decoder

6. LDPC-BASED JOINT SOURCE-CHANNEL CODING 89

knows the success probability, i.e., the decoder knows the probability p, of a source

symbol assuming the value 1.

Herein, we assume that the source is a memoryless Bernoulli source with success
probability p,, and that the transmission takes place through a binary input AWGN
channel. Within this framework, we can write L;° = log (1;5’ ’”) and L = 2(% (where

Yy is the received BPSK modulated codeword transmitted through an AWGN with

noise variance o2).

6.3 Multi-edge notation for joint source-channel factor

graphs

The factor graph representing the joint source-channel system is composed of two
separated LDPC factor graphs that exchange information. In order to combine the
evolution of the iterative decoding of both source and channel codes in a single input-
output function, we derive in the sequel a multi-edge representation of the joint source-

channel factor graph.

In a multi-edge framework for joint source-channel factor graphs, we define four edge
types within the corresponding graph, i.e., m = 4. The first edge type is composed
by the edges connected solely to nodes of the source LDPC code. Similarly, the second
edge type is composed of the edges connected only to nodes belonging to the channel
LDPC code. The third type is formed by the edges that connect the check nodes of the
source code to the variable nodes of the channel code. Finally, the edges that connect
the variable nodes of the source LDPC codes to the check node of the channel LDPC
factor graph compose the fourth edge type.

Note that now we also have two different received distributions corresponding to the
source statistics and channel information, respectively. Figure 6.3 depicts the four edge
types and received distributions. The solid and dashed lines depict type-1 and type-2
edges, respectively. The type-3 and type-4 edges are depicted by the dash-dotted and
dotted lines, respectively. Additionally, the received distributions of the source and
channel variable nodes are depicted by solid and dashed arrows, respectively. Since
the variable nodes have access to two different observations, the vector r = (ry,72) has
two components, i.e., m, = 2. The first component (r1) corresponds to the observation

accessible to the n source LDPC variable nodes, and the second component (72) denotes

90 6.4. ASYMPTOTIC ANALYSIS

Source LDPC Channel LDPC

Figure 6.3: Multi-edge joint source-channel factor graph.

the channel observations, which are available only to the m channel LDPC variable
nodes. Furthermore, since each variable node has access to either the source statistics
or the channel observation, we can write b = (0,1,0) for the source and b = (0,0, 1)

for the channel variable nodes, respectively.

As an example, consider the graph of Fig. 6.3 (n = 6, m = 6,1 = 3). In this case, the

multi-edge degree distributions can be written as

3, 2 1 1 2 3,
v(r,x) = —ra] + —=rixiTy + —TriT1T4 + —ToexoT3 + —Tox5T3 + —Tox5

12 12 12 12 12 12
2 1 1 2
pu(x) = ﬁx%xg + Exi’xg + Ex%m + Ex%m .

6.4 Asymptotic analysis

In this section, we derive the multi-edge-type mutual information evolution equations
for LDPC-based joint source-channel coding systems. As previously done, we will use
the edge-perspective degree distributions AY) (r, x) and pU/)(x) to describe the evolution
of the mutual information between the messages sent through type-j edges and the

associated variable node values. Recall that,

A (r, %) = Z?Ei’l{; , (6.7)
P (x) = P () , (6.8)

6. LDPC-BASED JOINT SOURCE-CHANNEL CODING 91

where v, (r,x) and p,;(x) are the derivatives of v(r,x) and pu(x) with respect to z;,

respectively.

Before proceeding to the asymptotic analysis, it is worth mentioning an important
result present in [56]. In this work, the author associates to any binary source an
additive channel in which the source output forms the error pattern. Furthermore, he
shows that the average fraction of source digits erroneously reconstructed for syndrome-
source-coding of a binary source coincides with the bit error probability when the
corresponding syndrome decoder is used with the given linear code on the additive

channel associated with the source.

For a memoryless Bernoulli source! with a probability of emitting a one p,, the associ-
ated additive channel is a BSC with crossover probability p,. This means that we can
model the received distributions of the source code variable nodes as the distribution

of the output of a BSC with crossover probability p,.

Let I gl) (Ic(Jl)) denote the mutual information between the messages sent through type-j
edges at the output of variable (check) nodes at iteration [and the associated variable
node value. Due to the fact that the source and channel variable nodes have chan-
nel observations with different distributions, we will describe the mutual information

equations for source and channel LDPC multi-edge variable nodes, separately.

Following the notation of [64] we can write for the source code variable nodes, i.e., for
j € {14}
15 =30 Tsse | (@ = DU AGL)P + D d T AP | (69)
d s#j
where /\((ij) is the probability of a type-j edge being connected to a variable node with
edge degree vector d. The function Jpgc is given by [64]

JBSC(U2apv) = (1 - pv)[(xv; ﬁ(l_pv)) + pv[(xv; ﬁ(pv))) (610)

where z, denotes the corresponding bitnode variable, £L1=P2) ~ A ("2—2 + L¢,0?), and
LP) ~ N(G — L5, 02).

The derivation of the function Jpsc(+) can be easily understood if we recall that under

'We assume a memoryless Bernoulli source with output alphabet X' = {0,1}.

92 6.4. ASYMPTOTIC ANALYSIS

the Gaussian approximation and for infinitely long codes, the variance of the outgoing

message of a degree-d,, variable node can be written as 02 = 02, +(d, —1)02, where 0, is

2=
the variance of the received channel message, and o2 is the variance of the messages sent
by the neighboring check nodes. Furthermore, the messages sent from the neighboring
check nodes are considered to be independent and Gaussian. Within this assumption,
the sum of the d, —1 messages sent from the check nodes is approximated by a Gaussian

with mean 02/2 and variance o2.

Consequently, since the equivalent channel for the source code variable nodes is a BSC
with crossover probability p,, the distribution of the messages q,—,. sent from the source
code variable nodes will be a mixture of two Gaussian distributions, i.e.,

2 2

Quose ~ (L= PN (T + L, 0%) + puN (5 = L 0),

and the mutual information I(z,; ¢y—.) can be written as in Eq. (6.10), which does not
have a closed form, but can be numerically computed recalling that

I(zy; £) = 1 — Ellogy(1+e74)], (6.11)

and that for a Gaussian random variable z ~ N ("2—2 +a,0?)

22

0 ~(-% —a)
/ logs(1+e¥)e” 2027 dy. (6.12)

. 1
Eflogs(1 4 €%)] = Noroe

For the channel code, the multi-edge mutual information evolution equations are derived
in the same way as done for multi-edge UEP LDPC codes in Chapter 4. This leads to
the following mutual information equation for the channel code variable nodes, i.e., for

j € {2,3} we can write

=304 \/4/az+<dj—1>[J—1<I§??_1>P+stw—1<féj>_l>12 - (613)
d 577

Finally, the mutual information between the messages sent by a check node through a

type-j edge and its associated variable value for both source and channel LDPC codes

6. LDPC-BASED JOINT SOURCE-CHANNEL CODING 93

(i.e., for all j) can be written as

Fe)

) =1-5 % \/<dj—1>[J—1<1—15?2>12+stw—1<1—15,?)]2 ,
=1 d:dj:i SF£J

(6.14)
where pg) is the probability of an type-j edge being connected to a check node with
edge degree vector d, and a9

Cmazx

is the maximum number of type-j edges connected to

a check node.

In order to limit the search space of the forthcoming optimization algorithm, we consider
in the following derivations that both source and channel LDPC codes are check-regular.
Furthermore, the check nodes of source and channel LDPC codes are considered to
have edge degree vectors d = (d,,,0,1,0) and d = (0,d,,,0,1), respectively. As a
consequence, the multi-edge check node degree distributions of the source and channel

LDPC codes are given by p(!)(x) = xtlicl_l and p? (x) = :E;lcz—l’ respectively.

In our multi-edge representation for the channel LDPC factor graph, the variable nodes
only have connections to type-2 and type-3 edges, i.e., all channel code variable nodes
have an edge degree vector d = (0, d2, d3,0) where dy € {2,... ,dz(f,zw}, and ds € {0,1}.

Thus, for the channel LDPC code, we can summarize the set of mutual information

evolution equations as follows:

e variable nodes messages update:

1)(d) = J (Wa,% (- DI @) + dsu—lué?_l(d))]?)

(6.15)
1) =320 (ﬂ/a,% +(dz — DIIE (@) + dgw—lué,%)_l(d))]z)
d
(6.16)

e check nodes messages update:

)

P @=1-J W (dey — D[J71(1 — IE))2 4+ J1(1 — Ii‘?(dw) (6.17)

94 6.4. ASYMPTOTIC ANALYSIS

e channel to source decoder messages update:

19(d) = ds - 7 (w/az F a1 1<d>>12) (6.18)

W <\/dcz 11— 1))) (6.19)

e source decoder messages update:

1$8(d) =TI, 1) (@) (6.20)
15)(@) = (1), 177 () (6.21)

where T () and T»(-) are the transfer functions of the source decoder. Recall that
we are considering here that the source decoder is fixed. Given the source code degree
distributions A(!) (r, x) and p(!) (x), those functions can be explicitly computed by means
of egs. (6.9) and (6.14) for every edge degree vector d2. It is worth noting that in

the computation of Tj(-) and 7T5(-), the rightmost sum in Eq. (6.14) will be zero if
®

v,l

type-3 edges in this case.

(d) = 0, since the corresponding check node is not receiving any information through

Combining eqs. (6.16) - (6.21), we can summarize the mutual information evolution for
the channel code as
1% = B\ de, 17| poson) | (6.22)

where d. = [d,,dc,], and A = A, AP with AY) denoting the sequence of coefficients
/\((ij) for all d and j € {1,2}. The initial conditions are 15?8 (d) = Ié?(])(d) = IC(?O)(d) =
0,vd, and I{ = 0.

For the source code factor graph, the variable nodes only have connections to type-
1 and type-4 edges, i.e., all source code variable nodes have an edge degree vector
d = (d1,0,0,d4) where d; € {2,... }, and dy € {0,1}. Similar to the channel

code factor graph, we can Summarize the set of mutual information evolution equations

Umax

as follows:

2For the computation of T1(-), note that by means of egs. (2.23) and (6.7) we can write)\((14)(1', x) =

e !
{%} , where f, denotes the partial derivative of f with respect to x.
0 Ag (rx o4

6. LDPC-BASED JOINT SOURCE-CHANNEL CODING 95

e variable nodes messages update:
15(d) = Jpsc ((di = DI UL @) + dald ™ (1) (@)%, p,) (6:23)
1= e (@ = DI G (@) + dalT) @)2p) (6:24)
e check nodes messages update:
1@ =17 (it -0 0= 1DE - @) 625)
e source to channel decoder messages update:
1(d) = dy - Jgsc (dl Paitor l(d))]2,pv) (6.26)
I =1- <\/dc1 11— 1)e) (6.27)
e channel decoder messages update:

15(d) = To(1), 1) (@) (6.28)
15)(d) = 15(157) . 137 (d)) (6.29)

where Ty(-) and T5(-) are the transfer functions of the channel decoder, which is
considered to be fixed. Given the channel code degree distribution A (r, x) and p(® (x),
those functions can be explicitly computed by means of egs. (6.13) and (6.14) for every
edge degree vector d 3. Similarly to the channel code, in the computation of T4(-) and
T5(+), the rightmost sum in Eq. (6.14) will be zero if I f:ll) (d) = 0, since the corresponding

check node is not receiving any information through type-4 edges in this case.

Combining egs. (6.24) - (6.29) we can summarize the mutual information evolution for
the source code as
IS) i, d07[z() l) 1>Pv; On) (6.30)

where d. = [d,,d,,], and A = [A(l), 3(2)] with A9 denoting the sequence of coefficients

3For the computation of T4(-), note that by means of egs. (2.23) and (6.7) we can write)\((13)(1', x) =

,(2) /
{%} , where f, denotes the partial derivative of f with respect to x.
0 d r,x x5

96 6.5. OPTIMIZATION

/\((ij) for all d and j € {1,2}. The initial conditions are 11(1,8 (d) = Ic(jlo)(d) = Ic(’lo)(d) =
0,vd and I} = 0.

By means of egs. (6.22) and (6.30), we can predict the convergence behavior of the
iterative decoding for both channel and source codes and then optimize the multi-edge
edge-perspective variable node degree distributions A (r,x) and A (r,x) under the
constraint that the mutual information for both codes must be increasing as the number

of iterations grows.

6.5 Optimization

Having derived the mutual information evolution equations, we are now able to present
an optimization algorithm derived to maximize the overall rate of the proposed JSC
code. Optimization strategies for LDPC-based JSC schemes present in the literature
either consider full knowledge of the channel code [64] or of the source decoder [69]
(where the authors also showed that an LDPC code optimized for the AWGN is not

necessarily optimum for the JSC problem).

In this section, we introduce an optimization algorithm that takes into account the extra
connections between the factor graphs of the source and channel codes we proposed
previously. By means of a multi-edge-type analysis, the algorithm presented herein
extends the optimization technique for LDPC-based JSC coding schemes presented in
the literature for the case where the source code variable nodes (and not only the check

nodes) are connected to the channel LDPC code factor graph.

In our proposed algorithm, we first compute the rate optimal channel LDPC code
2

assuming that the transmission is carried over an AWGN channel with noise variance o;.
This is a standard irregular LDPC optimization [24] and since we are not considering
any connection to the source code in this first step, it can be done by means of eqs. (6.9)
and (6.14) with d = (0,d3,0,0) and dy € {2,... ,dz(f,zw}, where dz(,{zw denotes the

maximum number of type-j edges connected to a variable node. The optimized degree
distribution obtained at this step will be denoted as)\(()2) (r,x).

After having optimized the channel code variable nodes degree distribution, we assign
the variable nodes of higher degree to the message bits. This is done in order to
better protect the compressed message transmitted through the channel, since the

more connected a variable node is, the better its error error rate performance. This

6. LDPC-BASED JOINT SOURCE-CHANNEL CODING 97

can be done as follows,

1. Given)\((]2) (r,x), compute the node-perspective multi-edge degree distribution
. f)\(()z)(r,x)d:cg

N\ X) = F—m —.
0(7) fol)‘(()2)(l‘7x)d$2

2. Assign a fraction R.. of nodes (the ones with higher degree) to the systematic
part of the codeword, where R, is the rate of the channel code. This is done by
turning a variable node with edge degree vector d = (0,ds,0,0) into a variable
node with edge degree vector d = (0,d,1,0). This gives rise to a modified node-
perspective degree distribution v(r,x), where a fraction of R.. nodes have one

connection to type-3 edges.

3. Given v(r,x), compute the new edge-perspective multi-edge variable node degree

distribution \(® (r,x) = l’jzzg?;
zo (L)

Once we have optimized the channel code, we optimize (maximizing its compression
rate) the source LDPC code considering its connections to the channel LDPC code

graph.

Let dy,,,, = [d&}jw,d,@i}az,dﬁlm,d&f‘jw] be a vector whose components dS,QM represent

the maximum number of connections of a single variable node to type-j edges. Also,
recall that the components of the vector d. = [d,, d.,] define the number of connections
of the source code check nodes to type-1 edges (d.,) and the number of connections
of the channel code check nodes to type-2 edges (d.,). Additionally, AU denote the

sequence of the coefficients of AU)(r, x). Given de, Py, and o, the optimization

Umax ?

problem can be written as shown in Algorithm 5.

Since we are considering the convergence only through edges of type-1, the stability
condition C3 remains the same as for regular LDPC codes ensembles with codewords
transmitted over a BSC with transition probability p,. Furthermore, the rate constraint
C4 must be considered due to the fact that the number of type-4 edges connected to the

source code variable nodes must be equal to the number of channel code check nodes.

For given A® d., p,, and o, the constraints C;, Cs, Cs, and C4 are linear in the

parameter A(). This means that the optimization of both source and channel codes
can be solved by linear programming. For a given channel condition, every different set

of vectors d. will give rise to systems with a different overall rate. In practice,

VUmazx

we fix the vector and vary d., and d., in order to obtain the joint system with

VUmax

98 6.6. SIMULATION RESULTS

Algorithm 5 Joint source-channel code optimization
1. Optimize the rate of the channel LDPC code without considering the connections
to the factor graph of the source LDPC code. Save the obtained the degree
distribution)\82) (r,x).

2. Compute \(?) (r,x) by assigning as systematic bits a fraction of the variable nodes
with higher degrees of the optimized channel LDPC code.

(1)
3. Considering A = A1 A\®)], maximize 252’2“” Dodidy—s)\Ell) /s under the following
constraints,

C1 (proportion constraint):),)\g) =1,
Cy (convergence constraint): Fy (A, de, I, py,0y) > 1,
VI € 1),

Cs (stability constraint): > didy—2)\((11) < 1 1

2 /po(l—py) (dey—1)

‘ RO NS
Cy4 (rate constraint): Zd:d4>0 dLl =1/(d.,d., Zd:dgzl dLQ) .

maximum overall rate for a binary symmetric source with transition probability p, and
2

a channel noise variance o;,.

6.6 Simulation results

In this section, we present simulation results obtained with an LDPC-based JSC coding
system constructed according to the degree distributions optimized by the algorithm
previously proposed. We optimized a system with the following parameters: p, = 0.03,
o2 = 0.95, = [30,30,1,1], and d. = [22,6]. The compression rate obtained for
the source code was Ry, = 0.2361, and the transmission rate obtained for the channel
LDPC code was R.. = 0.4805. This gives an overall coding rate Ryyer =~ 2.03. Note

that the value of p, was chosen in order to allow a comparison with the results presented

Umax

in [64] and [65]. The resulting multi-edge distributions are given in Tables 6.1 and 6.2.

Table 6.1: Optimized multi-edge variable node degree distribution for type-1 edges.
d | (2,0,00) | (2,0,0.1) | (3,0,0,0) | (9,0,0,0) | (10,0,0,0) | (30,0,0,0)
)\Eil) 0.034955 | 0.098275 | 0.22059 | 0.20734 0.22014 0.21870

6. LDPC-BASED JOINT SOURCE-CHANNEL CODING 99

Table 6.2: Optimized multi-edge variable node degree distribution for type-2 edges.
d (0,2,0,0) | (0,2,1,0) | (0,3,1,0) | (0,7,1,0) | (0,8,1,0)
/\512) 0.33334 | 0.005203 | 0.31028 | 0.23786 | 0.11332

In order to show the merits of the proposed optimization, we compare its performance
with two LDPC-based JSC systems with the same overall rate Ryer = 2.03 to which we
will refer as systems I and II. Those two systems have only the connections between the
check nodes of the source LDPC code and the systematic variable nodes of the channel
LDPC code as depicted in Fig. 6.1. For System I, the source and channel LDPC codes
were optimized separately for the BSC and the AWGN, respectively. System II consists
of a source code jointly optimized with a fixed channel code previously optimized for the
AWGN channel as done in [65]. All the performance curves were obtained considering
BPSK modulated signal transmitted over an AWGN channel and a total of 50 decoding

iterations.

The simulation results for the three systems with a source message of length n = 3200
are depicted in Fig. 6.4. The results for System I confirm that codes individually
optimized do not have a good performance for the JSC system. System II shows some
improvement of the bit error rate by means of the joint optimization of the source and
channel LDPC codes, but still shows an error floor for high SNR’s. As discussed before,
this error floor is a consequence of the compression of source codewords that form error
patterns not correctable by the source LDPC code. Fig. 6.4 shows that by means of our
proposed system (depicted as JSC opt), we managed to significantly lower this error

floor.

As a second set of simulations, we compare the results of our previously optimized code
(whose degree distributions are shown in Tables 6.1 and 6.2) for n = 3200 and n = 6400.
= [30,30,1,1], d. = [10,6], p, = 0.03,

and 02 = 0.95 to which we will refer as System III. The simulation results for such

Furthermore, we design a code with d,,,,,
systems are shown in Fig. 6.5, where it can be recognized that the error floor caused by
uncorrectable error patterns can be further lowered by increasing the codeword size or
lowering the compression rate. The simulation for System III considered a block size
of n = 3200. Tables 6.3 and 6.4 show the resulting degree distributions for System III,

which has an overall rate R,yer ~ 1.76.

As previously pointed out, lowering the compression rate pushes the overall rate further

away from capacity, which can be expressed as C'/H(S), where C denotes the capacity

100

6.6. SIMULATION RESULTS

10

10720 N Ny e T
~
m
m
07°0 NG
—&— System 1
—%— System II
10_4 ‘]S\C Opt 1 1 Il Il
-3 -2 -1 0 1 2 3
Ey /Ny (dB)

Figure 6.4: Performance of joint source-channel coded systems for n = 3200 and R,yer = 2.03.

Table 6.3: Optimized multi-edge variable node degree distribution for type-1 edges.

d | (2,0,0,0) [(2,0,0,1) | (3,0,0,0) | (5,0,0,0)
A [0.076899 | 0.21621 | 0.58665 | 0.12024

Table 6.4: Optimized multi-edge variable node degree distribution for type-2 edges.

d (0,2,0,0) | (0,2,1,0) | (0,3,1,0) | (0,7,1,0) | (0,8,1,0)
/\512) 0.33334 | 0.005203 | 0.31028 | 0.23786 | 0.11332

of the transmission channel and H(.S) denotes the entropy of the source. For the source

and channel parameters we used in our optimization, i.e., p, = 0.03 and o2 = 0.95, the

asymptotically optimal Shannon limit is C'/H(S) ~ 2.58 source symbols per channel

use.

A possible strategy to enhance the performance of our proposed system is to place

infinite reliability on some of the variable nodes (shortening) [70,71]. The use of this

technique should be a matter of further research in order to approach the JSC system

capacity more closely without having to increase n or decrease the overall transmission

6. LDPC-BASED JOINT SOURCE-CHANNEL CODING 101

rate. Nevertheless, our results already show a considerable enhancement of the bit-error

rate performance when compared with existing LDPC-based JSC systems.

]_0_1 T T T T T
—— JSC opt (Rover = 2037 n = 3200)
5 ' . |—#%— System III (Royer = 1.76, n = 3200)
1072 TSO—. — % JSC opt (Rover = 2.03, n = 6400)
107°0 NN S~
et _
=0 N N T~
M
10°0 NN]
106 N T 7
107 ‘ ‘ ‘ ‘ ‘
-3 -2 -1 0 1 2 3

Ey /Ny (dB)

Figure 6.5: Performance curves of joint source-channel coded systems with different overall
rates and input block sizes.

Chapter 7
Concluding Remarks

We investigated the asymptotic analysis and design of modern coding schemes for
systems with unequal-error-protection requirements and joint source-channel coding ap-
plications. Regarding unequal error protection, we started with an asymptotic analysis
of hybrid turbo codes and then studied low-density parity-check and LT codes proposing
optimization algorithms to enhance the unequal-error-protecting capabilities of both
schemes by means of a multi-edge framework. Lastly, an LDPC-based joint source-
channel coding system was studied. In the following, we summarize the contributions

of the thesis and point out some possible future research topics.

As a first contribution, we derived the construction of local EXIT charts for a hybrid
concatenation of convolutional codes, which we named hybrid turbo codes and showed
the relation between local and global EXIT charts. Furthermore, we pointed out that
by means of this derived relation between local and global convergence, the analysis
of the global system can be reduced to the study of a serial concatenated code, since
the convergence behavior of the global system can be predicted from the local (serial)
EXIT chart.

Afterwards, we performed a multi-edge-type analysis of unequal-error-protecting LDPC
codes. By means of such an analysis, we derived an optimization algorithm that aims
at optimizing the connection profile between the protection classes defined within a
codeword of a given UEP-LDPC code. This optimization allowed us not only to
control the differences in the performances of the protection classes by means of a

single parameter, the interclass connection vector. It also allowed us to design codes

103

104

with a non-vanishing UEP capability when a moderate to large number of decoding
iterations is applied. Finally, the optimization algorithm introduced herein has the
ability to generate UEP-LDPC codes with superior performance for applications where

a low or high number of decoding iterations is needed.

Further research in this area might be the investigation of unequal-error-protecting
LDPC codes with more than three protection classes defined within a codeword. Also,
we restricted our optimizations to check regular LDPC codes. It would be interesting
to consider irregular check nodes to verify if extra gains in the error rate performance

are achievable applying our proposed optimization.

As a last investigation subject on unequal-error-protecting schemes, we introduced
a multi-edge type analysis of unequal-error-protecting LT codes. Furthermore, we
derived the density evolution equations for UEP LT codes, analyzed two of the existing
techniques for generating UEP LT codes, and proposed a third scheme called flexible
UEP LT approach. Finally, we showed by means of simulation that our proposed
codes perform better than existing schemes for high overheads and have advantages
for applications where precoding is needed, e.g., Raptor codes, since it only uses one
precoding for the whole data block avoiding finite-length effects that can arise from

separately encoding protection classes with a low number of bits.

A possible extension of the work done on unequal-error-protecting LT codes would
be to modify the optimization algorithm in order to optimize the codes according to
the protection requirements of each individual protection class, i.e., the bit error rate

required for each class would be a parameter of the optimization.

Lastly, we proposed an LDPC-based joint source-channel coding scheme and by means
of the multi-edge analysis previously developed for LDPC codes, proposed an opti-
mization algorithm for such systems. Based on a syndrome source-encoding idea,
we presented a novel system where the amount of information about the source bits
available at the decoder is increased by improving the connection profile between the
factor graphs of the source and channel codes that compose the joint system. The
presented simulation results show a significant reduction of the error floor caused by
the encoding of messages that correspond to uncorrectable error patterns of the LDPC
code used as source encoder in comparison to existent LDPC-based joint source-channel

coding systems.

This topic offers interesting further research possibilities. One possibility is the con-

7. CONCLUDING REMARKS 105

struction of an unequal-error-protecting JSC system applying UEP LDPC codes as
syndrome-based source compressors. Another possible research topic is the improve-
ment of the performance of our proposed JSC system by lowering the probability
of an uncorrectable source pattern using shortening, which means placing infinite
reliability on some source LDPC variable nodes. Those infinite reliability nodes are to
be punctured prior to the transmission in order to keep the compression rate unchanged,

and they have their positions known by both encoder and decoder.

Finally, an iterative optimization of the component codes of the herein proposed JSC
system can be developed considering at the initial iteration that one of the component
LDPC codes is fixed (we can for example take an LDPC code optimized for the AWGN
as channel code), and then optimize the other following the standard approach of
computing the extrinsic information transfer chart. In the next iteration, the code
previously optimized is fixed and the optimization of the other component code is

carried out.

Appendix A

List of Mathematical Symbols

o

b = (bo, b1, ,Om,.)
Bj

C

C(D)

Cj

D

d,

12—

d.

Aepmas

d=(di,do, ... dpn,)

89 = (81,85,...,07)

fraction of input symbols within protection class j
received degree vector

average number of type-j edges connected to a variable node
channel encoder output vector

convolutional encode output sequence

protection class j

discrete delay operator

regular LDPC variable node degree

maximum variable node degree

regular LDPC check node degree

maximum check node degree

edge degree vector

interclass connection vector of protection class j
error vector

erasure probability of a binary erasure channel
generator matrix

convolutional code generator matrix

LT code overhead

window selection degree distribution

probability of window i being selected
parity-check matrix

number of code bits at the encoder input

node perspective variable node degree distribution
number of variable nodes with degree 4

normalized node perspective variable node degree distribution

107

108

normalized edge perspective variable node degree distribution
fraction of edges connected to degree-i variable nodes

edge perspective multi-edge variable node degree distribution of
type-j edges

fraction of type-j edges connected to type-d variable nodes
memory of a convolutional code

number of edge types

number of received channel distributions

multi-edge node perspective check node degree distribution
fraction of check nodes of type d

neighborhood of a variable node v

neighborhood of a check node ¢

number of protection classes

number of code bits at the encoder output

number of global decoding iterations

number of decoding iterations for branch j

node perspective multi-edge variable node degree distribution
fraction of variable nodes of type (b, d)

node perspective check node degree distribution

number of check nodes with degree i

transition probability of a binary symmetric channel
selection probability of a class-j input symbol among all input
class-j input symbols

message sent from variable node v to check node ¢

linear block code rate

rate of outer code

source code compression rate

channel code transmission rate

overall coding rate

message sent from check node ¢ to variable node v

received vector

normalized node perspective check node degree distribution
normalized edge perspective check node degree distribution
fraction of edges connected to degree-i check nodes

edge perspective multi-edge check node degree distribution of
type-j edges

fraction of type-j edges connected to type-d check nodes
variance of channel messages

noise variance

variance of messages sent from a check node

A. LIST OF MATHEMATICAL SYMBOLS 109

o2 variance of messages sent from a variable node

U(D) convolutional encoder input sequence

u source output and channel encoder input vector

Va n-dimensional vector space

w; window 1

Q(x) LT code output symbol degree distribution

Q; fraction of output symbols with degree i

QU (2) LT code output symbol degree distribution for window j

wj selection probability of a class-j input symbol among all input
symbols

X channel input alphabet

x channel input symbol

Ty represented value of a variable node v
channel output alphabet

Y channel output symbol

Yo channel observation for the value of a variable node v

Appendix B

List of Acronyms

ACE
AWGN
BCJR
BEC
BER
BI-AWGN
BP
BPSK
BSC
CLID
CND
DE
EXIT
GF
HCC
JSC
LDPC
LIB
LLR
LT

MI
MIB
NSC
PCC
PEG

approximate cycle extrinsic message degree
additive white Gaussian noise
Bahl-Cocke-Jelinek-Raviv

binary erasure channel

bit-error rate

binary-input additive white Gaussian noise
belief propagation

binary phase shift keying

binary symmetric channel

closed-loop iterative decoder

check node decoder

density evolution

extrinsic information transfer

Galois field

hybrid concatenated code

joint source-channel

low-density parity-check

less important bits

log-likelihood ratio

Luby transform

mutual information

most important bits

non-recursive non-systematic convolutional
parallel concatenated code

progressive edge-growth

110

B. LIST OF ACRONYMS

111

RSC
SCC
SNR
UEP
URT
VND

recursive systematic convolutional
serial concatenated code
signal-to-noise ratio

unequal error protection

unequal recovery time

variable node decoder

Own Publications

H. V. Beltrao Neto, W. Henkel, and V. C. da Rocha Jr., “Multi-edge-type unequal
error protecting low-density parity-check codes,” in Proc. IEEE Information The-
ory Workshop, Paraty, Brazil, Oct. 2011.

H. V. Beltrao Neto, W. Henkel, and V. C. da Rocha Jr., “Multi-edge framework
for unequal error protecting L'T codes,” in Proc. IEEE Information Theory Work-
shop, Paraty, Brazil, Oct. 2011.

A. Wakeel, D. Kronmueller, W. Henkel, and H. V. Beltrao Neto, “Leaking inter-
leavers for UEP turbo codes,” in Proc. 6th International Symposium on Turbo

Codes & Iterative Information Processing, Brest, France, Aug. 2010.

H. V. Beltrao Neto and W. Henkel, “Relation between local and global EXIT
charts in hybrid turbo codes,” in Proc. International ITG Conference on Source

and Channel Coding, Siegen, Germany, Jan. 2010.

H. V. Beltrao Neto and V. C. da Rocha Jr., “Iterative decoding results for the
Gaussian multiuser binary adder channel,” in Proc. 10th International Symposium

on Communication Theory and Applications, Ambleside, England, July 2009.

H. V. Beltrao Neto, W. Henkel, and V. C. da Rocha Jr., “Multi-Edge-Type
Optimization of Unequal Error Protecting Low-Density Parity-Check Codes,”

submitted to IEEE Transactions on Communications.

112

Bibliography

1]

C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, pp. 379427 and pp. 623-656, Jul. and Oct. 1948.

M. J. E. Golay, “Notes on digital coding,” Proc. IRE, vol. 37, p. 657, 1949.

R. W. Hamming, “Error detecting and error correcting codes,” Bell System
Technical Journal, vol. 29, no. 2, pp. 147-160, Apr. 1950.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: turbo codes,” in Proc. IEEE International
Conference on Communication (ICC), Geneva, Switzerland, May 1993, pp. 1064—
1070.

R. G. Gallager, “Low-density parity-check codes,” Ph.D. dissertation, MIT, 1963.

M. Luby, “LT codes,” in Proc. 43rd Annual IEEE Symposium on Foundations of
Computer Science, Nov. 2002, pp. 271-282.

W. Henkel, K. Hassan, N. von Deetzen, S. Sandberg, L. Sassatelli, and D. Declercq,
“UEP concepts in modulation and coding,” Hindawi, Advances in Multimedia, Vol.
2010, Article ID 416797, 14 pages, 2010. doi:10.1155/2010/416797.

J. Hagenauer, “Source-controlled channel decoding,” IEEE Transactions on Com-
munications, vol. 43, no. 9, pp. 24492457, September 1995.

T. Cover and J. Thomas, Elements of Information Theory, 2nd ed. Wiley-

Interscience, 2006.

P. Elias, “Coding for two noisy channels,” in Information Theory, The 3rd London

Symposium, Sep. 1955, pp. 61-76.

113

114

BIBLIOGRAPHY

[11]

[12]

[16]

[17]

[19]

[20]

S. Lin and D. Costello, Error Control Coding, 2nd ed. Prentice Hall, 2004.

P. Elias, “Coding for noisy channels,” in IRE Convention Record, Pt. 4, 1955, pp.
37-46.

R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Coding.
IEEE Press, 1999.

A. Viterbi, “Error bound for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEFE Transactions on Information Theory, vol. IT-13, pp.
260-269, Apr. 1967.

L. Bahl, J. Cocke, F. Jelineka, and J. Raviv, “Optimal decoding of linear codes

b

for minimizing symbol error rate,” IEFEE Transactions on Information Theory,

vol. 20, pp. 248-287, Mar. 1974.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp.
498-519, 2001.

M. M. Vasconcelos, “Decodificacao iterativa de cédigos baseados em matrizes de
verificacao de paridade esparsas,” Master’s thesis, Federal University of Pernam-
buco, Brazil, April 2006.

S. ten Brink, “Designing iterative decoding schemes with the extrinsic information
transfer chart,” International Journal of Electronics and Communications, vol. b4,
no. 6, pp. 389-398, 2000.

A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information transfer func-
tions: model and erasure channel properties,” IEEE Transactions on Information
Theory, vol. 50, no. 11, pp. 2657-2673, Nov. 2004.

S. Y. Chung, T. Richardson, and R. Urbanke, “Analysis of sum-product decoding
of low-density parity-check codes using a Gaussian approximation,” IEEE Trans-
actions on Information Theory, vol. 47, no. 2, pp. 6567-670, Feb. 2001.

S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated
codes,” IEEFE Transactions on Communications, vol. 49, no. 10, pp. 1727-1737,
Oct. 2001.

BIBLIOGRAPHY 115

22]

23]

[24]

[25]

[29]

[30]

F. Brannstrom, “Convergence analysis and design of multiple concatenated codes,”
Ph.D. dissertation, Chalmers Univ. Technology, Mar. 2004.

T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching
irregular low-density parity-check codes,” IFEE Transactions on Information
Theory, vol. 47, no. 2, pp. 619-637, Feb. 2001.

T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge University
Press, 2008.

——, “Multi-Edge Type LDPC Codes,” Tech. Rep., 2004, submitted to IEEE

Transaction on Information Theory.

A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory,
vol. 52, no. 6, pp. 2551-2567, June 2006.

P. Maymounkov, “Online codes,” NYU, Tech. Rep. TR2003-883, Nov. 2002.

b

S. ten Brink, “Convergence of iterative decoding,
no. 10, pp. 806-808, May 1999.

Electronics Letters, vol. 35,

——, “Convergence of multi-dimensional iterative decoding schemes,” in Proc.
Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, vol. 1,
Pacific Grove, CA, Nov. 2001, pp. 270-274.

S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check
codes for modulation and detection,” IEEE Transactions on Communications,
vol. 52, no. 4, pp. 670-678, april 2004.

W. E. Ryan and S. Lin, Channel Codes, Classical and Modern. Cambridge, 2009.

N. von Deetzen and W. Henkel, “Decoder scheduling of hybrid turbo codes,” in
IEEFE International Symposium on Information Theory, Seattle, USA, July 2006.

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenation of
interleaved codes: performance analysis, design, and iterative decoding,” IEFEE

Transactions on Information Theory, vol. 44, no. 3, pp. 909-926, May 1998.

D. Divsalar and F. Pollara, “Serial and hybrid concatenated codes with applica-
tions,” in Proc. Int. Symp. on Turbo Codes and Related Topics, Brest, France,
Sept. 1997, pp. 80-87.

116

BIBLIOGRAPHY

[35]

[36]

[37]

[39]

[41]

[42]

H. Gonzalez, C. Berrou, and S. Keroudan, “Serial/parallel turbo codes for low
error rates,” in IEEE Military Commun. Conf., 2004, pp. 346-349.

W. Henkel and N. von Deetzen, “Path pruning for unequal error protection,” in

International Zurich Seminar on Communications, Zurich, Switzerland, Feb. 2006.

S. ten Brink, “Code characteristic matching for iterative decoding of serially
concatenated codes,” Annals of Telecommunications, vol. 56, no. 7-8, pp. 394—
408, Jul. 2001.

C. Poulliat, D. Declercq, and I. Fijalkow, “Optimization of LDPC codes for uep
channels,” in Proc. IEEE International Symposium on Information Theory (ISIT
’04), June 2004.

——, “Enhancement of unequal error protection properties of LDPC codes,”
EURASIP Journal on Wireless Communications and Networking, vol. 2007, Arti-
cle ID 92659, 9 pages, doi:10.115/2007/92659.

N. Rahnavard, H. Pishro-Nik, and F. Fekri, “Unequal error protection using
partially regular LDPC codes,” IEEE Transactions on Communications, vol. 55,
no. 3, pp. 387391, March 2007.

L. Sassatelli, W. Henkel, and D. Declercq, “Check-irregular LDPC codes for
unequal error protection under iterative decoding,” in Proc. 4th International
Symposium on Turbo Codes & Related Topics, April 2006.

V. Kumar and O. Milenkovic, “On unequal error protection LDPC codes based
on Plotkin-type constructions,” IEEE Transactions on Communications, vol. b4,
no. 6, pp. 994-1005, 2006.

N. von Deetzen and S. Sandberg, “On the UEP capabilities of several LDPC
construction algorithms,” IEEFE Transactions on Communications, vol. 58, no. 11,
pp. 3041-3046, November 2010.

T. Tian, C. Jones, D. Villasenor, and R. Wesel, “Selective avoidance of cycles
in irregular LDPC code construction,” IEEE Transactions on Communications,
vol. 52, no. 8, pp. 1242-1247, Aug. 2004.

X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive
edge-growth tanner graphs,” IFEE Transactions on Information Theory, vol. 51,
no. 1, pp. 386398, January 2005.

BIBLIOGRAPHY 117

[46]

[52]

D. Vukobratovi¢ and V. Senk, “Generalized ACE constrained progressive edge
growth LDPC code design,” IEFEE Communications Letters, vol. 12, no. 1, pp.
32-34, Jan. 2008.

J. Thorpe, “Low-density parity-check (LDPC) codes constructed from pro-
tographs,” JPL INP Progress Report 42-154, August 15 2003.

G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT analysis,”
in Proc. 50th Annual IEEE Global Telecommunications Conference (GLOBECOM
07), November 2007, p. 32503254.

N. von Deetzen, “Modern coding schemes for unequal error protection,” Ph.D.

dissertation, Jacobs University Bremen, School of Engineering and Science, 2009.

N. Rahnavard, B. N. Vellambi, and F. Fekri, “Rateless codes with unequal error
protection property,” IEEE Transactions on Information Theory, vol. 53, no. 4,
pp. 1521-1532, April 2007.

D. Sejdinovié¢, D. Vukobratovi¢, A. Doufexi, V. Senk, and R. Piechocki, “Expand-
ing window fountain codes for unequal error protection,” IEEE Transactions on
Communications, vol. 57, no. 9, pp. 2510-2516, Sep. 2009.

M. Luby, M. Mitzenmacher, and A. Shokrollahi, “Analysis of random processes via
and-or tree evaluation,” in Proc. 9th SIAM Symposium on Discrete Algorithms,
Jan. 1998, pp. 364-373.

9

J. L. Massey, “Joint source and channel coding,” Communications Systems and

Random Process Theory, vol. 11, pp. 279-293, Sijthoff and Nordhoff, 1978.

P. E. Allard and A. W. Bridgewater, “A source encoding technique using algebraic
codes,” in Proc. Canadian Computer Conference, 1972, pp. 201-213.

K. C. Fung, S. Tavares, and J. M. Stein, “A comparison of data compression
schemes using block codes,” in Proc. IEEE Int. FElectrical Electronics Conf.,
October 1973, pp. 60-61.

T. C. Ancheta, “Syndrome-source-coding and its universal generalization,” IFEE

Transactions on Information Theory, vol. 22, no. 4, pp. 432-436, July 1976.

J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Transactions on Information Theory,, vol. 23, no. 3, pp. 337-343, May 1977.

118

BIBLIOGRAPHY

[58]

[59]

[61]

[62]

[63]

[65]

——, “Compression of individual sequences via variable-rate coding,” IEEFE Trans-

actions on Information Theory, vol. 24, no. 5, pp. 530-536, Sep. 1978.

G. Caire, S. Shamai, and S. Verdu, “A new data compression algorithm for sources
with memory based on error correcting codes,” in IEEE Workshop on Information
Theory, Paris, France, Mar. 30 - Apr. 4 2003, pp. 291-295.

J. Garcia-Frias and Y. Zhao, “Compression of binary memoryless sources using
punctured turbo codes,” IEEE Communications Letters, vol. 6, no. 9, pp. 394—
396, September 2002.

J. Hagenauer, J. Barros, and A. Schaefer, “Lossless turbo source coding with

)

decremental redundancy,” in Proc. International ITG Conference on Source and

Channel Coding, Erlangen, Germany, January 2004, pp. 333-339.

N. Diitsch and J. Hagenauer, “Combined incremental and decremental redundancy
in joint source-channel coding,” in Proc. Int. Symposium on Information Theory

and its Applications, Parma, Italy, October 2004.

G. Caire, S. Shamai, and S. Verdd, “Almost-noiseless joint source-channel coding-
decoding of sources with memory,” in Proc. 5th International ITG Conference on
Source and Channel Coding, January 2004, pp. 295-304.

M. Fresia, F. Pérez-Cruz, and H. V. Poor, “Optimized concatenated LDPC codes
for joint source-channel coding,” in Proc. IEEE Int. Symposium on Information
Theory, Seoul, South Korea, 2009.

M. Fresia, F. Pérez-Cruz, H. V. Poor, and S. Verdu, “Joint source/channel coding
with low density parity check matrices,” IEEE Signal Processing Magazine, vol. 27,
no. 6, pp. 104-113, November 2010.

G. Caire, S. Shamai, and S. Verdu, “Noiseless data compression with low-density
parity-check codes,” DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 66, pp. 263—284, American Mathematical Society, 2004.

M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algo-
rithm,” Tech. Rep. SRC 124, Tech. Rep., May 1994.

T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-
check codes,” IEEE Transactions on Information Theory, vol. 47, pp. 638-656,
Feb. 2001.

BIBLIOGRAPHY 119

[69] C. Poulliat, D. Declercq, C. Lamy-Bergot, and I. Fijalkow, “Analysis and op-
timization of irregular LDPC codes for joint source-channel decoding,” IEEFE
Communications Letters, vol. 9, no. 12, pp. 1064-1066, December 2005.

[70] M. Beermann, T. Breddermann, and P. Vary, “Rate-compatible LDPC codes using
optimized dummy bit insertion,” in Proc. 8th International Symposium on Wireless
Communication Systems (ISWCS), Nov. 2011, pp. 447 —451.

[71] T. Tian and C. R. Jones, “Construction of rate-compatible LDPC codes utilizing
information shortening and parity puncturing,” EURASIP Journal on Wireless
Communications and Networking, vol. 5, pp. 789-795, October 2005.

