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To Lúcia, Miriam, and Antônio
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Abstract

In this thesis, we investigate systems based on error-correcting codes for unequal error

protecting and joint source-channel coding applications. Unequal error protection

(UEP) is a desirable characteristic for communication systems where source-coded

data with different importance levels is being transmitted, and it is wasteful or even

infeasible to provide uniform protection for the whole data stream. In such systems, we

can divide the coded stream into classes with different protection requirements. Among

the possible ways to achieve UEP, we focus on solutions based on error correcting codes.

Regarding UEP solutions by means of coding, we first introduce an analysis of a hybrid

concatenation of convolutional codes, which typically arises in the context of turbo

coding schemes with unequal-error-protecting properties. We show that the analysis of

such a system can be reduced to the study of serial concatenated codes, which simplifies

the design of such hybrid schemes.

Additionally, we also investigate the application of graph-based codes for systems with

UEP requirements. First, we perform a multi-edge-type analysis of unequal-error-

protecting low-density parity-check (LDPC) codes. By means of such an analysis,

we derive an optimization algorithm, which aims at optimizing the connection profile

between the protection classes within a codeword of a given unequal-error-protecting

LDPC code. This optimization allows not only to control the differences in the perfor-

mances of the protection classes by means of a single parameter, but also to design codes

with a non-vanishing UEP capability when a moderate to large number of decoding

iterations is applied.

As a third contribution to UEP schemes, we introduce a multi-edge-type analysis

of unequal-error-protecting Luby transform (UEP LT) codes. We derive the density

evolution equations for UEP LT codes, analyze two existing techniques for constructing

UEP LT codes, and propose a third scheme, which we named flexible UEP LT approach.

We show by means of simulations that our proposed codes have better performances

than the existing schemes for high overheads and have advantages for applications

where a precoding of data prior to the channel encoding is needed.

In the last part of the thesis, we investigate joint source-channel coding schemes where

low-density parity-check codes are applied for both source and channel encoding. The

investigation is motivated by the fact that it is widely observed that for communication

systems transmitting in the non-asymptotic regime with limited delay constraints, a
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separated design of the source and channel encoders is not optimum, and gains in

complexity and fidelity may be obtained by a joint design strategy. Furthermore,

regardless of the fact that the field of data compression has reached a state of maturity,

there are state-of-the-art applications which do not apply data compression thus failing

to take advantage from the source redundancy in the decoding.

Within this framework, we propose an LDPC-based joint source-channel coding scheme

and by means of the multi-edge analysis previously developed, we propose an optimiza-

tion algorithm for such systems. Based on syndrome source encoding, we propose a

novel system where the amount of information about the source bits available at the

decoder is increased by improving the connection profile between the factor graphs of

the source and channel codes that compose the joint system.

Lastly, we show by means of simulations that the proposed system shows a significant

reduction of the error floor caused by the encoding of messages that correspond to

uncorrectable error patterns of the LDPC code used as source encoder in comparison

to existent LDPC-based joint source-channel coding systems.
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Chapter 1

Introduction

Digital communication systems are so ingrained in our every-day life that it becomes

increasingly difficult to imagine a world without it. They are everywhere from mobile

telephones to deep-space communication and have been developing at breathtaking

pace since 1948 with the publication of Shannon’s landmark paper “A mathematical

theory of communication” [1]. At a time when it was believed that increasing the

rate of information transmission over a channel would increase the probability of error,

Shannon proved in his channel coding theorem that this is not true. Communication

with a vanishing error probability is indeed possible as long as the transmission rate is

kept below the channel capacity. The way to achieve it: coding.

Since the development of the first non-trivial error-correcting codes by Golay [2] and

Hamming [3], a lot of work has been done on the development of efficient coding and

decoding methods for error control of transmissions over noisy channels. Nevertheless,

it was not until the 1990’s that practical capacity achieving coding schemes were

developed with the advent of turbo codes by Berrou, Glavieux, and Thitimajshima [4]

and the rediscovery of Gallager’s low-density parity-check codes [5]. Those two schemes

share in common the fact that their most used decoding algorithms are based on

iterative techniques and, together with Luby transform codes [6], are central to this

thesis where we investigate their application for unequal-error-protecting and joint

source-channel coding systems.

Unequal error protection is a desirable characteristic for communication systems where

source bits with different sensitivities to errors are being transmitted, and it is wasteful

1
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or even infeasible to provide uniform protection for the whole data stream. There are

mainly three strategies to achieve unequal error protection on transmission systems: bit

loading, multilevel coded modulation, and channel coding [7]. In the present work, we

focus on the latter, more specifically on low-density parity-check and Luby transform

codes. Additionally, we present some results applicable to the design of concatenated

coding schemes used within an unequal error protection framework.

Last but not least, we study the problem of joint source-channel coding. The main

idea when dealing with the joint source-channel coding/decoding problem is to take

advantage of the residual redundancy arising from an incomplete data compression

in order to improve the error rate performance of the communication system. This

possibility was already mentioned by Shannon in [1] and quoted by Hagenauer in [8]:

“However, any redundancy in the source will usually help if it is utilized at the receiving

point. In particular, if the source already has redundancy and no attempt is made to

eliminate it in matching to the channel, this redundancy will help combat noise.” The

approach we chose for joint source-channel coding in this thesis is based on low-density

parity-check codes and syndrome source encoding.

The outline of this thesis is as follows: First, in Chapter 2, we introduce the com-

munication system and transmission model we are going to assume. Furthermore, we

present some basic concepts on coding that are essential for a full understanding of the

subsequent chapters. Chapter 3 describes the relation between the two different kinds of

extrinsic information transfer charts that arise in the analysis of a hybrid concatenated

turbo coding scheme used to achieve unequal error protection capabilities. From this

analysis, it is shown that both kinds of charts can be used to analyze the iterative

decoding procedure of such hybrid concatenated codes. Finally, it is shown that the

analysis of the hybrid turbo codes can be reduced to the study of the component serial

concatenated codes.

Chapter 4 deals with low-density parity-check codes with unequal-error-protecting

capabilities. It is known that irregular low-density parity-check codes are particu-

larly well-suited for transmission schemes that require unequal error protection of the

transmitted data due to the different connection degrees of its variable nodes. However,

this capability is strongly dependent on the connection profile among the protection

classes defined within a codeword. We derive a multi-edge-type analysis of low-density

parity-check codes to optimize such connection profiles according to the performance

requirements of each protection class. This allows the construction of low-density
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parity-check codes where the difference between the performance of the protection

classes can be adjusted and with an unequal error protection capability that does not

vanish as the number of decoding iterations grows.

In Chapter 5, a multi-edge framework for unequal-error-protecting Luby transform

codes similar to the one presented in Chapter 4 is derived. Under the framework

introduced, two existing techniques for the design of unequal-error-protecting Luby

transform codes can be evaluated and explained in a unified way. Furthermore, we

propose a third design methodology for the construction of unequal-error-protecting

Luby transform codes which compares favorably to the design techniques already

present in the literature.

The multi-edge framework applied in chapters 4 and 5 is then used in Chapter 6 to the

joint source-channel coding problem. The approach followed in this chapter relies on

a graphical model where the structure of the source and the channel codes are jointly

exploited. More specifically, we are concerned with the optimization of joint systems

that perform linear encoding of the source output and channel input by means of low-

density parity-check codes. We present a novel system where the amount of information

about the source bits available at the decoder is increased by improving the connection

profile between the factor graphs of the source and channel codes that compose the joint

system and propose the application of low-density parity-check codes to the syndrome-

based source encoding. Furthermore, we propose an optimization strategy for the

component codes based on a multi-edge-type joint optimization.

Chapter 7 summarizes the results of this thesis and considers possible future work.





Chapter 2

Basic Concepts

The present chapter describes the system model considered in the development of this

thesis. Furthermore, it introduces concepts, notation, and techniques which will be

necessary for the understanding of the forthcoming chapters.

2.1 Communication system

The digital communication system model considered throughout this thesis was first

established by Shannon in [1]. Figure 2.1 shows the components of such a model at

both the transmitter and receiver sides including the transmission channel.

Figure 2.1: Basic digital communication system block diagram.

5



6 2.1. COMMUNICATION SYSTEM

Throughout this work, we assume that the source is digital with output consisting of

a stream of binary symbols over GF(2). However, systems with analog sources can be

easily included into this framework assuming that the source output has been digitized

before its delivery to the source encoder.

As a first step prior to transmission, the information received from the source is

compressed by the source encoder, i.e., the source encoder turns its representation

into one with fewer symbols. The compression consists in reducing the redundancy

present in the source output to a minimum in order to transmit only the information

essential for the reconstruction of the original source output at the receiver. The

compressed information is then delivered to the channel encoder which adds redundancy

to the received symbol sequence in order to protect it against the effects of distortion,

interference, and noise present in the communication channel. The channel encoded

sequence is then modulated and transmitted.

The role of the modulator is to turn the output of the channel encoder into a form

suitable for transmission. For wireless transmissions for example, the size of the

transmitting antenna is proportional to the wavelength of the signal to be transmitted.

This means that in order to use antennas of reasonable size, the original bit stream

should be represented by a high-frequency signal. We will consider that the modulator,

channel, and demodulator form a single block which we will refer to as the digital

channel as indicated in Fig. 2.1.

After its arrival at the receiver, the transmitted information is first demodulated

and then forwarded to the channel decoder. The channel decoder makes use of the

redundancy introduced at the transmitter side to correct possible errors introduced by

the transmission channel. After that, the information is finally decompressed by the

source decoder and delivered to the user.

This simplified model of a digital communication system is sufficient to describe the

work presented in this thesis. Except when specifically stated, we assume that the

input to the channel encoders are sequences of binary digits perfectly compressed by

the source, i.e., with no leftover redundancy. This is equivalent to assuming that the

occurrences of both binary symbols are i.i.d. and have the same probability. Later, we

deal with the problem of how to combine source and channel en- and decoders in order

to take advantage of any redundancy resulting from an imperfect compression.
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2.2 Transmission model

The transmission of information between the transmitter and receiver takes place over

a communication channel. Broadly speaking, a channel is a physical medium through

which the information is transmitted or stored. For our purposes, we will adopt an

information theoretic approach and follow the channel definition of [9], i.e., we define

a channel as a system consisting of an input alphabet X , an output alphabet Y, and
a probability transition matrix p(y|x) that expresses the probability of observing the

output symbol y given that the symbol x was transmitted, i.e., a matrix of conditional

probabilities of y given x.

Among the myriad of channel models present in the literature, we are mainly interested

in three models: the binary symmetric channel (BSC), the binary erasure channel

(BEC), and the binary input additive white-Gaussian-noise (BI-AWGN) channel . The

formal definition of these three models is given as follows

Definition 1 (Binary symmetric channel) A binary symmetric channel (BSC) is

a channel with input alphabet X = {0, 1}, output alphabet Y = {0, 1}, and the following

set of conditional probabilities

p(y = 0|x = 0) = p(y = 1|x = 1) = 1− p

p(y = 1|x = 0) = p(y = 0|x = 1) = p .

A graphical representation of the BSC can be seen in Fig. 2.2.

The BSC channel is maybe the simplest channel model, but still it captures most of

the features of the general transmission problem. The next definition regards another

simple but important model: the binary erasure channel (BEC). Introduced by Elias in

[10], this model is particularly well-suited to modeling channels where the transmission

is done by means of packets that are either received correctly or completely lost. Since

this kind of transmission is ubiquitous in the Internet, the BEC, which was previously

regarded as a toy example, became a real-world channel model.

Definition 2 (Binary erasure channel) A binary erasure channel (BEC) is a chan-

nel with input alphabet X = {0, 1}, output alphabet Y = {0, 1, ?}, where ? indicates an
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erasure, and the following set of conditional probabilities

p(y = 0|x = 0) = p(y = 1|x = 1) = 1− ǫ

p(y = 1|x = 0) = p(y = 0|x = 1) = 0

p(y = ?|x = 0) = p(y = ?|x = 1) = ǫ .

A graphical representation of the BEC can be seen in Fig. 2.3.

Figure 2.2: Binary symmetric channel. Figure 2.3: Binary erasure channel.

The last channel model we introduce is the binary input additive white-Gaussian-noise

channel (BI-AWGNC). We define the BI-AWGNC as follows

Definition 3 (Binary input additive white Gaussian-noise channel) A binary

input additive white Gaussian-noise channel (BI-AWGNC) is a channel with input

alphabet X = {−1,+1} and output alphabet Y = R, with the following set of conditional

probabilities

p(y|x) = 1√
2πσn

exp
[
−(y − x)2/(2σ2

n)
]
, (2.1)

where σ2
n is the variance of a zero-mean Gaussian noise sample n that the channel adds

to the transmitted value x, so that y = x + n. The graphical model of the BI-AWGN

channel can be seen in Fig. 2.4.

Note that for the transmission over the BI-AWGN channel, we consider that each of

the binary digits emitted by the channel encoder c ∈ {0, 1} is mapped to channel inputs

x ∈ {−1,+1} prior to the transmission following the rule x = (−1)c, so that x = +1

when c = 0.

An important figure of merit of communication channels is their capacity. The capacity

of a channel is defined as the maximum amount of information that can be transmitted
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Figure 2.4: Binary input additive white Gaussian-noise channel.

per channel use. In order to mathematically define the channel capacity, we need to

introduce two basic information theory definitions: entropy and mutual information.

Definition 4 (Entropy) The entropy (or uncertainty) of a random variable X with

probability mass function p(x) is defined as

H(X) = −
∑

x

p(x) log2 p(x). (2.2)

Furthermore, the conditional entropy between two random variables (X,Y ) can be

defined as

H(X|Y ) = −
∑

x,y

p(x, y) log2 p(x|y). (2.3)

The entropy may be interpreted as the amount of information we receive when observing

the outcome of a random variable X, i.e., the uncertainty we have about the outcome

of X. Given the concept of entropy, we can present a central definition in information

theory.

Definition 5 (Mutual information) Let X and Y be two random variables. The

mutual information I(X;Y ) between X and Y is defined as

I(X;Y ) = H(X)−H(X|Y ) . (2.4)

The mutual information is simply the reduction of the uncertainty about the outcome

of X that we get from knowing the outcome of Y . This posed, the capacity of a channel

with input X and output Y is defined as

C = max
p(x)

I(X;Y ) . (2.5)

The channel capacity has a central role in information theory due to the fact that
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Shannon demonstrated in its noisy-channel coding theorem [1] that communication

with infinite reliability is possible as long as the transmission rate is kept below the

capacity of the communication channel. A more detailed approach to channel capacity,

including its computation for a series of important channel models can be found in [9].

2.3 Channel coding

Channel coding is an essential feature of modern communication and storage systems.

In a world where data needs to be transmitted at ever increasing speeds, it becomes

essential to find coding schemes capable of providing reliable communication with

the highest possible transmission rate. The noisy-channel coding theorem states that

reliable communication at rates up to the channel capacity is possible, but its proof is

unfortunately not constructive.

The search of practical coding schemes able to approach capacity has been subject of

a lot of research, and until the 1990’s it was thought that capacity achieving codes

were impractical. With the invention of turbo codes and the rediscovery of low-density

parity-check codes, it was demonstrated that codes that operate very close to capacity

are indeed practical.

In this section, we lay down some principles of channel coding, which will be necessary

to understand the underlying principles of these capacity achieving codes.

2.3.1 Linear block codes

In this work, we assume that the information emitted by the source is a sequence of k

binary symbols u = (u0, u1, . . . , uk−1). A block code is a bijective mapping that maps

each length-k message block into a length-n codeword c = (c0, c1, . . . , cn−1). If the

linear combination of any pair of codewords from a block code is also a codeword, the

code is said to be a linear block code. We can define linear block codes using vector

space theory as follows [11]

Definition 6 (Linear block code) A block code of length n and 2k codewords is

called a linear C(n, k) code if and only if its 2k codewords form a k-dimensional subspace

of the vector space of all the n-tuples over the field GF (2).
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Let Vn denote the vector space of all the n-tuples over the field GF (2) and G be a

(k × n) matrix whose rows form a basis of a k-dimensional subspace of Vn. It is not

difficult to see that the k rows of G span the linear code (n, k). The matrix G is called

the generator matrix of the code C(n, k). The rate of a code is defined as

Definition 7 (Code rate) The rate of a binary block code is defined as follows

R =
k

n
. (2.6)

Note that every codeword is a linear combination of the rows of the generator matrix,

i.e., for a message vector u the corresponding codeword c is given by

c = u ·G , (2.7)

where the “·” denotes the inner product over GF (2). Another important matrix used

in the decoding of linear block codes is the ((n − k)× n) parity-check matrix H. The

parity-check matrix is defined as the null-space of the code C(n, k), i.e., for every

codeword c in C(n, k) the following equality holds

c ·HT = 0 . (2.8)

Suppose that we transmitted the codeword c and received the vector r = c+ e, where

e is called the error vector. According to Eq. 2.8, we have

r ·HT = (c+ e) ·HT = c ·HT
︸ ︷︷ ︸

=0

+ e ·HT = e ·HT , (2.9)

that is, we can detect an error in the transmission by computing the inner product

between the received vector and the transpose of the parity-check matrix. The above

definitions are sufficient for the purposes of this thesis. A more elaborated description

of linear block codes can be found in [11].

2.3.2 Convolutional codes

Convolutional codes were proposed by Elias in [12] as an alternative to block codes. In

contrast to block codes, the n output symbols of a convolutional encoder at a certain

time do not only depend on the current k, but also on the past M input symbols,
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Figure 2.5: Four-state, rate 1/2, convolutional code encoder.

where M is referred to as the memory of the code. Our goal in this section is to

introduce a simple description of convolutional codes, their encoding, and mathematical

representation. A more detailed presentation can be found in [11,13].

The most common way of introducing convolutional codes is through the block diagram

representation of their encoder. Figure 2.5 depicts a binary convolutional encoder. The

boxes represent the memory elements, and the state of a convolutional encoder is defined

to be the contents of its binary memory elements. Note that for the encoder of Fig. 2.5,

we have n = 2 outputs for each k = 1 input, so it is a rate-1/2, four-state convolutional

encoder. Unlike block codes, the input and output of convolutional codes are (infinite)

sequences.

A linear convolutional code may be represented using generator polynomials. In general,

there are k×n generator polynomials, which are degree M polynomials g
(j)
i (D) whose

coefficients are the response at output j to an impulse applied at input i. For example,

the encoder of Fig. 2.5 has impulse responses g(1) = [1 1 1] and g(2) = [1 0 1], where

we omit the index i, since there is only one input. Thus, its generator polynomials are

g(1) = 1+D +D2 and g(2) = 1+D2, where D is equivalent to the discrete time delay

operator z−1.

A compact way to represent the encoding of convolutional codes is through the following

matrix expression

C(D) = U(D)G(D) , (2.10)

whereU(D) = [u(1)(D),u(2)(D), · · · ,u(k)(D)] is the k-tuple of input sequences, C(D) =

[c(1)(D), c(2)(D), · · · , c(n−1)(D)] is the n-tuple of output sequences, and G(D) is the

k × n matrix with g
(j)
i (D) as the elements at line i and column j. The matrix G(D)

is called the code’s generator matrix. For the code of Fig. 2.5 we have G(D) =
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Figure 2.6: Trellis of the rate-1/2, NSC, convolutional code of Fig. 2.5.

[1 +D +D2 1 +D2], thus, Eq. 2.10 can be written as

[c(1)(D) c(2)(D)] = u · [1 +D +D2 1 +D2] . (2.11)

Convolutional encoders are mostly represented as non-recursive non-systematic convo-

lutional (NSC) or as recursive systematic convolutional (RSC) encoders. We say that

an encoder is recursive if it presents a feedback in its realization and, as a consequence,

has a generator matrix G(D) with at least one rational function among its entries.

Conversely, a non-recursive encoder does not have any feedback on its realization, and

thus, its G(D) matrix does not have any rational function among its entries. The

encoder of Fig. 2.5, for example, is a non-recursive non-systematic encoder.

As finite-state machines, convolutional encoders have a trellis representation where each

encoded sequence is represented by a path on the trellis. Figure 2.6 shows the trellis

corresponding to the convolutional encoder of Fig. 2.5. Convolutional codes have several

trellis-based decoding algorithms, e.g., list decoding [13], Viterbi algorithm [14], and

the BCJR algorithm [15]. A detailed description of the decoding of convolutional codes

is out of the scope of the thesis, and we will simply refer to the given literature.

2.4 Low-density parity-check codes

Low-density parity-check (LDPC) codes are linear block codes whose parity-check

matrix is sparse. Due to its central role in the development of this thesis, we proceed

to a more thorough exposure of the theory involving this class of block codes. LDPC
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codes can be conveniently represented by bipartite graphs1 where a set of nodes, the

variable (or symbol) nodes, represent the code bits and the other set, the check (or

constraint) nodes, represent the parity-check equations which define the code.

The number of edges connected to a node is called the degree of the node. A graph is

said to be (dv , dc)-regular if all variable nodes have the same degree dv and all check

nodes have the same degree dc. Figure 2.7 depicts the regular factor graph of a block

code with the following parity-check matrix

H =











1 0 0 1 0 1 1 1 1 0

0 1 1 0 0 1 0 1 1 1

1 1 0 1 1 0 1 0 0 1

0 0 1 0 1 1 1 1 0 1

1 1 1 1 1 0 0 0 1 0











. (2.12)

Throughout this work, we will focus on irregular LDPC codes, since they are known to

approach the capacity more closely than regular LDPC codes. An ensemble of irregular

Figure 2.7: Factor graph of a (3,6) regular block code of size n = 10.

LDPC codes is specified by a codeword size and two degree distributions. Let n be the

codeword size of an LDPC code and Λi be the number of variable nodes of degree i,

so that
∑

i Λi = n. Similarly, let Pi be the number of check nodes of degree i, so that
∑

i Pi = n(1 − R), where R is the design rate2. Following a polynomial notation, we

have

Λ(x) =
∑

i=1

Λix
i , P (x) =

∑

i=1

Pix
i ,

i.e., Λ(x) and P (x) are integer coefficient polynomials which represent the number

1The graph representation of linear block codes is also known as Tanner graphs or factor graphs.
We will use those terms interchangeably through this work.

2The design rate is the rate of the code assuming that all constraints are linearly independent.
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of nodes of a specific degree. Such polynomials are known as variable and check

node degree distribution from a node perspective, respectively. It is also possible, for

convenience, to make use of normalized degree distributions

λ̃(x) =
Λ(x)

Λ(1)
, ρ̃(x) =

P (x)

P (1)
.

For the asymptotic analysis, it is more convenient to utilize the degree distributions

from an edge perspective defined by

λ(x) =
∑

i

λix
i−1 =

Λ′(x)

Λ′(1)
=

λ̃′(x)

λ̃′(1)
, ρ(x) =

∑

i

ρix
i−1 =

P ′(x)

P ′(1)
=

ρ̃′(x)

ρ̃′(1)
.

Note that, λi (ρi) is the fraction of edges connected to variable (check) nodes of degree

i, i.e., λi (ρi) is the probability that a randomly and uniformly chosen edge is connected

to a variable (check) node of degree i. The design rate of an irregular LDPC code is

given by

R = 1−
∫ 1
0 ρ(x)dx
∫ 1
0 λ(x)dx

.

2.4.1 Iterative decoding

The algorithm employed for decoding LDPC codes throughout the thesis is the belief

propagation algorithm (BP), which is a soft-input soft-output bitwise iterative decoding

algorithm. The operation of the BP algorithm consists in determining the a posteriori

probability of each message symbol based on the received signal, code constraints, and

channel conditions. The reliability of each symbol at the end of each iteration is then

used as an input to the next iteration. The reliability measure used here is the log-

likelihood ratio (LLR).

Before presenting the BP algorithm, we need to introduce some notation. Let N (c) de-

note the neighborhood3 of a check node c. Similarly, let M(v) denote the neighborhood

of a variable node v. The set N (c) with the node v excluded is indicated byN (c)\v. Let
qv→c be the messages sent from a symbol node v to the check node c. Finally, let rc→v

be the message sent from the check node c to the variable node v. Having introduced

3The neighborhood of a node is composed of all its adjacent nodes. Two node are said to be adjacent
if they are connected through an edge.
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the notation, we can now describe the four parts of the BP algorithm following the

concepts introduced in [16] and the presentation of [17]: initialization, check nodes

update, variable nodes update, and termination as follows.

Algorithm 1 Belief propagation

1. Initialization- Let xv denote the represented value of a symbol node v and yv
be the channel observation regarding xv. At the initialization step, each variable
node computes an initial LLR L(yv|xv) = ln(p(yv|xv = 0)/p(yv |xv = 1)). Then,
every variable node sends to their neighbors the message

L(qv→c) = L(yv|xv) .

2. Check nodes update- The cth check node receives the messages L(qv→c), where
v ∈ N (c), and updates the messages L(rc→v) according to

L(rc→v) = 2 · tanh−1




∏

v′∈N (c)\v

tanh

(
L(qv′→c)

2

)


 .

3. Variable nodes update- The vth variable node receives L(rc→v), where c ∈
M(v), and updates L(qv→c) according to

L(qv→c) = L(yv|xv) +
∑

c′∈M(v)\c

L(rc′→v) .

4. Termination- The decoder computes the a posteriori information regarding
the symbol v through the sum of the channel information and all the messages
transmitted to v by its neighboring check nodes,

Av = L(yv|xv) +
∑

c∈M(v)

L(rc→v) .

The algorithm stops if a valid codeword is found, i.e., the hard decision x̂ of the
vector A = (A1, A2, ..., An), where

x̂v ,

{

0, if Av ≥ 0 ;

1, otherwise,

fulfills the condition x̂HT = 0, or a predetermined maximum number of iterations
is reached.
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Notice that the BP algorithm is optimal for cycle-free graphs. Since the majority of

the known practical codes (and the codes we are dealing with belong to this set) do not

have a cycle-free bipartite graph representation, the BP algorithm will be sub-optimal

in such cases. A more detailed description of the BP algorithm can be found in [16].

2.4.2 Density evolution

The common way to access the performance of iterative decoders is by means of density

evolution. When dealing with iteratively decoded LDPC codes, density evolution aims

at tracking the evolution of the error probability of the variable nodes at each iteration,

which is a function of the probability density functions of their incoming messages.

Since this method turns out to be computationally prohibitive, the probability density

functions are typically approximated by a single parameter. The mutual information

between the variables associated with the variable nodes and the message received or

emitted by them is typically chosen as such a parameter.

The use of mutual information leads to a description of the convergence behavior of

a code by means of mutual information transfer functions. These transfer functions,

usually referred to as extrinsic mutual information transfer functions, enable a simple

convergence analysis of iteratively decoded systems [18] and the design of regular and

irregular LDPC codes [19, 20]. In the forthcoming description, we assume infinitely

long LDPC codes (asymptotic assumption) and that the messages exchanged within

the decoding graph are Gaussian (Gaussian approximation) [20]. The asymptotic

assumption allows us to consider that the messages arriving at a node through different

edges are independent, since the corresponding graph will be cycle-free.

Under this independence assumption, the variance of the outgoing message of a degree-

dv variable node can be written as σ2
v = σ2

ch + (dv − 1)σ2
r , where σ2

ch is the variance

of the received channel message, and σ2
r is the variance of the messages sent by the

neighboring check nodes. Note that for antipodal transmission over the AWGN, the

variance of the received channel message is given by σ2
ch = 4/σ2

n, where σ2
n is the

variance of the Gaussian noise. Furthermore, under the Gaussian approximation, the

mutual information between the outgoing message of a degree-dv variable node and its

represented value at iteration l is given by

Iv,l = J

(√

σ2
ch + (dv − 1)[J−1(Ic,l−1)]2

)

, (2.13)
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where Ic,l−1 is the mean mutual information between the messages sent from a degree-

dc check node at iteration l−1 and the represented value of v. The J(.) function relates

variance and mutual information and is defined in [21] as

J(σ) = 1−
∫ ∞

−∞

e
(ξ−σ2/2)2

2σ2

√
2πσ

· log2[1 + e−ξ]dξ . (2.14)

The function J(σ) cannot be expressed in closed form, but it is monotonically increas-

ing and thus invertible. According to [22], Eq. (2.14) and its inverse can be closely

approximated by

J(σ) ≈ (1− 2−H1σ2H2
)H3 , (2.15)

J−1(I) ≈ (− 1

H1
log2(1− I

1
H3 ))

1
2H2 , (2.16)

with H1 = 0.3073, H2 = 0.8935, and H3 = 1.1064.

For the computation of Ic,l−1, note that a degree-dc check node and a degree-dv variable

node can be modeled as a length-dc single parity-check code (SPC) and a length-dv

repetition code (REP), respectively. Thus, we can make use of the duality property for

SPC and REP codes derived in [19] and write Ic,l−1 as

Ic,l−1 = 1− J

(√

(dc − 1)[J−1(1− Iv,l−1)]2
)

. (2.17)

For irregular LDPC codes, the mutual information between the outgoing messages of

variable and check nodes and its represented values can be computed by averaging it

over the different degrees. This posed, the mutual information between the messages

sent from the check to variable nodes and from variable to check nodes at iteration l and

their represented values, computed by means of density evolution using the Gaussian

approximation, are given by

Iv,l =

dvmax∑

i=2

λiJ

(√

4/σ2
n + (i− 1)[J−1(Ic,l−1)]2

)

, (2.18)

Ic,l = 1−
dcmax∑

i=2

ρiJ

(√

(i− 1)J−1(1− Iv,l)2
)

, (2.19)
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where dvmax and dcmax are the maximum degrees of variable and check nodes, re-

spectively. The density evolution for LDPC codes can then be written as a function

of the mutual information at the previous iteration, the noise variance, and degree

distributions as,

Il = F (λ(x), ρ(x), σ2
n, Il−1) . (2.20)

Using Eq. (2.20), we can predict the decoding behavior and also optimize the degree

distributions of an irregular LDPC code. The optimization is performed under the con-

straint that the mutual information between the variables nodes and their represented

values should increase at every decoding iteration until its convergence to unity, i.e.,

F (λ(x), ρ(x), σ2
n, Iv) ≥ Iv, ∀ Iv ∈ [0, 1) . (2.21)

2.4.3 Stability condition

In order to guarantee the convergence of the error probability to zero as the number

of decoding iterations tends to infinity, a given degree distribution (λ, ρ) has to fulfill

the stability condition. This condition was first derived in [23] for general binary-input

memoryless output symmetric channels and is a important constraint to be considered

in the optimization of the degree distributions of LDPC codes. In the following, we

present the stability conditions for the BIAWGN and BSC channels. A formal proof of

these conditions can be found in [23,24].

Theorem 1 (Stability condition) Assume we are given a degree distribution pair

(λ, ρ). The stability condition for the binary-input AWGN channel is given by

λ′(0)ρ′(1) < e
1

2σ2
n ,

where σ2
n denotes the variance of the Gaussian noise. For the binary symmetric channel

the stability condition can be written as

λ′(0)ρ′(1) <
1

2
√

p(1− p)
,

where p is the crossover probability of the BSC channel.
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2.4.4 Multi-edge-type LDPC codes

Multi-edge-type LDPC codes [24,25] are a generalization of irregular and regular LDPC

codes. Diverting from standard LDPC ensembles where the graph connectivity is

constrained only by the node degrees, in the multi-edge setting, several edge classes

can be defined, and every node is characterized by the number of connections to edges

of each class. Within this framework, the code ensemble can be specified through

two node-perspective multinomials associated to variable and check nodes, which are

defined respectively by [24]

ν(r,x) =
∑

νb,dr
bxd and µ(x) =

∑

µdx
d, (2.22)

where b, d, r, and x are vectors which are explained as follows. First, let me denote

the number of edge types used to represent the graph ensemble and mr the number of

different received distributions. The number mr represents the fact that the different

bits can go through different channels and thus, have different received distributions.

Each node in the ensemble graph has associated to it a vector x = (x1, . . . , xme) that

indicates the different types of edges connected to it and a vector d = (d1, . . . , dme)

referred to as edge degree vector which denotes the number of connections of a node to

edges of type i, where i ∈ (1, . . . ,me).

For the variable nodes, there is additionally the vector r = (r1, . . . , rmr), which rep-

resents the different received distributions and the vector b = (b0, . . . , bmr ), which

indicates the number of connections to the different received distributions (b0 is used

to indicate the puncturing of a variable node). In the sequel, we assume that b has

exactly one entry set to 1 and the rest set to zero. This simply indicates that each

variable node has access to only one channel observation at a time. We use xd to

denote
∏me

i=1 x
di
i and rb to denote

∏mr
i=0 r

bi
i . Finally, the coefficients νb,d and µd are

non-negative reals such that if n is the total number of variable nodes, νb,dn and µdn

represent the number of variable nodes of type (b,d) and check nodes of type4 d,

respectively. Furthermore, we have the additional notations defined in [24]

νxj (r,x) =
∂ν(r,x)

∂xj
and µxj(x) =

∂µ(x)

∂xj
. (2.23)

Note that, in a valid multi-edge ensemble, the number of connections of each edge type

4We will frequently refer to nodes with edge degree vector d as “type d” nodes.
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Figure 2.8: Multi-edge graph with two different edge types and one received distribution.

should be the same at both variable and check nodes sides. This gives rise to the socket

count equality constraint, which can be written as

νxj (1,1) = µxj (1) , j = 1, . . . ,me , (2.24)

where 1 denotes a vector with all entries equal to 1, with length being clear from the

context.

2.5 Luby transform codes

First introduced by Luby in [6], Luby transform (LT) codes form together with Raptor

[26] and Online codes [27] the class of the so-called rateless codes. Rateless codes are

particularly suitable for the transmission of data through channels that can be repre-

sented by the binary erasure channel with unknown erasure probabilities, a situation

where traditional erasure correcting codes turn out to be suboptimal. Rateless codes are

also very interesting for multicast transmission, since they eliminate the requirement

for retransmission.

2.5.1 LT encoding

The encoding algorithm for LT codes can be described as follows. Suppose we like to

encode a message composed of k input symbols. Each output symbol is formed by

first determining its degree i according to a probability distribution Ω(x) =
∑k

i=1 Ωix
i,

where Ωi denotes the probability of i being chosen. The output symbol is then formed

choosing i input symbols uniformly and at random and performing an XOR operation

on them. The process is repeated until a sufficient number of output symbols n = γk
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Figure 2.9: Factor graph representing the result of LT encoding for a code with k = 8 and
γ = 10/8.

arrives at the receiver. The quantity γ ≥ 1 is called the overhead. We can describe the

formation of an output symbol following the LT encoding in a step by step manner as

follows:

1. Randomly choose the output symbol degree i from the degree distribution Ω(x).

2. Choose uniformly and at random i symbols among the original k input symbols.

3. Form the output symbol performing the exclusive-or of the chosen i symbols.

The encoding procedure can be depicted as a bipartite graph with k variable nodes

and n check nodes. Figure 2.9 shows the bipartite graph resulting from the encoding

of k = 8 input symbols into n = 10 output symbols (γ = 10/8).

2.5.2 Iterative decoder

The decoding algorithm of LT codes can easily be described with help of the graph

induced by the encoding as follows

1. Find an output symbol cj, for j = 1, . . . , n, that is connected to only one input

symbol vi. In case there is no output symbol fulfilling this condition, the decoding

is halted and more output symbols will be required for successful decoding.

(a) Determine vi as vi = cj ,

(b) Add the value of vi to all its neighboring output symbols,

(c) Remove vi together with all edges emanating from it from the graph.
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2. Repeat (1) until every vi, for i = 1, . . . , k, is recovered.

Note that it is supposed here that the decoder knows the degree and the set of

neighbors of each output symbol. Strategies to accomplish this can be found in [6].

The description done so far considers LT codes where every input symbol has the same

protection requirements (equal error protection LT codes). In Chapter 5, we present

modifications to the LT encoding procedure in order to derive LT codes with unequal

error protection capability.

2.6 Extrinsic information transfer charts

Introduced by ten Brink in [28], extrinsic information transfer (EXIT) charts are

a simple but powerful method to investigate the convergence behavior of iterative

decoding. Let Ia denote the average mutual information between the bits represented

by the variable nodes and the a priori LLR values at the decoder input. In the same

way, let Ie denote the mutual information between the bits represented by the variable

nodes and the extrinsic log-likelihood values at the decoder output.

An EXIT chart is a graphical representation of the transfer functions Ie = T (Ia) of

the constituent decoders inside the same plot, i.e., it shows the relation between the

a priori information at the input and the extrinsic information at the output of both

constituent decoders of a iterative system. Drawing both transfer curves into the same

plot is only possible due to the fact that the extrinsic information of one constituent

decoder becomes the a priori information of the other at each decoding iteration.

Herein, we consider systems with two constituent decoders, and consequently, our EXIT

charts will be two-dimensional. Nevertheless, for systems with more than two con-

stituent decoders, two-dimensional EXIT charts can be constructed if all the decoders

have the same transfer functions, e.g., symmetric multiple concatenated codes [29].

In the following, we construct the EXIT chart of a regular LDPC code to clarify the

concepts we just mentioned.

The structure of an LDPC decoder is depicted in Fig. 2.10 [30]. The edge interleaver

connects the variable (VND) and check nodes (CND). Throughout the decoding, each

component decoder in Fig. 2.10 converts a priori log-likelihood ratios (L-values) into a

posteriori L-values. If we subtract the a priori L-values from the resulting a posteriori
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Figure 2.10: Iterative decoder structure of an LDPC code.

L-value, we obtain what is called the extrinsic L-value. In the following iteration, the

extrinsic L-value sent by a component decoder is used as a priori information by the

other one.

Assuming a Gaussian approximation for the messages exchanged between variable and

check nodes, the transfer function of a degree-dv variable node is given by Eq. (2.13)

substituting Ic,l−1 by Ia, i.e.,

Ie,V ND = J
(√

4/σ2
n + (dv − 1)[J−1(Ia)]2

)

. (2.25)

Similarly, replacing Iv,l−1 by Ia in Eq. (2.17), we can write the transfer function of a

degree-dc check node as

Ie,CND = 1− J
(√

(dc − 1)J−1(1− Ia)2
)

. (2.26)

With the transfer functions for both the VND and CND, we can construct the EXIT

chart of the system shown in Fig. 2.10 and hence predict the convergence behavior of

the code. In our example, we consider a regular LDPC with dv = 3 and dc = 6. The

resulting EXIT chart is depicted in Fig. 2.11.

Figure 2.11 shows the curves Ie,V ND versus Ia,V ND (solid line) and Ia,CND versus

Ie,CND (dashed line). Note that only Ie,V ND is a function of the channel condition,

since only the variable nodes have access to the channel observation. This means

that for every different noise variance σ2
n, we have a different curve Ie,V ND versus

Ia,V ND and consequently, a different EXIT chart. The reason to plot the extrinsic

transfer function of the check nodes on reversed axis is that it allows us to construct
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Figure 2.11: EXIT chart for the (dv, dc) = (3, 6) regular LDPC code ensemble at Eb/N0 =
1.25 dB.

the decoding trajectory of the iterative system, since the extrinsic information of one

decoder becomes the a priori information of the other. The decoding trajectory depicts

the amount of information being exchanged between the constituent decoders.

If we increase the signal-to-noise ratio, the upper curve shifts upwards opening the

“tunnel” between the two curves and thus speeding up the convergence, since a lower

number of iterations will be needed to achieve the point (1,1), which indicates full

knowledge of the transmitted bits. Conversely, if the signal-to-noise ratio is lowered,

the “tunnel” becomes narrower. If both curves intersect, the decoding trajectory does

not go all the way to the point (1,1), what means that the iterative decoder won’t

converge. As for LDPC codes, it is possible to construct EXIT charts for a vast variety

of iterative decoded systems such as serial and parallel concatenated codes. For such

systems, we refer the reader to [31] for a very comprehensive and detailed description.





Chapter 3

Asymptotic Analysis of Hybrid

Turbo Codes

This chapter describes the relation between the two different kinds of EXIT charts that

arise in the analysis of a hybrid concatenated turbo coding scheme used to achieve

unequal-error-protecting capabilities. From this analysis, it is shown that both kinds

of charts can be used to analyze the iterative decoding procedure of such hybrid

concatenated codes. Finally, it is shown that the analysis of the hybrid turbo codes

proposed in [32] can be reduced to the study of its component serial concatenated codes.

3.1 Hybrid turbo codes

Turbo codes [4] were originally defined as parallel concatenated codes (PCCs), i.e., a

parallel concatenation of two binary convolutional codes with the parallel branches

separated by one interleaver of appropriate size, decoded by an iterative decoding

algorithm. Later, Benedetto et al. [33] introduced a serial concatenation of inter-

leaved codes. Those serially concatenated codes (SCCs) in general exhibit lower error

floors than PCCs, but SCCs usually converge further away from channel capacity.

A further form of concatenated code, hybrid concatenated codes (HCCs), consists

of a combination of parallel and serial concatenation, offering the opportunity to

exploit the advantages of parallel and serially concatenated codes. There are several

different hybrid concatenated structures proposed in literature, e.g., [34, 35]. Herein,

27
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we study the hybrid scheme proposed in [32], which is depicted in Fig. 3.1. This

kind of concatenation consists of a parallel concatenation of two serially concatenated

interleaved codes and arise in the context of turbo coding schemes with unequal-error-

protecting properties.

In [36], the authors showed that a pruning procedure can be employed to adapt the rate

and distance for different protection levels in UEP turbo codes. Pruning can simply

be accomplished by a concatenation of a mother code and a pruning code, which leads

to a selection of only some paths in the decoding trellis. In Fig. 3.1, the codes G11

and G21 can be referred to as the pruning codes and G12 and G22 as the mother codes

of such a UEP scheme. As a tool for investigating the iterative decoding behavior

of this hybrid concatenation, we make use of ten Brink’s EXIT charts [28]. We can

however define two different EXIT charts for the studied concatenation. The first one,

which we call local EXIT chart, examines the iterative decoding behavior of the serial

concatenated codes. The second one, which we call global EXIT chart, deals with the

exchange of information between each parallel branch during the decoding procedure.

Our objective is to derive the relation between these different charts, showing that the

design of hybrid turbo codes can, by means of the local EXIT chart, be reduced to that

of serially interleaved concatenated codes.

In the following, all component codes of the hybrid concatenation shown in Fig. 3.1 are

assumed to be recursive systematic convolutional codes. The interleavers in the upper

and lower branch are denoted as Π1 and Π2, respectively. Since the output of each

parallel branch is systematic, the information bits only have to be transmitted once.

The example codes we use in this chapter are given by

G11 = G21 =
(

1 D2

1+D+D2

)

(3.1)

and

G12 = G22 =

(

1 0 1+D+D2

1+D2

0 1 1
1+D2

)

. (3.2)

In this example, the outer codes have rates R11 = R21 = 1/2 and the inner codes rates

are R12 = R22 = 2/3. The systematic coded bit stream is formed as follows

c = (c1,1(1) c1,2(1) c1,3(1) c2,2(1) c2,3(1)

c1,1(2) c1,2(2) c1,3(2) c2,2(2) c2,3(2) . . . ),
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Figure 3.1: Encoder structure of a hybrid turbo code.

where c1,1(1) = u(1), c1,1(2) = u(2) and so on. Note that c2,1(.) is not transmitted,

since we do not want to transmit the systematic information twice. Thus, the overall

rate of our example code is R = 1/5. The decoding of such codes is divided into a

local decoding corresponding to each serial branch, and a global decoding where the

parallel branches exchange extrinsic information between them. In the following, we

explain the local decoding operation and then show how to connect the partial results

for each parallel branch to form the global decoding system. As component decoders,

we assume a posteriori decoders (APP decoders, e.g., BCJR, logMAP) which have two

inputs and two outputs in form of log-likelihood ratios (L-values).

3.1.1 Iterative decoding of the parallel concatenated codes

Both decoders of the parallel concatenation receive as first input the channel observation

(intrinsic information). As this information can be interpreted as a priori information

concerning the coded stream, we will call it La(ĉj) where the indices j = 1 and j = 2

refer to the upper and lower branch, respectively. The second input represents the

a priori information concerning the uncoded bit streams denoted by La(ûj). The

decoder outputs two L-values corresponding to the coded and uncoded bit streams

denoted by L(ĉj) and L(ûj), respectively. Figure 3.2 shows the corresponding system.

For systematic codes, the decoder outputs are composed of the two a priori values and

some extrinsic information gained by the decoding process. In order to avoid statistical

dependencies, the two decoders only exchange the extrinsic L-values corresponding to

the uncoded bit stream Le(ûj) = L(ûj)− La(ûj)− La(ĉj).
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Figure 3.2: Decoder structure of the parallel concatenation present in the hybrid turbo code.

3.1.2 Iterative decoding of the serially concatenated codes

For a serial concatenation with interleaver Πj , let uj and xj be the input and output

of the outer encoder, and let x′
j and cj be the input and output of the inner encoder,

respectively. For each iteration, the inner decoder receives the intrinsic information

La(ĉj) and the a priori knowledge on the inner information bits La(x̂
′
j). Accordingly,

the inner decoder outputs two L-values corresponding to the coded and uncoded bit

streams denoted by L(ĉj) and L(x̂′
j), respectively. The difference L(x̂

′
j)−La(x̂

′
j), which

combines extrinsic and channel information, is then passed through a bit deinterleaver

to become the a priori input La(x̂j) of the outer decoder. The outer decoder feeds

back extrinsic information Le(x̂j) = L(x̂j)−La(x̂j) which becomes the a priori knowl-

edge La(x̂
′
j) for the inner decoder. It is worth noting that the a priori information

concerning the uncoded input of the outer decoder is zero all the time, since there is

no information from this side of the decoder1. Furthermore, the outer decoder does

not pass information corresponding to the uncoded, but to the coded bits to the inner

decoder, since the (interleaved) coded output of the outer encoder corresponds to the

uncoded input of the inner encoder. The decoder structure of the upper branch (j = 1)

is depicted in Fig. 3.3.

1This is assumed here because we are dealing solely with the decoding procedure of one serial branch.
When dealing with the whole hybrid system, La(x̂

′

j) will vary, since it is the information exchanged
between the parallel branches.
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Figure 3.3: Decoder structure of the upper branch for the hybrid turbo code

3.1.3 Hybrid turbo code decoding

Once we know how the serial and parallel decoding is performed, we are able to describe

the decoding procedure of the whole system. At first, the channel provides information

about the outputs corresponding to the two inner encoders, i.e., La(ĉ1) and La(ĉ2).

By now, assume the upper branch to be decoded first. Thus, the upper inner decoder

calculates the estimated vector of L-values L(x̂′
1), subtracts its a priori L-values La(x̂

′
1),

and then passes it to the outer decoder (note that for the first iteration La(x̂
′
1) = 0). The

outer decoder receives La(x̂1) = Π−1
1 (L(x̂′

1)−La(x̂
′
1)), calculates its estimated L-values

L(x̂1), and then passes the extrinsic information Le(x̂1) = L(x̂1)−La(x̂1) to the upper

inner decoder. This procedure is performed for a certain number of iterations nit,1.

At the end of these iterations, the upper branch calculates the extrinsic information

regarding the information bits Le(û1) = L(û1)−La(û1)−La(ĉ1) and passes it on to the

lower branch. Note that La(û1) = 0 is zero when this value is calculated for the first

time. The decoding of the lower branch starts with the activation of the outer decoder,

which receives a priori information from the upper branch La(û2) = Πp(Le(û1)) and

from the channel La(x̂2). Note that, since the inner encoder is systematic, the channel

information regarding the output of the outer encoder is the systematic part of the inner

encoder output, thus it can be passed on to the outer decoder without activating the

inner decoder. The outer decoder computes the values L(x̂2) and passes the extrinsic

information Le(x̂2) = L(x̂2)−La(x̂2) on to the lower inner decoder. The inner decoder

then subtracts its a priori values La(x̂
′
2) = Π2(Le(x̂2)) from its estimated values and

forwards it to the outer decoder. The lower branch is decoded with nit,2 iterations

ending with an activation of the outer decoder, which subtracts the initial channel

information La(ĉ2) and the a priori values coming from the upper branch La(û2) from
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Figure 3.4: Decoder structure of a serial concatenation inside an APP decoder.

its estimation L(û2). This whole process is executed for nit,g iterations, called global

iterations. Each subsequent decoding of a branch is performed as described for the

lower branch, since the a priori information for each branch will be non-zero, i.e., it

is formed by the extrinsic information from the other branch. The iterations within

the branches are called local iterations. As we stated before, the hybrid turbo code

can be seen as a parallel concatenation of two serially concatenated codes. In that

way, the lower and upper decoders of the parallel concatenation can be represented as

constituent blocks as shown in Fig. 3.4. Those blocks are then connected as shown in

Fig. 3.2.

3.2 Global and local EXIT charts

In order to analyze the iterative decoding procedure, we can construct EXIT charts

corresponding to the local as well as to the global iterations. In [32], the authors studied

the convergence behavior of hybrid turbo codes by means of global EXIT charts, but

the local charts and the interaction between the latter and global charts were not

explored. In this section, we study the construction of the local charts and review the

construction of the global one.

3.2.1 Local EXIT charts

The construction of the local EXIT charts consists in drawing the transfer characteristic

of a serial concatenated coding scheme [37]. In the previous section, we mentioned that
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Figure 3.5: Local EXIT chart of the example hybrid turbo code for Eb/N0= -1.22 dB. For this
SNR, it can be noticed from this chart that the system will converge for nit,g > 3.

for the serially concatenated codes the a priori information concerning the uncoded

input of the outer decoder is zero during the whole decoding procedure. When we deal

with the whole system, this is not valid anymore, since at the end of each local decoding,

one parallel branch shall send information concerning the uncoded bits to its adjacent

branch. That is, when dealing with the whole hybrid turbo code, we now state that

the information concerning the uncoded input of the outer decoder is constant during

the local decoding (decoding within each serial branch).

Figure 3.5 illustrates this situation by representing the local EXIT chart of a hybrid

turbo code for a total of four global iterations (nit,g = 4), where the vertical axis denotes

the extrinsic (a priori) information of the inner (outer) decoder Ie,i (Ia,o) and the

horizontal axis denotes the a priori (extrinsic) information of the inner (outer) decoder

Ia,i (Ie,o). The solid and the dashed thin lines represent the transfer characteristic of

the upper and lower outer decoder, respectively. The bold line represents the transfer

characteristic of the inner decoder which remains unchanged during the decoding

procedure. This is due to the fact that the a priori information in the beginning

of the decoding procedure is solely due to the intrinsic information, which remains
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constant during the global decoding procedure.

The transfer characteristic of the outer decoder starts at the abscissa zero (first local

decoding operation) and is increased at the beginning of each further local decoding.

This is due to the fact that at each local iteration, new information regarding the

uncoded bits (Ia(û)) will be received from the adjacent parallel branch. It is this gain

of information that enables us to generate a different transfer characteristic curve for

each local decoding operation. From now on, we will refer to this set of information

transfer curves of the outer decoder for different Ia(û) (together with the transfer curve

of the inner decoder) as local EXIT charts.

Each global iteration is represented by a pair of curves for the outer decoders (one

dashed line together with one solid line). The convergence of the decoding procedure

for the represented SNR can be inferred from Fig. 3.5, since there will be an “open

tunnel” between the transfer characteristic of the inner and outer decoders for nit,g > 3,

i.e., the mutual information exchanged between them will converge to one in a limited

number of iterations.

3.2.2 Global EXIT charts

For the construction of the global EXIT chart, we consider each serial decoding struc-

ture of a branch as one component decoder in a parallel concatenation. The global

EXIT chart depicts the mutual information concerning the a priori values La(ûj) and

the extrinsic values Le(ûj) = L(ûj) − La(ûj) − La(ĉj). The global EXIT chart for

Eb/N0 = 1 dB is shown in Fig. 3.6.

Note that due to the different code rates for the global and local systems, the corre-

sponding local EXIT chart is depicted in Fig. 3.5 for Eb/N0 = −1.22 dB, i.e.,

Eb

N0

∣
∣
∣
dB,R=1/5

=
Eb

N0

∣
∣
∣
dB,R=1/3

+10 log10
5

3
. (3.3)

As expected from the analysis of the corresponding local EXIT chart depicted in

Fig. 3.5, the iterative decoding converges.
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Figure 3.6: Global EXIT chart with decoding trajectory for the example hybrid turbo code
with nit,1 = nit,2 = 2 and Eb/N0 = 1 dB (lower decoder activated first).

3.3 Relation between local and global EXIT charts

The analysis of both local and global EXIT charts provides a good insight into the

iterative decoding procedure. Since they lead to the same conclusion about the decoder

convergence, a mathematical relation between them is to be expected. The derivation

of this relation is the subject of the present section.

The local EXIT charts relate the a priori and extrinsic information concerning the

codewords of the outer decoder, i.e., they show the relation between I(x;La(x̂)) =

Ia,o(x̂) and I(x;Le(x̂)) = Ie,o(x̂). Applying Eq. (2.4) for finitely long sequences, the

mutual information between some data sequence x and the corresponding L-values

L(x̂) can be written as

I = I(x;L(x̂)) = E{1− log2(1 + e−xv·L(x̂v))} . (3.4)

The global EXIT chart, instead, plots the relation between the mutual information of

a priori and extrinsic values regarding the information bits, i.e., I(u;La(û)) = Ia,j(û)
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and I(u;Le(û)) = Ie,j(û) where j = 1 (upper branch), 2 (lower branch).

In the local EXIT charts, we should now focus on the points where Ia,o(x̂) = 0, i.e., the

points where the a priori information regarding the output bits of the outer encoder

is zero. In this situation, all the knowledge that the outer decoder has about x̂ comes

from the information regarding û provided by the other branch. Since the code is

systematic, it is not difficult to see that

Ie,o(x̂) = Ro · Ie,j(û) , (3.5)

where Ro is the rate of the outer code and j = 1 or 2 depending whether the upper or

lower decoder was activated in the corresponding local decoding, respectively.

Equation (3.5) relates two quantities that are depicted in different EXIT charts, thus

it can be used to link both representations. On the one hand, from the local EXIT

chart, we will be able to calculate the global decoding trajectory from the points of zero

ordinate (Ia,o(x̂) = 0), since at these points, all the knowledge that the outer decoder

has about x̂ comes from the information regarding û. Then, using Eq. (3.5), we can

compute the corresponding Ie,j(û). On the other hand, by directly evaluating the global

EXIT chart where the decoding trajectory and the transfer curve of the active branch

meet, one can compute the points of the local EXIT chart where Ia,o(x̂) = 0. This

situation is shown in Fig. 3.7 for the local and global EXIT charts depicted in figs. 3.5

and 3.6. Note that since the Ro = 0.5, Ie,o(x̂) = 0.5 · Ie,j(û), where j = 1 for the upper

branch (dashed arrows) and j = 2 for the lower one (solid arrows).

Figure 3.8 depicts the local EXIT chart for Eb/N0 = −1.77 dB (or Eb/N0 = 0.5 dB

if we refer to the whole system). From this chart, we can observe that the decoding

will not converge for this SNR due to the intersection between the transfer curves of

the inner and outer decoder. It is worth noting that, in this example, the more local

iterations are performed, the closer the transfer curves of the outer decoder lie to each

other. This reflects the fact that there is no further gain of information about û. This

is depicted in the corresponding global EXIT chart of Fig. 3.9 when the transfer curves

of each branch intersect. Note that, as stated in Eq. (3.5), the point in the local chart

to where the transfer curves converge is exactly half of the ordinate of the point where

the transfer curves of the global EXIT chart intersect.
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Figure 3.7: Depiction of the relation between the points Ia,o(x̂) = 0 in the local EXIT chart and
the global decoding trajectory for the example hybrid turbo code. The charts were constructed
for Eb/N0 = 1 dB (related to the global system) with the lower decoder being activated first.
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TRANSFER CHARACTERISTIC OF THE INNER AND OUTER CODES

Figure 3.8: Local EXIT chart for the example hybrid turbo code for Eb/N0=0.5 dB (relating
to the whole system). Local decoders do not converge for this SNR.

3.4 Construction of the local EXIT chart from the

transfer characteristic of the inner and outer codes

We still need to show how to construct the local EXIT charts from the transfer

characteristic of the inner and outer codes. This reduces the design of good hybrid

turbo codes to the well-known design of serially concatenated convolutional codes [37].

In order to construct the whole local EXIT chart, we must be able to compute the

a priori information regarding the message bits (Ia,j(û)), since for each Ia,j(û) (that

remains constant during each local decoding operation) we will have a different transfer

curve for the outer decoder.

The problem can be formulated as follows: given Ia,o(x̂), Ie,o(x̂), and Ia,j(û), compute

Ie,j(û) (which will be used as a priori information regarding the message bits in the

next local decoding). It should be clear that Ia,o(x̂) and Ie,o(x̂) can be evaluated from

the EXIT chart of the serial concatenation for a given Ia,j(û). Note that Ia,j(û) is

calculated recursively, that is, Ia,1(û)
(it,g) = Ie,2(û)

(it,g) for it, g ≥ 1, and Ia,2(û)
(it,g) =

Ie,1(û)
(it,g−1) for it, g > 1, with Ia,2(û)

(1) = 0 where it, g is an integer and stands for
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Figure 3.9: Global EXIT chart of a hybrid turbo code for Eb/N0 = 0.5 dB.

the current global iteration2.

The soft output of the outer decoder concerning the information bits can be written as

Le(û) = L(û)− La(û)− Lch(û) , (3.6)

where Lch(û) is the intrinsic information concerning the uncoded bits. As indicated by

simulations, we assume the involved random variables to have a symmetric Gaussian

distribution. Under the Gaussian assumption and assuming independence between the

random variables involved, we can write

σ2
e = σ2

u − σ2
a − σ2

ch , (3.7)

where the variances σ2
a, σ

2
ch, and σ2

u are calculated inverting the J(.) function, i.e.,

σ2
a ≈ J−1(Ia(û))

2, σ2
ch ≈ J−1(Ich(û))

2, σ2
u ≈ J−1(I(û))2 ,

where Ich(û) = I(u;Lch(û)) and I(û) = I(u;L(û)). Note that Ich(û) can be inferred

2Note that we are assuming the lower branch to be decoded first.
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from the local EXIT chart from the point where the inner decoder information transfer

curve intersects the ordinate axis. I(û) can be calculated from the local EXIT chart in

the following way.

Since L(x̂) = La(x̂) + Le(x̂), and assuming that La(x̂) and Le(x̂) are independent

Gaussian distributed variables, we can write

σ2
x = σ2

a,o + σ2
e,o , (3.8)

where σ2
a,o ≈ J−1(Ia,o(x̂))

2 and σ2
e,o ≈ J−1(Ie,o(x̂))

2. Since Ia,o(x̂) and Ie,o(x̂) are

known, we can compute I(x;L(x̂)) = I(x̂) = J(σx). Finally, note that I(x̂) contains

information regarding both parity and information bits. Thus, we can write

I(x̂) = I(û) ·Ro + I(p̂) · (1−Ro) , (3.9)

where Ro is the rate of the outer code and I(p̂) is the information regarding the

parity-check bits. Assuming that the L-values carry approximately the same amount

of information for every bit, we can say that I(û) ≈ I(p̂) and then

I(û) ≈ I(x̂) . (3.10)

Note that Eq. (3.5) can also be derived from (3.9) by noticing that in the points of the

local EXIT chart where Ia,o(x̂) = 0, the information about the parity bits equals zero,

i.e., I(p̂) = 0. By means of eqs. (3.7), (2.14), (3.8), and (3.10), we can compute the

extrinsic information regarding the message bits Ie(û) and then compute the transfer

curve of the outer decoder when Ia(û) 6= 0 thus deriving the complete local EXIT

chart. With the local EXIT chart and Eq. (3.5), we are able to predict the convergence

behavior of the global system without the need of constructing the whole global EXIT

chart. That is, the convergence of the system may be predicted locally by analyzing

the local EXIT charts. This reduces the analysis of the global system to the study of

a serial concatenated code, since the convergence behavior of the global system can be

predicted from the local EXIT chart.



Chapter 4

Multi-Edge-Type Unequal-Error-

Protecting LDPC Codes

Herein, a multi-edge-type analysis of LDPC codes is described. This analysis leads

to the development of an algorithm to optimize the connection profile between the

different protection classes defined within a codeword. The developed optimization

algorithm allows the construction of unequal-error-protecting low-density parity-check

(UEP LDPC) codes where the difference between the error rate performance of the

protection classes can be adjusted. Concomitantly, it enables the construction of LDPC

codes with UEP capabilities that do not vanish as the number of decoding iterations

grows.

4.1 Unequal-error-protecting LDPC codes

When the performance of an LDPC code is considered, it is widely noticed that, at least

for a limited number of decoding iterations, that the connection degree of a variable

node affects the error rate of the symbol it represents, i.e., a higher connection degree

lowers the probability of an erroneous decoding of a variable node. This observation

led to the investigation of irregular LDPC codes for applications where unequal error

protection is desired [38–40], since these codes inherently provide different levels of

protection within a codeword due to the different connection degrees of its variable

nodes. Other strategies to generate UEP LDPC codes include adapting its check node

41
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degree distribution as done in [41], and using an algebraic method based on the Plotkin

construction developed in [42]. In the present chapter, we consider only UEP LDPC

codes designed by means of the optimization of its variable node degree distribution

while the check node degree distribution is fixed.

The UEP LDPC codes considered herein were introduced by Poulliat et al. in [39].

The idea behind the development of these codes is based on dividing a codeword

into different protection classes and defining local variable degree distributions, i.e.,

each protection class is described by a polynomial λ(j)(x) =
∑d

(k)
vmax

i=2 λ
(j)
i xi−1, where

λ
(j)
i represents the fraction of edges connected to degree i variable nodes within the

protection class Cj . Based on the observation that the error rate of a given protection

class depends on the average connection degree and on the minimum degree of its

variable nodes, the authors propose an optimization algorithm where the cost function

is the maximization of the average variable node degree subject to a minimum variable

node degree d
(j)
vmin . A detailed description of the hierarchical optimization algorithm

applied in the derivation of the UEP LDPC codes considered in this chapter can be

found in [39].

Furthermore, the authors in [39] interpret the unequal-error-protecting properties of an

LDPC code as different local convergence speeds, i.e., the most protected class is the one

that converges with the smallest number of decoding iterations to its right value. This

assumption is made in order to cope with the observation that, even though irregular

LDPC codes present UEP capabilities for a low number of message-passing iterations

regardless of the construction algorithm used, this capability vanishes for some LDPC

constructions as the number of iterations grow. This phenomenon was also observed

in [42], where the authors argue that no difference between the performance of the

protection classes can be detected after 50 iterations. On the other hand, the results

presented in [40] show significant UEP capabilities even after 200 decoding iterations.

This discrepancy was studied in [43], where it is pointed out that the connection degree

among the variable nodes belonging to different protection classes is a determining

property for the preservation of the UEP capabilities of an LDPC code when the number

of message passing iterations for decoding grows. More specifically, the authors show

that LDPC codes defined by the same pair of degree distributions present different UEP

capabilities for a moderate to large number of decoding iterations when constructed by

means of distinct computer-based design algorithms. For example, codes constructed

with the random [23] and ACE [44] algorithms preserve the UEP capability indepen-
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dently of the number of decoding iterations, while this same capability vanishes as the

number of decoding iterations grows for codes constructed by means of the PEG [45]

or the PEG-ACE [46] algorithms.

These observations motivated us to investigate the application of a multi-edge-type

analysis for UEP-LDPC codes, since it allows to distinguish of messages exchanged

among the different protection classes during the iterative decoding. This ability to

distinguish messages according to its originating protection class provides us with

the means for controlling the connectivity among the different classes. This enables

not only the construction of LDPC codes with non-vanishing UEP capabilities for a

moderate to large number of iterations, but also to control the difference in the error-

rate performance among the protection classes. Before proceeding to the actual multi-

edge-type analysis, we introduce some notation that will be useful in the forthcoming

description.

4.1.1 System model and notation

The transmission of information over an AWGN channel with noise variance σ2
n using

BPSK signaling is assumed. The unequal-error-protecting LDPC codes considered

herein are binary, systematic, rate R = k/n irregular LDPC codes with variable

and check nodes degree distributions defined by λ(x) =
∑dvmax

i=2 λix
i−1 and ρ(x) =

∑dcmax
i=2 ρix

i−1, where dvmax and dcmax are the maximum variable and check node degrees

of the code, respectively. The bits within a codeword are divided into Nc disjoint

protection classes (C1, C2, . . . , CNc) with decreasing levels of protection. Furthermore,

we consider that all the n−k redundant bits are associated with the less protected class

CNc and that the vector α = {α1, ..., αNc−1} represents the fraction of information bits

associated with the first Nc − 1 protection classes.

4.2 Multi-edge-type unequal-error-protecting

LDPC codes

Unequal-error-protecting LDPC codes can be included in a multi-edge framework in a

straightforward way. This can be done by distinguishing between the edges connected

to the different protection classes defined within a codeword. According to this strategy,
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the edges connected to variable nodes within a protection class are considered to be all

of the same type. For example, consider the factor graph of Fig. 4.1 where the arrows

represent the received channel information and the variable nodes are divided into 2

disjoint protection classes C1 and C2 represented by the gray and white variable nodes,

respectively. A multi-edge-type description arises by letting the edges connected to the

variable node of class C1 and C2 be defined as type-1 (depicted by solid lines) and

type-2 (depicted by the dashed lines) edges, respectively.

Figure 4.1: Multi-edge-type factor graph of a code with 2 protection classes.

Considering that each variable node has access to only one channel observation and

that there are no punctured bits, (i.e., b = (0, 1) for all variable nodes), the variable

and check node multinomials for this example are given by

ν(r,x) =
3

7
r1x

3
1 +

1

7
r1x

3
2 +

3

7
r1x

2
2, µ(x) =

2

7
x31x

2
2 +

1

7
x21x

2
2 +

1

7
x1x

3
2 .

It is worth noting that as opposed to the variable nodes, the check nodes admit connec-

tions with edges of different types simultaneously as can be inferred from Fig. 4.1. In the

following, we will divide the variable nodes into me protection classes (C1, C2, . . . , Cme)

with decreasing levels of protection, i.e., me = Nc.

4.2.1 Edge-perspective notation

The connection between the protection classes occurs through the check nodes, since

they are the only nodes that can have different types of edges attached to them.

Consider irregular LDPC codes with node-perspective variable and check node multi-

edge multinomials ν(r,x) =
∑

νb,dr
bxd and µ(x) =

∑
µdx

d, respectively. In the

following, we consider unpunctured codes and that the variable nodes have access to
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only one observation. Furthermore, variable nodes within the protection class Cj are

only connected to edges of type j.

In order to optimize the amount of connection between the protection classes, it will

be more convenient to work with the edge, instead of the node perspective. We now

define the following edge-perspective multi-edge multinomials

λ(j)(r,x) =
νxj (r,x)

νxj(1,1)
=
∑

dj

λ
(j)
dj

r1x
dj−1
j = r1

dvmax∑

i=1

λ
(j)
i xi−1

j , (4.1)

ρ(j)(x) =
µxj(r,x)

µxj(1,1)
=
∑

d

ρ
(j)
d

xd
′

x
dj−1
j , (4.2)

where the rightmost term of Eq. (4.1) is obtained letting dj = i. Furthermore, λ
(j)
i

denote the fraction of type j edges connected to variable nodes of degree i, ρ
(j)
d

denote

the fraction of type j edges connected to check nodes with edge degree vector d, xd
′

=
∏me

i=1 x
di
i with dj = 0, and 1 denotes a vector with all entries equal to 1 with length

being clear from the context. In the next section, we will use eqs. (4.1) and (4.2) in the

derivation of the optimization algorithm for the connection profile among the protection

classes of an UEP LDPC code.

4.2.2 Asymptotic analysis

Our main objective is, given a UEP LDPC code with overall variable (λ(x)) and

check node (ρ(x)) degree distributions, to optimize the connection profiles between

the different protection classes in order to control the amount of protection of each

class. A second goal is to be able to construct UEP LDPC codes with non-vanishing

UEP capabilities when a moderate to large number of decoding iterations is used. The

algorithm we derive here can be applied for any irregular pair of degree distributions.

However, in order to reduce the search space of the optimization, we suppose from now

on that the LDPC code to be optimized is check-regular, i.e., all the check nodes have

the same degree dc.

Despite having the same degree, each check node may have a different number of edges

belonging to each of the me classes. To understand this, consider for example a check

node with an associated edge degree vector d = (d1, d2, . . . , dme), where di is the number

of connections to the protection class i and
∑me

i=1 di = dc. If we then consider a code
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with me = 3 protection classes, each check node is connected to d1 edges of class 1,

d2 edges of class 2, and d3 edges of class 3, where d1, d2, and d3 are not necessarily

equal. This posed, we can compute the evolution of the iterative decoding by means

of density evolution. We assume standard belief propagation decoding of LDPC codes

where the messages exchanged between the variable and check nodes are independent

log-likelihood ratios having a symmetric Gaussian distribution (variance equals twice

the mean).

Let I
(j)
v,l (I

(j)
c,l ) denote the mutual information between the messages sent through type-j

edges at the output of variable (check) nodes at iteration l and the associated variable

node value. We can write I
(j)
v,l and I

(j)
c,l as

I
(j)
v,l =

dvmax∑

i=2

λ
(j)
i J

(√

σ2
ch + (i− 1)[J−1(I

(j)
c,l−1)]

2

)

, (4.3)

I
(j)
c,l = 1−

dcmax∑

i=1

∑

d:dj=i

ρ
(j)
d

J





√

(dj − 1)[J−1(1 − I
(j)
v,l )]

2 +
∑

s 6=j

ds[J−1(1− I
(s)
v,l )]

2



 .

(4.4)

Equation (4.3) can be derived from Eq. (2.18) replacing λi by λ
(j)
i and Ic,l−1 by I

(j)
c,l−1,

since we are considering each protection class individually, and variable nodes in class j

only receive messages from check nodes through edges of type j. Similarly, Eq. (4.4) can

be derived from Eq. (2.19) with the addition of an extra term (rightmost sum) in order

to consider the messages arriving from protection classes others than j. Furthermore,

the coefficients ρi in Eq. (2.19) are replaced by the sum
∑

d:dj=i ρ
(j)
d

in order to take

into account all possible edge degree vectors d with dj = i.

As done in Section 2.1.2 for irregular LDPC codes, we can combine eqs. (4.3) and (4.4)

summarizing the density evolution as a function of the mutual information of the

previous iteration, the mutual information contribution from the other classes, noise

variance, and degree distributions, i.e.,

I
(j)
c,l = F (λ,ρ

(j)
d

, σ2
n, I

(j)
c,l−1, Ic,l−1) , (4.5)

where the bold symbols represent sequences of values defined as λ = {{λ(j)
i }dvmax

i=2 }me
j=1,
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ρ
(j)
d

= {ρ(j)
d:dj=i}

dcmax
i=1 , and Ic,l−1 = {I(s)c,l−1}me

s=1 with s 6= j. By means of Eq. (4.5),

we can predict the convergence behavior of the iterative decoding and then optimize

the degree distribution ρ(j)(x) under the constraint that the mutual information must

increase with the number of iterations, i.e.,

F (λ,ρ
(j)
d

, σ2
n, I

(j), I) > I(j) . (4.6)

4.2.3 Optimization algorithm

In [42] and [43], it was pointed out that the UEP capabilities of a code depend on the

amount of connection among the protection classes, i.e., if the most protected class

is well connected to a less protected one, the performance of the former will decrease

while the performance of the latter will be improved. For example, let us assume a

code with 2 protection classes and dc = 4. The possible values for the check nodes’

edge degree vectors d = (d1, d2) are (0,4), (1,3), (2,2), (3,1), and (4,0). On the one

hand, if a code has a majority of check nodes with d = (4, 0), the first protection class

will be very isolated from the second one, which will lead to an enhanced performance

difference between the two classes. On the other hand, if a large amount of the check

nodes are of type d = (2, 2), the protection classes will be very connected, which favors

the overall performance but mitigates the UEP capability of a code at a moderate to

large number of decoding iterations. This example suggests that to control the UEP

capability of an LDPC code and to prevent this characteristic from vanishing as the

number of decoding iterations grows, it is necessary to control the distribution of the

check nodes’ edge degree vectors, i.e., optimize ρ(j)(x).

These observations about the influence of the connection between the protection classes

on the UEP characteristics of a code can be further analyzed by means of a detailed

computation of the mutual information, which may be performed by considering the

edge-based mutual information messages traversing the graph instead of node-based

averages. Such an analysis and its results will be presented in Section 4.4. In this

section, we introduce an algorithm developed to optimize the connection profile between

the various protection classes present in a given UEP LDPC code, i.e., ρ(j)(x). Initially,

the algorithm computes the variable node degree distribution of each class λ(j)(r,x)

based on the node-perspective overall variable node degree distribution λ̃(x) from the

given UEP LDPC code and the number of nodes in each protection class. The way this

computation is done will be outlined in the following example.
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Example 1 Consider a length-100, rate-1/2, UEP LDPC code with me = 3 protection

classes, variable node degree distribution from a node perspective given by λ̃(x) =

0.05x10 + 0.2x7 + 0.2x5 + 0.55x2, and α = (0.2, 0.8). The first protection class will

then be formed by the first 10 variable nodes with higher degree, and the second class

by the remaining 40 systematic variable nodes. Following this strategy, the first class

contains 5 degree-10 and 5 degree-7 variable nodes. The second protection class is

formed by 15 degree-7, 20 degree-5, and 5 degree-2 variable nodes. Finally, the third

protection class is composed of the redundant bits and has only degree-2 variable nodes.

This results in the following multi-edge degree distribution

ν(r,x) = 0.05r1x
10
1 + 0.05r1x

7
1 + 0.15r1x

7
2 + 0.2r1x

5
2 + 0.05r1x

2
2 + 0.5r1x

2
3 .

Applying Eq. (4.1), we obtain

λ(1)(r,x) = 0.58824r1x
9
1 + 0.41176r1x

6
1 ,

λ(2)(r,x) = 0.48837r1x
6
2 + 0.46512r1x

4
2 + 0.04651r1x2 ,

λ(3)(r,x) = r1x3 .

⋄

Once the degree distributions λ(j)(r,x) for j = 1, . . . ,me are known, the algorithm

proceeds sequentially optimizing the distributions ρ(j)(x) for j = 1, . . . ,me, proceeding

from the least protected class to the most protected one. This scheduling is done to

control the amount of messages from the less protected classes that are forwarded to

the more protected ones, i.e., the check nodes should have the minimum number of

connections to the least protected classes in order to avoid that unreliable messages are

forwarded to better protected ones.

Since we are using linear programming with a single objective function, we chose it to

be the minimization of the average check node degree within the class being optimized,

i.e., it minimizes the average number of edges of such a class connected to the check

nodes. This minimization aims at diminishing the amount of unreliable messages (i.e.,

the ones coming up from the less protected variable nodes) that flows through a check

node.

In addition to it, in order to control the amount of connection among the protection
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classes, we introduce the set of vectors δ(j) = (δj1, . . . , δ
j
j ) for j = 2, . . . ,me defined as

follows. Given a check node with edge degree vector d = (d1, . . . , dme), each coordinate

δji defines the maximum allowed di, for i 6= j when dj > 0. For example, assume an

UEP LDPC code with me = 3 protection classes, δ(3) = (2, 3, 3), and δ(2) = (2, 4). This

implies that a check node with connections to the protection class C3 (i.e., d3 > 0) can

be connected to a maximum of δ31 = 2 edges of type 1, δ32 = 3 edges of type 2, and δ33 = 3

edges of type 3. In turn, each check node with connections to C2 but no connections

to C3 can be connected to a maximum of δ21 = 2 edges of type 1 and δ21 = 4 edges of

type 2. Roughly speaking, each vector δ(j) adjusts the degree of connection between

Cj and the more protected protection classes Cj′ , j
′ < j while setting the maximum

allowed dj . We will refer to the vectors δ(j) as interclass connection vectors1.

Given σ2
n and δ(j) for j = 2, . . . ,me, the check node profile optimization algorithm for

a given UEP LDPC code with parameters λ̃(x), n, R, α, and dc, can be written as

stated in Algorithm 2. The optimization is successful, when a solution ρ(j)(x) is found

which converges for the given σ2
n and δ(j). Note that the optimization can be solved by

Algorithm 2 Check node profile optimization algorithm

For j = me to 1

1. Compute λ(j)(x)

2. Minimize the average check node degree
∑dc

s=1 s ·
∑

d:dj=s ρ
(j)
d

under the
following constraints,

C1 :
∑dc

s=1

∑

d:dj=s ρ
(j)
d

= 1 ,

C2 :di ≤ δji , ∀ i = 1, . . . , j and d : dj > 0 ,

C3 :F (λ,ρ
(j)
d

, σ2
n, I, I) > I ,

∀ I ∈ [0, 1) ,

C4 :∀ d : 1 ≤ dj′ ≤ dc and j′ > j ,

ρ
(j)
d

is fixed .

end

1Note that in the optimization algorithm proposed herein, it makes no sense to define a vector δ(1),
since the distribution ρ(1)(x) is completely determined by the optimization of the other protection
classes.
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linear programming since the cost function and the constraints (C1) and (C3) are linear
in the parameters ρ

(j)
d

. The constraints (C2) and (C4) are the interclass connection

and the previous optimization constraints, respectively. Once we have optimized the

check-node profile, the code can be realized through the construction of a parity-check

matrix following the desired profile.

4.3 Simulation results

In this section, simulation results for multi-edge-type UEP LDPC codes with optimized

check node connection profile are presented. We designed UEP LDPC codes of length

n = 4096, me = 3 protection classes, rate 1/2, and dvmax = 30 following the algorithm

of [39]. The proportions of the classes are chosen such that C1 contains 20 % of the

information bits and C2 contains 80 %. The third protection class C3 contains all parity

bits. Therefore, we are mainly interested in the performances of classes C1 and C2.

The variable and check node degree distribution for the designed UEP LDPC code are

given by λ(x) = 0.2130x + 0.0927x2 + 0.2511x3 + 0.2521x17 + 0.0965x18 + 0.0946x29

and ρ(x) = x8, respectively. All parity-check matrices were realized using protograph-

based constructions [47]. In order to show the role of the interclass connection vector,

we optimized the multi-edge check node degree distribution of the above described

UEP LDPC code for different interclass connection vectors. This resulted in four codes

(referred to as codes I, II, III, and IV) with different sets of δ(j) according to Table 4.1.

The multi-edge distributions from an edge perspective for the optimized codes are

shown in Tables 4.2 and 4.3.

4.3.1 Low number of iterations

In this subsection, we describe simulation results for a total of 7 decoding iterations

aiming at systems with computational complexity and decoding time constraints (as

most of the practical decoding schemes).

Table 4.1: Interclass connection vectors for four optimized multi-edge-type UEP LDPC codes.

I II III IV

δ(3) (2,2,7) (2,2,7) (2,4,7) (0,2,7)

δ(2) (6,5) (4,5) (6,5) (6,5)
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Table 4.2: Local variable degree distributions. The coefficients λ
(j)
i represent the fraction of

edges connected to variables nodes of degree i within the class Cj .

C1 C2 C3

λ
(1)
4 = 0.00197 λ

(2)
3 = 0.23982 λ

(3)
2 = 0.93901

λ
(1)
18 = 0.57263 λ

(2)
4 = 0.76018 λ

(3)
3 = 0.06099

λ
(1)
19 = 0.21085

λ
(1)
30 = 0.21455

Figure 4.2 shows the performance of codes I and II. The difference between these codes

results from the interclass connection vector of C2. Since Code II has a lower δ21 , the

classes C1 and C2 are more isolated from each other. This can be concluded from

Table 4.3 by the presence of check nodes with edge degree vector d = (9, 0, 0) in Code

II, which indicates check nodes connected only to type-1 edges. Due to its higher

isolation, it is expected for Code II that C1 has a better performance while the error

rate of C2 is worsened as can be observed from Fig. 4.2.

Figure 4.2: Error performance of codes I and II for 7 decoding iterations.
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Table 4.3: Multi-edge check node degree distributions from an edge perspective. The coefficients ρ
(j)
d

represent the fraction of edges
of class j connected to check nodes of type d.

I II III IV

d ρ
(1)
d

ρ
(2)
d

ρ
(3)
d

ρ
(1)
d

ρ
(2)
d

ρ
(3)
d

ρ
(1)
d

ρ
(2)
d

ρ
(3)
d

ρ
(1)
d

ρ
(2)
d

ρ
(3)
d

(0,2,7) 0 0 0 0 0 0 0 0 0 0 0.19681 1
(2,2,5) 0.20589 0.27553 1 0.20589 0.27553 1 0 0 0 0 0 0
(2,4,3) 0 0 0 0 0 0 0.34315 0.91844 1 0 0 0
(3,6,0) 0 0 0 0 0 0 0 0 0 0 0 0
(4,5,0) 0.099360 0.16621 0 0.43308 0.72447 0 0 0 0 0.035770 0.059840 0
(5,4,0) 0.23258 0.24900 0 0 0 0 0.12189 0.081560 0 0.24449 0.26175 0
(6,3,0) 0.46217 0.30926 0 0 0 0 0 0 0 0.71974 0.48160 0
(9,0,0) 0 0 0 0.36103 0 0 0.53496 0 0 0 0 0
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Note that varying δ21 does not change the degree of connection of C1 and C2 to C3.

This can be inferred from Table 4.3 which shows that the fraction of edges connected

to check nodes of type d = (2, 2, 5) remains constant for both codes.

Let us now compare the performances of codes I and III. Since code III has an interclass

connection vector δ(3) = (2, 4, 7) while Code I has δ(3) = (2, 2, 7), the variable nodes

within protection class C2 will be more connected to the least protected bits of C3 in

the former code. In fact, from Table 4.3, we see that for Code III about 92 % of the

type 2 edges are connected to check nodes of type d = (2, 4, 3) while only 27 % type-2

edges have connections to check nodes connected to C3 on Code I. This worsens the

performance of C2 for Code III as depicted in Fig. 4.3.

Note however that regardless of its higher isolation, C1 in Code III does not have a

lower error rate than in Code I for high signal-to-noise ratios. This is explained by the

fact that C1 on Code I profits from its higher connection degree to C2 while in Code

III, C1 is very isolated from the other protection classes and also does not profit much

from the connections to C2 due to the poor performance of the latter.

Figure 4.3: Error performance of codes I and III for 7 decoding iterations.
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These observations can be inferred from Fig. 4.3. This indicates that there is a limit

where the isolation of a protection class starts to be counterproductive to its perfor-

mance.

For the next simulation, we set δ(3) = (0, 2, 7) and δ(2) = (6, 5). This gives rise to

Code IV where the protection class C1 is not connected to any check node that has

connections to the less protected class C3. At the same time, C1 and C2 have a high

connectivity between themselves. This has two expected effects. First, since C1 and C2

are well connected, there is not such a huge difference between their performances as

in Code III. Second, as both C1 and C2 have the lowest connection degree to C3 among

all designed codes, their performances are expected to be enhanced in comparison to

codes I, II, and III. Those observations are confirmed by the simulations depicted in

Fig. 4.4. Furthermore, the isolation from C3 is indicated by the multi-edge check node

degree distribution from an edge perspective of code IV (Table 4.3).

Figure 4.4: Error performance of codes I and IV for 7 decoding iterations.

Finally, Fig. 4.5 compares the performances of Code IV and a code constructed by

means of ACE [44] without any optimization of the interclass connection degree. We
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chose ACE as computer-based construction algorithm due to the fact that it is shown

in [43] that it generates LDPC codes with good UEP capabilities. Note that our

multi-edge UEP LDPC code shows better performances for both protection classes,

the considered signal-to-noise ratio range, and number of decoding iterations. For the

most protected class C1, our scheme has a coding gain of 0.25 dB for a BER = 3 · 10−4,

while for the protection class C2, code IV exhibits a gain of more than 0.75 dB for

BER’s smaller than = 2 · 10−2 when compared with the ACE code.

Figure 4.5: Error performance of Code IV and a code constructed by means of ACE without

optimization of the interclass connection degree for a total of 7 decoding iterations.

4.3.2 High number of iterations

Herein, we present the results of simulations performed for a high number of decoding

iterations. We show that by means of our developed multi-edge check node degree

distribution optimization algorithm, it is possible to construct unequal error protecting

LDPC codes with non-vanishing UEP capabilities for a moderate to large number of

decoding iterations. All the bit-error curves depicted in this subsection were obtained

for a total of 50 decoding iterations.
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We divide the codes of Table 4.1 into 2 sets. The set composed by codes II and III has

non-vanishing UEP capabilities for a moderate to large number of decoding iterations.

In the second set, Code I shows UEP capabilities for high signal-to-noise ratios and code

IV does not show any significant difference between the performance of the protection

classes for a high number of decoding iterations. Figures 4.6 and 4.7 show the simulation

results for both sets for a total of 50 decoding iterations. A close analysis of such

results together with the distributions of Table 4.3 leads to the conclusion that the

isolation between the protection classes is in fact a key parameter to be observed if a

non-vanishing UEP capability is desired for a moderate to large number of decoding

iterations.

Figure 4.6: Error performance of codes II and III for 50 decoding iterations.

Note that while C1 and C2 have a large interconnection degree for codes I and IV

(there is no check node with connections solely to one of the protection classes), codes

II and III have check nodes only connected to C1 variable nodes (check nodes with edge

degree vector d=(9,0,0)). On the one hand, to isolate the systematic protection classes

enhances the difference between their performances. On the other hand, the higher the

performance difference, the more penalized the less protected systematic class will be.
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Figure 4.7: Error performance of codes I and IV for 50 decoding iterations.

The simulations of figs. 4.6 and 4.7 indicate that if an UEP LDPC code is desired for

applications where a moderate to large number of decoding iterations will be used, a

high isolation degree between the systematic protection classes is not a desired feature,

since it penalizes too much the performance of both protection classes, i.e., there is a

compromise between class isolation and average performance.

In order to show that our optimization can also generate good performance UEP LDPC

codes with non-vanishing UEP capabilities for a large number of decoding iterations,

we optimized a 3-class code with interclass connection vectors δ(3) = (4, 4, 4) and

δ(2) = (4, 5) referred to as Code V. For this code, the least protected class is evenly

connected to C1 and C2. Nevertheless, since Code IV has δ(2) = (6, 5), and Code V has

δ(2) = (4, 5), the protection classes C1 and C2 are more connected in the former code.

As a consequence, Code V has UEP capabilities for a high number of decoding iterations

while Code IV has not. This can be concluded from figs. 4.7 and 4.8. Figure 4.8 shows

the bit-error ratio curve of Code V together with the performance of the ACE code

already described in the previous section. While presenting a comparable performance

for low SNR’s, code V has a better performance than the ACE code for Eb/N0 > 1 dB.
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Figure 4.8: Comparison between the error performance of Code V and a code constructed by
means of ACE without optimization of the interclass connection degree. Simulation done with
a total of 50 decoding iterations.

Figure 4.9: BER as a function of the number of decoder iterations for the multi-edge UEP

LDPC code at Eb/N0 = 1.25 dB.
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Lastly, Fig. 4.9 shows the bit-error ratio of Code V as a function of the number of

decoding iterations at a signal-to-noise ratio of 1.25 dB. Note the resilience of the UEP

capabilities as the number of iterations grows. Similarly to codes I, II, III, and IV, we

constructed Code V using a protograph-based construction, since as opposed to PEG

and ACE algorithms, it can generate LDPC codes with a very irregular check node

degree distribution.

In summary, for applications with a low number of decoding iterations, it is desirable

to keep the most protected classes as isolated as possible from the least protected

protection class. However, when a high number of decoding iterations is to be applied,

there is a significant performance improvement when the protection class composed of

the parity bits is evenly connected with the protection classes formed by the systematic

bits. Notwithstanding, for both cases, the higher the isolation between the systematic

protection classes, the higher will be the difference between their performances.

4.4 Detailed mutual information evolution

The analysis of the unequal-error-protecting capabilities of the optimized codes pro-

posed in this chapter can be done by means of mutual information (MI) evolution.

However, as pointed out in [48], the MI analysis as developed in Section 2.1.2 for

regular and irregular LDPC codes generally cannot be applied to the study of multi-

edge-type LDPC codes. The reasoning behind this fact is twofold. First, eqs. (2.18)

and (2.19) consider an average MI computed for the whole ensemble defined by the

degree distributions pair λ(x) and ρ(x). This means that the different UEP capabilities

of the codes studied here could not be detected, since they share the same overall

degree distributions. Second, the analysis based solely on λ(x) and ρ(x) considers

the convergence behavior of the codewords to its right value as a whole, not allowing

to investigate the convergence of the protection classes separately. To overcome such

limitations, [49] proposes a detailed MI evolution analysis based on the results of [48].

Before describing the detailed mutual information evolution, recall that during the

iterative decoding of LDPC codes, variable and check nodes act as serially concatenated

decoders exchanging extrinsic information. The extrinsic mutual information between

the output of a variable node and its corresponding codeword bit (Ie,V ND) becomes a

priori information for its neighboring check nodes (Ia,CND). Analogously, the extrinsic

mutual information between the output of a check node and its corresponding codeword
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bit (Ie,CND) becomes a priori information for its neighboring variable nodes (Ia,V ND).

Using Eq. (2.13), we can write the extrinsic mutual information between the sth output

message of a degree-dv variable node and its corresponding codeword bit as [48]

Ie,V ND|s = J





√
√
√
√

dv∑

r=1,r 6=s

[J−1(Ia,V ND|r)]2 + [J−1(Ich)]2



 , (4.7)

where Ia,V ND|r is the a priori mutual information of the message received by the

variable node through the rth edge and Ich = J(σch). For degree-dc check nodes, we

can use Eq. (2.17) and approximate its extrinsic mutual information by

Ie,CND|s = 1− J





√
√
√
√

dc∑

r=1,r 6=s

[J−1(1− Ia,CND|r)]2



 , (4.8)

where Ia,CND|r is the a priori mutual information of the message received on its rth

edge.

In the following, we present the extrinsic information transfer analysis described in [49]

and [43]. The algorithm aims at computing the a posteriori MI of each variable

node (instead of node-based averages) at the end of each decoder iteration. This

allows to evaluate of the decoding convergence of each protection class. The algorithm

was proposed originally for the analysis of LDPC codes designed with protographs.

However, we will apply it substituting the protograph base matrix by the parity-

check matrix of our LDPC codes. We will denote each element at location (i, j) of

the parity-check matrix by hi,j. Furthermore, Ie,V ND(i, j), Ie,CND(i, j) denote the

extrinsic mutual information between the message sent by Vj to Ci, and from Ci to

Vj respectively, and the associated codeword bit. The detailed MI is summarized

in Algorithm 3. Note that the difference between Algorithm 3 and the standard MI

evolution for LDPC codes is that the former omits the averaging through the degree

distributions. Thus, it is possible that codes belonging to the same ensemble have a

different detailed MI evolution. This is an essential feature when investigating UEP

capabilities of a given LDPC code realization.

By tracking the mean a posteriori MI (Iappv) of each protection class, we can study the

UEP capabilities of a given LDPC code, i.e., it can be investigated if distinct protection

classes have different error protection capabilities for given channel conditions and

number of decoding iterations. For example, in Fig. 4.10, we depict the difference
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Algorithm 3 Detailed mutual information evolution

1. Initialization
Compute the channel information Ich = J(σch) with

σ2
ch =

4

σ2
n

.

2. Variable-to-check update

(a) For i = 1, . . . , n− k and j = 1, . . . , n, if hi,j = 1, calculate

Ie,V ND(i, j) = J





√
∑

s∈M(i),s 6=i

[J−1(Ia,V ND(s, j))]2 + [J−1(Ich)2]



 ,

where M(i) is the set of check node incident to variable node vi.

(b) If hi,j = 0, Ie,V ND(i, j) = 0.

(c) For i = 1, . . . , n− k and j = 1, . . . , n, set Ia,CND(i, j) = Ie,V ND(i, j).

3. Check-to-variable update

(a) For i = 1, . . . , n− k and j = 1, . . . , n, if hi,j = 1, calculate

Ie,CND(i, j) = 1− J





√
∑

s∈N (j),s 6=j

[J−1(1− Ia,CND(i, s))]2



 ,

where N (j) is the set of variable nodes incident to check node cj .

(b) If hi,j = 0, Ie,CND(i, j) = 0.

(c) For i = 1, . . . , n− k and j = 1, . . . , n, set Ia,V ND(i, j) = Ie,CND(i, j).

4. A posteriori mutual information evaluation

For j = 1, . . . , n− k, calculate

Iappv(j) = J





√
∑

s∈M(i)

[J−1(Ia,V ND(s, j))]2 + [J−1(Ich)]2



 .

5. Repeat steps 1 to 4 until a maximum desired number of iterations is
reached.
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between the mean for the variable nodes a posteriori MI of a certain protection class

and its maximum achievable value for each protection class of codes I and IV as a

function of the number of decoding iterations at Eb/N0 = 1 dB. As done in [43] and [49],

this difference is depicted, since for values near to 1, small differences in the MI can

lead to significant differences in the error rate performance [21].

Figure 4.10: Distance of the variable node a posteriori MI to the maximum MI as a function
of the number of decoder iterations at Eb/N0 = 1 dB.

For the protection class C1 of codes I and IV, there is no detectable gap to the optimum

mutual information (1 − Iappv) for more than 7 and 5 decoder iterations, respectively.

The same occurs to the protection class C2 of code IV when more than 9 iterations

are considered. This indicates that for code IV, the BER tends asymptotically to

zero for both protection classes after a moderate number of decoding iterations and

thus, there will be no UEP at this SNR (Eb/N0 = 1 dB). However, (1 − Iappv) of the

protection class C2 of code I has a constant non-zero gap to 1 for a number of decoding

iterations greater than 10, which indicates that this code has UEP capabilities for a

moderate to large number of iterations at this SNR. These conclusions are supported

by the simulations depicted in Fig. 4.7. It is worth noting that the results in Fig. 4.10
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show the convergence behavior of the protection classes for a specific SNR. The fact

that class C2 of code I does not converge for Eb/N0 = 1 dB shows that, for this SNR,

C1 and C2 show different convergence behaviors and thus will have different protection

levels, i.e., UEP. It should not be concluded from Fig. 4.10 that code I has a bad overall

performance for a high number of iterations (see Fig. 4.7).

Since the MI analysis assumes cycle-free codes and a Gaussian approximation of the

messages exchanged between the variable and check nodes, its results are just approx-

imations. Nevertheless, as shown by our simulations, they provide good predictions

regarding the UEP capabilities of a code.





Chapter 5

Multi-Edge-Type Unequal-Error-

Protecting LT Codes

In the present chapter, a multi-edge framework for unequal-error-protecting LT codes

is derived by distinguishing between the edges connected to each protection class

on the factor graph induced by the encoding. As UEP LDPC codes, unequal-error-

protecting LT codes are interesting coding schemes for systems where the source bits

being transmitted have different sensitivities to errors.

The development of unequal-error-protecting rateless codes was first presented by Rah-

navard et al. in [50], where the authors propose the partitioning of the block to be

transmitted into protection classes with symbols on distinct classes having different

probabilities of being chosen during the LT encoding. Another UEP scheme was

presented in [51], where the authors achieve UEP properties by means of a windowing

technique. Herein, we show that these two schemes can be interpreted as particular

cases of multi-edge-type unequal-error-protecting LT codes, which provides us with a

common framework for comparison. Furthermore, we propose a third construction

algorithm for UEP LT codes which compares favorably to the existing techniques

examined herein.

65
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Figure 5.1: Multi-edge graph with two different edge types for an LT code with k = 8 and
γ = 10/8.

5.1 Multi-edge-type unequal-error-protecting LT codes

A multi-edge-framework for unequal-error-protecting LT codes can be developed in

a similar way as discussed for LDPC codes. The edges connected to symbols of a

protection class in the bipartite graph induced by the encoding are considered to be all

of the same type.

For example, in Fig. 5.1, we divided the input symbols (variable nodes) into two

classes. The first three variable nodes belong to the first class. Consequently, all

the edges connected to those symbols are defined as type-1 edges (depicted by solid

lines). Additionally, the last five variable nodes form another protection class, whose

connected edges are defined as type-2 edges (depicted by dashed lines). Note that as

for UEP LDPC codes, only the check nodes (output symbols) admit connections to

edges of different types simultaneously. The multi-edge degree distributions for the

code depicted in Fig. 5.1 are given by

ν(x) =
1

8
x31 +

2

8
x41 +

4

8
x22 +

1

8
x32 , (5.1)

µ(x) =
2

8
x21 +

4

8
x1x2 +

1

8
x21x2 +

1

8
x1x

2
2 +

2

8
x22 . (5.2)

Note that for LT codes, the multi-edge-type variable node distribution is not a function

of the vector r. This is explained by the fact that the factor graph representation of

the encoding does not include any channel observation, i.e., all the entries of the vector

b are equal to 0. In the following, we will divide the variable nodes into me protection

classes (C1, C2, . . . , Cme) with monotonically decreasing levels of protection.
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5.1.1 Node-perspective degree distributions

We now determine the multi-edge-type variable and check node degree distributions

ν(x) and µ(x) for UEP LT codes. In order to determine µ(x) =
∑

d
µdx

d, we need

to compute the fraction of check nodes of type d, i.e., the coefficients µd. Recall that

according to the encoding algorithm of LT codes, the probability of an output symbol

having degree i is Ωi (in the UEP context, we call Ω(x) =
∑k

i=1 Ωix
i the overall output

symbol degree distribution). Given that the degree of an output symbol corresponds

to the number of edges connected to it, i.e., i =
∑me

j=1 dj where dj denotes the number

of edges of type j connected to a check node, we have

µd = Ωi ·
(k1
d1

)
·
(k2
d2

)
· · ·
(kme
dme

)

(k
i

)

= Ωi ·
(k
i

)−1

d1! · · · dme !

k1!

(k1 − d1)!
· · · kme !

(kme − dme)!
, (5.3)

where kj is the number of input symbols of class j, and µd is the probability of an output

symbol (check node) having edge degree vector d = (d1, . . . , dme). Equation (5.3) is

derived by considering the LT encoding which is a choice without replacement, i.e., a

degree-i output symbol has exactly i distinct neighbors.

In order to simplify our description, we consider that the encoding of LT codes is

analogous to a choice with replacement. Such an approximation becomes more exact

as the number of symbols in each protection class increases, since as kj grows, it will

become more and more unlikely to choose the same input symbol more than once during

the encoding of an output symbol. In this case, we have

µd = Ωi ·
i!

d1!d2! · · · dme !
ωd1
1 ωd2

2 · · ·ωme
dme , (5.4)

where ωj =
kj
k is the probability of an input symbol of the class Cj being chosen among

the k input symbols and i =
∑me

j=1 dj . The check node degree distribution is then given

by

µ(x) =
∑

d

Ωi ·
i!

d1!d2! · · · dme !
ωd1
1 ωd2

2 · · ·ωme
dmexd . (5.5)

In order to compute the variable node degree distribution ν(x) =
∑

d
νdx

d, first recall

that according to our previous definitions, the variable nodes belonging to Cj are only
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connected to type-j edges. This means that for the variable nodes, the edge degree

vectors d have only one non-zero component, e.g., for the two-class case d = (d1, 0) or

(0, d2).

Let νdj represent νd when dj is the only non-zero component of d. By simple combi-

natorial arguments, the probability of a variable node of class Cj having degree dj is

given by

νdj =

(
βjγk

dj

)

p
dj
j (1− pj)

βjγk−dj , (5.6)

where βj = µxj(1) is the average of type-j edges connected to a check node, γ =

n/k, and pj = 1/kj is the probability of an input symbol being chosen among the kj

symbols of Cj. Note that the product βjγk represents the total number of type-j edges

present in the multi-edge graph induced by the LT encoding. The variable node degree

distribution can then be written as

ν(x) =
∑

d,j

(
βjγk

dj

)

p
dj
j (1− pj)

βjγk−djxd . (5.7)

Since the edge degree vectors d for the variable nodes have only one non zero compo-

nent, Eq. (5.7) reduces to

ν(x) =

me∑

j=1

βjγk∑

dj=1

(
βjγk

dj

)

p
dj
j (1− pj)

βjγk−djx
dj
j . (5.8)

Equations (5.5) and (5.8) are quite general and apply for any unequal error protecting

LT code with me protection classes. In order to clarify the concepts in a simple manner,

in our example and finite length simulations, we will consider codes with only two

protection classes, i.e., codes with me = 2. In this particular case, eqs. (5.5) and (5.7)

can be written as

µ(x) =
∑

d1,d2

Ωd1+d2 ·
(
d1 + d2

d1

)

ωd1
1 (1− ω1)

d2 · xd11 xd22 , (5.9)

ν(x) =

2∑

j=1

βjγk∑

dj=1

(
βjγk

dj

)

p
dj
j (1− pj)

βjγk−dj · xdjj . (5.10)
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5.1.2 Encoding and decoding

The encoding algorithm of multi-edge-type LT codes is similar to the encoding of

traditional LT codes described in Section 2.5.1. However, instead of selecting the output

symbol degree i according to Ω(x) =
∑k

i=1Ωix
i, we must select an edge degree vector

d according to µ(x) =
∑

d
µdx

d. After that, an output symbol with edge degree vector

d = (d1, . . . , dme) is formed by selecting uniformly and at random dj input symbols

from Cj for j = 1, . . . ,me, and performing a bitwise XOR operation between them. In

summary, the multi-edge LT encoding of an output symbol can be described in a step

by step manner as follows

1. Randomly choose the output symbol edge degree vector d = (d1, . . . , dme) ac-

cordingly to the degree distribution µ(x).

2. For j = 1, . . . ,me, choose uniformly and at random dj symbols among the kj

input symbols of protection class Cj .

3. Form the output symbol performing the exclusive-or of the chosen i =
∑me

j=1 dj

symbols.

The output symbol is then transmitted, and the encoding process is repeated until a

sufficient number of symbols is obtained at the receiver or a pre-defined number of γk

output symbols is generated. The decoding algorithm for multi-edge-type LT codes is

exactly the same as the iterative decoder for LT codes described in Section 2.5.2.

5.2 Construction algorithms for unequal-error-protecting

LT codes

Herein, we proceed to a multi-edge-type analysis of the unequal-error-protecting LT

codes presented in [50] and [51] and propose a novel construction strategy for such a

class of codes.

5.2.1 Weighted approach

The first strategy (to which we will refer as the weighted approach) for the construc-

tion of UEP LT codes was introduced in [50]. In that work, the authors proposed
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the partitioning of the k variable nodes into me sets (protection classes) of sizes

α1k, α2k, . . . , αmek such that
∑me

j=1 αj = 1. Let qj be the probability of an edge being

connected to a particular variable node within the set j. By introducing a bias on the

probabilities1 qj, some sets of symbols become more likely to be selected during the

encoding procedure, which makes the symbols that compose that set more protected,

i.e., the biasing gives rise to an unequal-error-protecting capability.

Consider for example the two-class case. For this case, the authors in [50] divide the

input symbols into two sets: more important bits (MIB) and less important bits (LIB)

composed by αk and (1 − α)k symbols, respectively. Furthermore, they set q1 = kM
k

and q2 = kL
k for some 0 < kL < 1 and kM = 1−(1−α)kL

α . The difference between the

performances of the MIB and LIB can then be controlled by varying kM . Note that

kM = 1 corresponds to the equal-error-protecting LT codes (also referred to as non-

UEP LT codes).

For the two-class case, the encoding algorithm is defined as follows. First, define

the output symbol degree i according to a degree distribution Ω(x), and define d1 =

min([αikM ], αk) and d2 = i − d1. Second, choose d1 and d2 symbols among the MIB

and the LIB, respectively. Finally, the output symbol is generated performing a bitwise

XOR operation over the i = d1 + d2 selected input symbols. One drawback of this

algorithm is that the extension for the me > 2 case is not trivial. We solve this

problem including the weighted scheme in the multi-edge framework and applying the

encoding algorithm for multi-edge-type UEP LT codes described in Section 5.1.2.

The multi-edge framework derivation is straightforward once we note that for the

weighted scheme, the probability of an input symbol of set j being chosen among

the k input symbols (ωj) can be written as: ωj = qjkj . Replacing these values into

Eq. (5.4), we obtain the coefficients of the multi-edge check node degree distribution of

the weighted scheme. Since the selection of the input symbols within a protection class

during encoding remains uniform and random, the variable node degree distribution is

obtained by setting pj = 1
αjk

in Eq. (5.10). In summary, the multi-edge-type degree

distributions for the weighted approach are given by

µ(x) =
∑

d

Ωi ·
i!

d1! · · · dme !
(kα1q1)

d1 · · · (kαmeqme)
dmexd , (5.11)

1For equal-error-protecting LT codes, q1 = . . . = qme
= 1

k
.
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ν(x) =

me∑

j=1

βjγk∑

dj=1

[(
βjγk

dj

)(
1

αjk

)dj (

1− 1

αjk

)βjγk−dj
]

x
dj
j . (5.12)

5.2.2 Windowed approach

The second UEP LT code construction strategy investigated in the present chapter

(from now on referred to as the windowed approach) was introduced in [51]. Similar

to [50], the windowed approach partitions the input symbols into protection classes

composed by k1, k2, . . . , kme symbols such that k1 + k2 + · · · + kme = k. As for the

weighted approach, a decreasing protection level for the classes is assumed, i.e., the ith

class is more important than the jth class if i < j. Furthermore, another partitioning

of the input symbols (which the authors call windows) is considered. The ith window

is defined as the set of the first wi =
∑i

j=1 kj input symbols and consequently, the

most important symbols form the first window while the whole block comprises the

final meth window.

In the windowed scheme, each output symbol is encoded first selecting a window j

following a probability distribution Γ(x) =
∑me

j=1 Γjx
j , where Γj is the probability of

the jth being chosen. Once the jth window is defined, each output symbol is formed

according to the regular LT encoding algorithm considering only the symbols inside the

selected window and following a degree distribution Ω(j)(x) =
∑kj

i=1 Ω
(j)
i xi.

The derivation of the multi-edge-type check node degree distribution for the windowed

approach is not as direct as for the weighted. Nevertheless, it can be shown by means

of simple combinatorics that the coefficients µd for the windowed approach are given

by

µd =
i!

d1!d2! . . . dme !







me∑

j=2

Ω
(j)
i Γj

j
∏

r=1

αdr
r · [1− sgn(

∑

s>j

ds)]







+Ω
(1)
i Γ1[1− sgn(

∑

s>1

ds)] , (5.13)

where i =
∑me

j=1 dj and αj = kj/k. The reasoning behind Eq. (5.13) can be made

clearer if we consider the me = 3 case. In this case, consider the probability µd of

selecting an edge degree vector d = (d1, d2, d3). If the window w1 is selected (which
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happens with probability Γ1), we can write

µd =







Ω
(1)
d1+d2+d3

Γ1, if d2 = d3 = 0 ,

0, if d2 > 0 or d3 > 0 .
(5.14)

Note that Eq. (5.14) can be written in a compact form as

µd = Ω
(1)
d1+d2+d3

Γ1[1− sgn(d2 + d3)] . (5.15)

Suppose now that the window w2 is selected. In this case, we can write

µd =







(d1+d2+d3)!
d1!d2!d3!

(

Ω
(2)
d1+d2+d3

Γ2α
d1
1 αd2

2

)

, if d3 = 0 ,

0, if d3 > 0 .
(5.16)

Note that the equation for case d3 = 0 can be derived multiplying Eq. (5.4) by Γ2 and

substituting ωj by αj for j = 1, 2. In compact notation, we can write Eq. (5.16) as

µd =
(d1 + d2 + d3)!

d1!d2!d3!

(

Ω
(2)
d1+d2+d3

Γ2α
d1
1 αd2

2 [1− sgn(d3)]
)

, (5.17)

where the leftmost term indicates the number of permutations of (d1+d2+d3) elements

with the repetition of d1, d2, and d3 elements, Ω
(2)
d1+d2+d3

is the probability of choosing

a degree (d1 + d2 + d3) according to the distribution Ω(2)(x), Γ2 is the probability of

the window w2 being selected, and αj is the probability of choosing a determined input

symbol among all the elements of protection class j.

Lastly, suppose now that the window w3 is selected. Once again, we can use Eq. (5.4)

and write

µd =
(d1 + d2 + d3)!

d1!d2!d3!

(

Ω
(3)
d1+d2+d3

Γ3α
d1
1 αd2

2 αd3
3

)

. (5.18)

In summary, adding eqs. (5.15), (5.17), and (5.18) we have

µd =
(d1 + d2 + d3)!

d1!d2!d3!

{

Ω
(2)
d1+d2+d3

Γ2α
d1
1 αd2

2 · [1− sgn(d3)] + Ω
(3)
d1+d2+d3

Γ3α
d1
1 αd2

2 αd3
3

}

+ Ω
(1)
d1+d2+d3

Γ1[1− sgn(d2 + d3)] , (5.19)
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which can be written as

µd =
i!

d1!d2!d3!







3∑

j=2

Ω
(j)
i Γj

j
∏

r=1

αdr
r · [1− sgn(

∑

s>j

ds)]






+Ω

(1)
i Γ1[1− sgn(

∑

s>1

ds)] ,

(5.20)

where i =
∑3

j=1 dj. If we apply the same reasoning to the windowed approach with

me protection classes, we obtain Eq. (5.13). The variable node degree distribution can

be obtained as for the weighted case, i.e., substituting with pj = 1/kj in Eq. (5.9). In

summary, the multi-edge degree distributions for the windowed approach are given by

µ(x) =
∑

d

i!

d1!d2! . . . dme !







me∑

j=2

Ω
(j)
i Γj

j
∏

r=1

αdr
r · [1− sgn(

∑

s>j

ds)]







+Ω
(1)
i Γ1[1− sgn(

∑

s>1

ds)]x
d , (5.21)

ν(x) =

me∑

j=1

βjγk∑

dj=1

[(
βjγk

dj

)(
1

αjk

)dj (

1− 1

αjk

)βjγk−dj
]

x
dj
j . (5.22)

5.2.3 Flexible UEP LT codes

We showed in the previous subsections that both the weighted and the windowed

schemes rely on the modification of the probability of occurrence of an output symbol

of type d, i.e., they modify the coefficients µd of a non-UEP LT code (Eq. (5.4)) in

order to favor the selection of some class of input symbols during encoding. In the

following, we propose a scheme that works by biasing the coefficients µd in order to

increase the average number of edges of the most protected classes. In fact, we transfer

edges from one less important class to another more important one.

In order to understand the idea, consider an LT code with two protection classes. Its

check node degree distribution can be written as

µ(x) =µ(1,0)x1 + µ(0,1)x2 + µ(2,0)x
2
1 + µ(1,1)x1x2+

µ(0,2)x
2
2 + µ(3,0)x

3
1 + · · ·+ µ(0,imax)x

imax
2 , (5.23)

where µ(d1,d2) = µd for d = (d1, d2) and imax = max(i|Ωi > 0). In order to keep the
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original overall output symbol degree distribution Ω(x), the coefficients µd must satisfy

the following condition

∑

d

µd = Ωi, for all d :

me∑

j=1

dj = i . (5.24)

In the two-class case for example, µ(1,0) + µ(0,1) = Ω1, µ(2,0) + µ(1,1) + µ(0,2) = Ω2, and

so on. We like to keep the overall degree distribution constant is order to keep the

overall performance of the rateless scheme unchanged.

The idea of our proposed scheme is to increase the probability of selection of the most

important input symbols by increasing the occurrence probability of output symbols

which are more connected to input symbols of the most sensitive class. For example,

in the two-class case we increase the values of the coefficients µ(d1,d2) with d1 > d2

while observing the condition given in Eq. (5.24). More generally, in order to favor the

selection of the most important input symbols during encoding, we increase the values

of the coefficients µ(d1,d2,...,dme )
with dj > dj+1 (since it is assumed that the class Cj is

more important than Cj+1) for j = 1, . . . ,me − 1 while observing condition (5.24).

Our proposed strategy to favor the selection of the most important symbols during

the LT encoding is described as follows. Consider an output symbol with edge degree

vector d = (d1, . . . , dj−1, dj , . . . , dme) where 0 < dj−1 < dj . The fraction of output

symbols of this kind is given by µd=(d1,...,dj−1,dj ,...,dme )
. Let a = dj−1 and b = dj . In

order to favor the selection of symbols in the most protected class j−1, we can convert

a fraction ∆j of the output symbols with d = (d1, . . . , a, b, . . . , dme) where 0 < a < b

into symbols with d = (d1, . . . , b, a, . . . , dme). Following this strategy, it is not difficult

to see that since a < b, the selection during LT encoding of input symbols of class j−1

will become more likely, while the selection of the symbols on class j will become less

probable. According to this scheme, we can define an LT code with the check node

degree coefficients µUEP
d as follows.

Let ∆ = (∆2, . . . ,∆me) be a vector whose components ∆j denote the fraction of the

check node degree coefficients µd with dj > dj−1 to be reduced in order to favor the

selection of bits of class j − 1 during the LT encoding. Given ∆ and an LT code with

overall degree distribution Ω(x), an UEP LT code with me protection classes can be

generated according to the following algorithm

The following example should clarify the flexible UEP LT construction algorithm.
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Algorithm 4 Flexible UEP LT construction algorithm

1. Compute µ(x) according to Eq. (5.5)

2. for j = me to 2

for all d with µd > 0

if 0 < dj−1 < dj

a = dj−1

b = dj

µUEP
(d1,...,a,b,...,me)

= µ(d1,...,a,b,...,me) −∆j · µ(d1,...,a,b,...,me)

µUEP
(d1,...,b,a,...,me)

= µ(d1,...,b,a,...,me) +∆j · µ(d1,...,a,b,...,me)

else

µUEP
d

= µd

end
end
µd = µUEP

d

end

Example 2 Consider an LT code with overall degree distribution Ω(x) = 0.15x +

0.55x2 + 0.30x3 and consider ∆ = (0.3). We intend to construct a two-class unequal-

error-protecting LT code where 10 % of the input symbols belong to the most protected

class, i.e., α1 = 0.1. The coefficients µd for the non-UEP case can be computed by

means of Eq. (5.9) with ω1 = α1 and ω2 = 1−α1. In order to generate a UEP LT code,

we compute the coefficients µUEP
d of the UEP LT multi-edge-type check node degree

distribution according to Algorithm 4. In the present example, for d = (d1, d2) = (1, 2)

and ∆2 = 0.3 we have

µUEP
(2,1) = µ(2,1) + 0.3µ(1,2) , (5.25)

µUEP
(1,2) = µ(1,2) − 0.3µ(1,2) . (5.26)

For every other d, µUEP
(d1,d2)

= µ(d1,d2). The multi-edge check node degree distributions of

the original and UEP LT codes are depicted in Table 5.1.

Table 5.1: Flexible UEP LT construction example.
d (0,1) (1,0) (0,2) (2,0) (0,3) (3,0) (2,1) (1,2) (1,1)
µd 0.135 0.015 0.4455 0.0055 0.2187 0.0003 0.0081 0.0729 0.099

µUEP
d

0.135 0.015 0.4455 0.0055 0.2187 0.0003 0.02997 0.05103 0.099

⋄
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The flexible UEP LT approach has advantages of both the weighted and the windowed

approach. First, the difference between the performance of the different protection

classes can be controlled through the vector ∆ by adjusting its components, i.e., the

higher ∆j , the greater the difference between the performance of classes j and j − 1.

Second, its encoding procedure is easily generalized for the case me > 2, a characteristic

that the weighted approach does not possess.

Additionally, our scheme is more suitable than the windowed one for applications where

a precoding is needed, e.g., Raptor codes. This happens due to the fact that it only

uses one precoding for the whole data, while the windowed approach has to precode

all defined protection classes separately [51]. This means that while in the windowed

scheme each different class of input symbols have to be separately precoded, in our

scheme the precoding can be done considering the whole set of input symbols at once.

Furthermore, using only one precoding avoids finite-length effects that can arise from

separately encoding protection classes with a low number of bits.

In the following section, we develop an asymptotic analysis of multi-edge-type UEP LT

codes and show how the three different approaches presented herein behave when the

number of input symbols tends to infinity (k → ∞). Moreover, we use the asymptotic

analysis to show the role of the parameter ∆ on the performance of the different

protection classes of an UEP LT code constructed using our proposed algorithm.

5.3 Asymptotic analysis of multi-edge-type UEP LT codes

The asymptotic analysis of multi-edge LT codes can be done by means of density

evolution. However, note that in a multi-edge type analysis, the computation of one

density for each edge type is required. With this in mind, we point out that the iterative

decoding algorithm of LT codes is analogous to the belief-propagation decoding of

messages transmitted through an erasure channel where all the variable symbols are

considered to be erased and the check node values are given by the output symbols

they represent. This analogy allows us to use the results derived for the BEC channel

for computing the probability of an LT code input symbol not being recovered.
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Theorem 2 (LT decoding failure probability) The erasure probability y
(j)
l of an

input symbol of class j of a multi-edge LT code with node-perspective degree distribution

pair (ν(x), µ(x)) at iteration l ≥ 0 is given by

y
(j)
l = νxj(1− ρ(j)(1− y

(1)
l−1, . . . , 1− y

(me)
l−1 )) , (5.27)

where ∀j, y(j)−1 = 1, ρ(j)(x) =
µxj (x)

µxj (1)
=
∑

d ρ
(j)
d xd, and ρ

(j)
d denotes the fraction of type

j edges connected to check nodes of type d.

Proof: Let G denote the bipartite graph induced by an LT encoding. Consider a

subgraph Gj
l of G formed by a variable node vj , chosen uniformly and at random

among the ones of class j and all its neighbors within distance 2l. Asymptotically,

the subgraph Gj
l is a tree [52] of depth 2l that represents the dependency between the

value assumed by vj and the messages sent by the other variable nodes after l message

passing decoding iterations. Let the variable node vj be the root (depth 0) of Gj
l and

assume that y
(j)
l is its erasure probability. Consider now that the nodes at depth 2 in

Gj
l are the roots of independent G

j
l−1 trees. Consider the variable-to-check messages in

the lth iteration. By assumption, each such message is an erasure with probability y
(j)
l−1

and all messages are independent. Recall that in a multi-edge framework, each check

node of type d = (d1, d2, ..., dme ) is connected to d1 edges of type 1, d2 edges of type 2,

and so on. Since we are considering a BP decoding, by definition, a check-to-variable

message emitted by a check node of degree i along a particular edge is an erasure iff

any of the i − 1 incoming messages is an erasure. Thus, the erasure probability of an

outgoing message of a check node at depth l with edge degree vector d sent through an

edge of type j is equal to 1− (1− y
(1)
l−1)

d1 · · · (1− y
(j)
l−1)

dj−1 · · · (1− y
(me)
l−1 )dme . Since the

outgoing edge has probability ρ
(j)
d

to be connected to a check node of type d, it follows

that the expected erasure probability of a check-to-variable message in the lth iteration

is equal to 1 − ρ(j)(1 − y
(1)
l−1, . . . , 1 − y

(me)
l−1 ) where ρ(j)(x) =

∑
ρ
(j)
d

xd. Now consider

the erasure probability of the root node at iteration l. By definition, a variable node

will be considered erased if all its incoming messages are erasures. Since a variable

node of class j has only connections to edges of type j, the probability of a variable

node of degree dj being erased is (1 − ρj(1 − y
(1)
l−1, . . . , 1 − y

(me)
l−1 ))dj . Averaging over

the variable node degree distribution νxj we conclude that the erasure probability of

an input symbol of class j at iteration l is given by νxj (1− ρj(1− y
(1)
l−1, . . . , 1− y

(me)
l−1 ))

as claimed.

2
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Figure 5.2: Asymptotic performance of the weighted, windowed, and the proposed flexible
UEP LT construction strategies.

Equation (5.27) together with the degree distributions (ν(x), µ(x)) allows us to compute

the asymptotic (k → ∞) performance of a multi-edge UEP LT code with overall output

symbol degree distribution Ω(x). Herein, we consider multi-edge UEP LT codes with

the overall output symbol degree distribution proposed in [26]

Ω(x) = 0.007969x + 0.493570x2 + 0.166220x3 + 0.0726464x4 + 0.082558x5

+ 0.056058x8 + 0.037229x9 + 0.055590x19 + 0.025023x64 + 0.003135x66 . (5.28)

Figure 5.2 shows the asymptotic performance of the three different unequal-error-protecting

LT codes construction strategies presented in this paper.

The parameters for the weighted (km = 2.077) and the windowed (Γ1 = 0.084) ap-

proaches are optimized for an overhead γ = n/k = 1.05 according to [51]. The flexible

UEP LT asymptotic analysis was carried out for ∆2 = 0.2 and ∆2 = 0.3. Note that as

we increase the value of ∆2 the difference between the performance of both protection

classes increases. Furthermore, the MIB in our proposed algorithm with ∆2 = 0.3 have

a better performance than the weighted and windowed approach for γ > 1.025. Finally,
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Figure 5.3: Asymptotic performance of the flexible UEP LT construction for 3 protection
classes.

we present in Fig. 5.3 the asymptotic analysis results for an UEP LT code designed

according to our proposed algorithm with α = (0.1, 0.3, 0.6) and ∆ = (0.4, 0.8).

5.4 Simulation results

In this section, we present the finite-length simulation results for the weighted, win-

dowed, and our proposed scheme for generating UEP LT codes. Figure 5.4 shows the

bit-error rates after performing LT decoding. The parameters for both the weighted,

windowed, and the flexible UEP LT approaches are the same as with the asymptotic

analysis depicted in Fig. 5.2, i.e., for the weighted approach we set km = 2.077, for the

windowed Γ1 = 0.084 with both windows using the same degree distribution Ω(x), and

for the flexible UEP LT we set ∆2 = 0.3. We assume the transmission of k = 5000 input

symbols divided into two protection classes. The first protection class is composed of

10 % of the input symbols (k1 = 0.1k), and the second protection class contains the

other k2 = k − k1 input symbols.
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Figure 5.4: Simulation results of the weighted and flexible schemes for k = 5000.

Note that for the finite-length simulation, the flexible UEP LT strategy reaches a

lower BER for the most protected class than the other approaches for high overhead

values. As predicted by the asymptotic analysis, the windowed approach has a better

performance for low-overheads. This is due to the precoding effect of the windowed

scheme, e.g., in the two-class case the windowed scheme is equivalent to first generating

Γ1γk symbols of class one (a precoding) and then proceeding to the regular LT-

encoding. The results indicate that the flexible approach is preferred for applications

where a lower BER is required, while the windowed can be used for unequal recovery

time (URT) applications more efficiently [51].

Nevertheless, for applications where a precoding is needed, our scheme is more suitable

than the windowed, since it only uses one precoding for the complete data block

while the windowed approach has to precode all defined protection classes separately

[51]. Furthermore, a single precoding avoids finite-length effects that may arise from

separately encoding protection classes with a low number of bits. Additionally, flexible

UEP LT codes can easily be generalized for applications with more than two protection

classes, a characteristic which is not supported by the weighted approach.



Chapter 6

LDPC-based Joint

Source-Channel Coding

It is widely observed that for communication systems transmitting in the non-asymptotic

regime with limited delay constraints, a separated design of source and channel codes

is not optimum, and gains in complexity and fidelity may be obtained by a joint design

strategy. The approach for joint source-channel coding pursued in this chapter relies on

a graphical model where the structure of the source and the channel codes are jointly

exploited. More specifically, we are concerned with the optimization of joint systems

that perform a linear encoding of the source output and channel input by means of

low-density parity-check codes.

Herein, we present a novel LDPC-based joint source-channel coding system where the

amount of information about the source bits available at the decoder is increased by

improving the connection profile between the factor graphs of the source and channel

codes that compose the joint system. Furthermore, we propose an optimization strategy

for the component codes based on a multi-edge-type joint optimization.

6.1 Joint source-channel coding

The “separation principle” between source and channel coding is one of the milestones

in the development of Information Theory. A consequence of the direct source-channel

coding theorem laid by Shannon in his 1948 paper [1], this principle states that there

81
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is no loss in asymptotic performance when source and channel coding are performed

separately. It is though widely observed that for communication systems transmitting

in the non-asymptotic regime with limited delay constraints, the separation principle

may not be applicable and gains in complexity and fidelity may be obtained by a joint

design strategy [53].

The main idea when dealing with the joint source-channel (JSC) coding problem is to

take advantage of the residual redundancy arising from an incomplete data compression

in order to improve the error rate performance of the communication system. This

possibility was already mentioned by Shannon in [1] and quoted by Hagenauer in [8]:

“However, any redundancy in the source will usually help if it is utilized at the receiving

point. In particular, if the source already has redundancy and no attempt is made to

eliminate it in matching to the channel, this redundancy will help combat noise.”

One of the possible approaches to JSC coding, and the one we will pursue in this

chapter, relies on a graphical model where the structure of the source and the channel

codes are jointly exploited. We are particularly interested in systems that perform

linear encoding of sources by means of error-correcting codes. The strategy of such

schemes is to treat the source output u as an error pattern and perform compression

calculating the syndrome generated by u, i.e., the source encoder calculates s = uHT ,

where H is the parity-check matrix of the linear error-correcting code being considered

and the syndrome s is the compressed sequence.

Compression schemes based on syndrome encoding for binary memoryless sources were

developed in the context of variable-to-fixed length algorithms in [54] and [55]. After-

wards, Ancheta [56] developed a fixed-to-fixed linear source code based on syndrome

formation. Due to the limitations of the practical error-correcting codes known at that

time, this line of research was left aside by the advent of Lempel-Ziv coding [57, 58].

Regardless of the fact that the field of data compression has reached a state of maturity,

there are state-of-the-art applications that do not apply data compression, thus failing

to take advantage of the source redundancy in the decoding. This is mainly due to a

lack of resilience of data compressors to transmission errors and to the fact that such

state-of-the-art compression algorithms just have an efficient performance with packet

sizes much longer than the ones typically specified in modern wireless standards (e.g.,

Universal Mobile Telecommunications System) [59].

Such shortcomings together with the availability of linear codes capable of operating
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near the Shannon limit, most notably turbo and low-density parity-check codes, have

been motivating the search for new data compression algorithms to compete with the

state-of-the-art methods. The compression of binary memoryless sources using turbo

codes was first addressed in [60], where the authors proposed the use of punctured

turbo codes to perform near-lossless compression and JSC. Thereafter, Hagenauer et

al. [61] introduced a lossless compression algorithm using the concept of decremental

redundancy, which was then extended in [62] to include the transmission of the com-

pressed data through a noisy channel.

An alternative approach to the source compression by means of error correcting codes

is the syndrome-source compression using low-density parity-check codes together with

belief propagation decoding presented in [59], which was further extended in [63] to

cope with a noisy channel. In contrast to general linear codes, an LDPC code has a

sparse parity-check matrix and can thus be used as a linear compressor with linear

complexity in the blocklength. In addition, syndrome source-coding schemes can be

naturally extended to joint source-channel encoding and decoding configurations.

One of the schemes proposed in [63] for JSC was a serial concatenation of two LDPC

codes, where the outer code works as a syndrome-source compressor and the inner

code as the channel code. The codeword resulting from such a concatenation is then

jointly decoded using the source statistics by means of the belief propagation algorithm

applied to the joint source-channel factor graph. Despite of its introduction in [63], it

was in [64] that this scheme was first studied for a JSC application (Caire et al. did not

explore it in [63], rather focusing on the LOTUS codes introduced therein). Simulation

results in [65] showed the presence of error floors in the error-rate curves, which are a

consequence of the fact that some output sequences emitted by the source form error

patterns that cannot be corrected by the LDPC code used as source compressor. These

problems can be mitigated either by reducing the source compression rate or increasing

the codeword size, but such solutions also come with some drawbacks.

First of all, increasing the size of the codeword would undermine one of the advantages

of the JSC scheme, namely the possibility of a better performance in a non-asymptotic

scenario. Second, reducing the compression rate is clearly also not desirable, since it

pushes the system performance away from capacity. Another possible solution would

be the use of the closed-loop iterative doping (CLID) algorithm in conjunction with a

library of LDPC codes for source encoding [66], a solution that comes naturally at the

expense of an increase of the encoding complexity. Considering the above mentioned
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problems and known solution options, we can now state the main goal of this chapter:

the construction of an LDPC-based joint source-channel coding scheme that overcomes

such complexity/performance problems of the existing JSC schemes based on syndrome-

source encoding.

6.2 LDPC-based joint source-channel system

In [63], the authors proposed two configurations for a joint source-channel encoding

system using LDPC codes for both source compression and channel coding. The first

proposed structure was based on a serial concatenation of two LDPC codes where the

outer and the inner codes perform syndrome-source compression and channel coding,

respectively. The second structure was based on a single systematic LDPC code,

where the source output composed the systematic part of the codeword and was

punctured prior to transmission so that only the nonsystematic part was sent through

the communication channel.

In the concatenated approach, a codeword c was defined by

c = s ·Gcc = u ·HT
sc ·Gcc ,

where Gcc is the l ×m LDPC generator matrix of the channel coder, Hsc is the l × n

parity-check matrix of the LDPC code applied for source coding, s is the 1× l source

compressed sequence, and u is the 1 × n source output. The factor graph defined by

such an encoding scheme is depicted in Fig. 6.1. The variable and the check nodes of the

Figure 6.1: Joint source-channel factor graph.

source LDPC (left) represent the source output and the compressed source sequence,
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respectively. Since we will consider only binary sources, the variable nodes represent

binary symbols. In this system, each check node of the source LDPC is connected

to a single variable node of the channel code (right) forming the systematic part of

the channel codeword (the connections are represented by bold edges). Since only m

variable nodes are transmitted, the overall rate is n/m. Furthermore, Lsc
v and Lcc

v

denote the log-likelihood ratios representing the intrinsic information received for the

source (v = 1, . . . , n) and channel (v = n+ 1, . . . , n+m) variable nodes, respectively.

Considering a two-state Markovian source and performing standard belief propagation

on the graph of Fig. 6.1, the simulation results in [65] showed the presence of error floors

in the error-rate curves, which are nothing but a consequence of the fact that some

output sequences emitted by the source form error patterns that cannot be corrected

by the LDPC code used as source compressor. The proposed solution to cope with this

residual error was either reducing the compression rate, or increasing the source output

block length. As we already pointed out, these solutions are not very attractive, since

the reduction of the compression rate pushes the system performance away from its

asymptotic capacity, and the a large block length undermines the application of the

proposed JSC system for cases where state-of-the-art compression algorithms turn out

to be ineffective i.e., systems with source data divided in small block lengths.

Our idea to cope with the problem and thus generate a JSC system with competitive

performance, even for small source block lengths, while keeping the advantage of the

simplified syndrome-source compression is to improve the amount of information about

the source bits available at the decoding by inserting new edges connecting the check

nodes of the channel code to the variable nodes of the source code. We depict this idea

in Fig. 6.2, where the inserted edges are represented by dashed lines. The reasoning of

Figure 6.2: Joint source-channel factor graph with inserted edges.
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this strategy is that such an edge insertion will provide an extra amount of extrinsic

information to the variable nodes of the source LDPC which will significantly lower the

error floor due to uncorrectable source output patterns. We will limit our investigation

to memoryless binary sources, but our system can easily be extended to sources with

memory if we consider the use of the Burrows-Wheeler transform [67] prior to the

syndrome-source compression as done in [66] for the case of pure data compression.

6.2.1 Encoder

To understand our proposed serial encoding strategy, consider the representation of

the factor graph depicted in Fig. 6.2 by a m × (n + m) matrix H. According to this

notation, we have the following matrix representation for the JSC system of Fig. 6.2

where Hsc is the l×n source encoder parity-check matrix, Hcc is the (m− l)×m parity-

check matrix of the channel code, I is an l × l identity matrix, and L is a (m− l) × n

matrix, to which we will refer as linking matrix. Note that for the system depicted

in Fig. 6.1, L = 0. The linking matrix L represents the connections among the check

nodes of the channel code to the variable nodes of the source code.

The encoding scheme of our proposed system diverts slightly from the serial approach

of [64]. The difference lies in the fact that the word to be encoded by the channel code

is formed by the concatenation of the source output u and its syndrome s computed

by the source code, i.e., a codeword c is defined by

c = [u, s]GL = [u,u ·HT
sc] ·GL , (6.1)

where Hsc is the l×n parity-check matrix of the LDPC code applied for source coding,

s is the 1 × l source compressed sequence, u is the 1 × n source output, and GL is a

(n+ l)×m matrix such that the row space of GL is the null space of [L,Hcc], i.e., GL

is the generator matrix of a linear systematic code whose parity-check matrix is given

by the horizontal concatenation of the matrices L and Hcc. In the following lemma,

we show that every codeword of the code spanned by GL is a codeword of the code
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spanned by the null space of H, i.e.,

Lemma 1 Let H =
[
[Hsc, I,0]

T, [L,Hcc]
T
]T

denote the parity-check matrix of the

system depicted in Fig. 6.2, HL = [L,Hcc], and [u, s] be the concatenation of the source

output u and its syndrome-compressed sequence s. A codeword c formed by the encoding

of the vector [u, s] by the linear code spanned by the null space of the matrix HL is also

a codeword of the linear code spanned by the null space of H.

Proof : Let GL denote the systematic generator matrix of the null space of the ma-

trix HL. Since the code spanned by the rows of GL is systematic, its codewords

can be written as c = [u, s,p], where u = [u0, u1, . . . , un−1] represents the source

output, s = [s0, s1, . . . , sl−1] denotes the syndrome compressed sequence, and p =

[p0, p1, . . . , pm−l−1] is a vector whose elements are the parity bits generated by the

inner product between [u, s] and GL. For every codeword c, the following equation

holds

c ·HT
L = c · [L,Hcc]

T = 0 . (6.2)

Recall now that according to our compression rule, and since our operations are defined

over GF(2), we can write

[u0, u1, . . . , un−1] ·HT
sc = [s0, s1, . . . , sl−1]

[u0, u1, . . . , un−1] ·HT
sc + [s0, s1, . . . , sl−1] · I = 0 , (6.3)

where I is an l × l identity matrix, and 0 is a vector whose elements are all equal to

zero. Note that Eq. (6.3) can be written as

[u0, u1, . . . , un−1, s0, s1, . . . , sl−1] · [Hsc, I]
T = 0 . (6.4)

Consider now the l×(n+m) matrix [Hsc, I,0]. According to Eq. (6.4), for every vector

p = [p0, p1, . . . , pm−l−1], we can write

[u0, u1, . . . , un−1, s0, s1, . . . , sl−1, p0, p1, . . . , pm−l−1] · [Hsc, I,0]
T = 0 ,

i.e.,

c · [Hsc, I,0]
T = 0 . (6.5)
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Finally, consider the inner product

c ·HT = c ·
[
[Hsc, I,0]

T, [L,Hcc]
T
]T

=
[
c · [Hsc, I,0]

T, c · [L,Hcc]
T
]
. (6.6)

Substituting eqs. (6.2) and (6.5) into Eq. (6.6), we have

c ·HT = 0 ,

i.e., a codeword c of the code spanned by the null space of HL is also a codeword of

the code spanned by the null space of H.

�

In our proposed system, the overall rate will be kept constant when compared to the

system of Fig. 6.1, since the first n bits of c will be punctured prior to transmission. The

encoding algorithm of our proposed joint source-channel system can be summarized as

follows:

1. Given a source output vector u, compute s = u ·HT
sc.

2. Compute v = [u, s], i.e., the horizontal concatenation of vectors u and s.

3. Generate the codeword c = v ·GL.

4. Transmit c after puncturing its first n bits.

Steps 1 and 3 are the source and channel encoding steps, respectively. Since Hsc is

sparse, the source encoding has a complexity that is linear with respect to the block

length. Furthermore, applying the technique presented in [68] for encoding LDPC codes

by means of their parity-check matrix, the complexity of the channel encoding can be

made approximately linear.

6.2.2 Decoder

The decoding of the LDPC-based joint source-channel system is done by means of the

belief propagation algorithm applied to the factor graph of Fig. 6.2, whose structure is

known to both, the encoder and the decoder. We assume that the decoder knows the

statistics of the source. For example, for memoryless Bernoulli sources, the decoder
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knows the success probability, i.e., the decoder knows the probability pv of a source

symbol assuming the value 1.

Herein, we assume that the source is a memoryless Bernoulli source with success

probability pv, and that the transmission takes place through a binary input AWGN

channel. Within this framework, we can write Lsc
v = log

(
1−pv
pv

)

and Lcc
v = 2yv

σ2
n

(where

yv is the received BPSK modulated codeword transmitted through an AWGN with

noise variance σ2
n).

6.3 Multi-edge notation for joint source-channel factor

graphs

The factor graph representing the joint source-channel system is composed of two

separated LDPC factor graphs that exchange information. In order to combine the

evolution of the iterative decoding of both source and channel codes in a single input-

output function, we derive in the sequel a multi-edge representation of the joint source-

channel factor graph.

In a multi-edge framework for joint source-channel factor graphs, we define four edge

types within the corresponding graph, i.e., me = 4. The first edge type is composed

by the edges connected solely to nodes of the source LDPC code. Similarly, the second

edge type is composed of the edges connected only to nodes belonging to the channel

LDPC code. The third type is formed by the edges that connect the check nodes of the

source code to the variable nodes of the channel code. Finally, the edges that connect

the variable nodes of the source LDPC codes to the check node of the channel LDPC

factor graph compose the fourth edge type.

Note that now we also have two different received distributions corresponding to the

source statistics and channel information, respectively. Figure 6.3 depicts the four edge

types and received distributions. The solid and dashed lines depict type-1 and type-2

edges, respectively. The type-3 and type-4 edges are depicted by the dash-dotted and

dotted lines, respectively. Additionally, the received distributions of the source and

channel variable nodes are depicted by solid and dashed arrows, respectively. Since

the variable nodes have access to two different observations, the vector r = (r1, r2) has

two components, i.e., mr = 2. The first component (r1) corresponds to the observation

accessible to the n source LDPC variable nodes, and the second component (r2) denotes
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Figure 6.3: Multi-edge joint source-channel factor graph.

the channel observations, which are available only to the m channel LDPC variable

nodes. Furthermore, since each variable node has access to either the source statistics

or the channel observation, we can write b = (0, 1, 0) for the source and b = (0, 0, 1)

for the channel variable nodes, respectively.

As an example, consider the graph of Fig. 6.3 (n = 6,m = 6, l = 3). In this case, the

multi-edge degree distributions can be written as

ν(r,x) =
3

12
r1x

2
1 +

2

12
r1x

2
1x4 +

1

12
r1x1x4 +

1

12
r2x2x3 +

2

12
r2x

2
2x3 +

3

12
r2x

2
2 ,

µ(x) =
2

12
x41x3 +

1

12
x31x3 +

1

12
x32x4 +

2

12
x42x4 .

6.4 Asymptotic analysis

In this section, we derive the multi-edge-type mutual information evolution equations

for LDPC-based joint source-channel coding systems. As previously done, we will use

the edge-perspective degree distributions λ(j)(r,x) and ρ(j)(x) to describe the evolution

of the mutual information between the messages sent through type-j edges and the

associated variable node values. Recall that,

λ(j)(r,x) =
νxj(r,x)

νxj(1,1)
, (6.7)

ρ(j)(x) =
µxj(x)

µxj (1)
, (6.8)
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where νxj(r,x) and µxj(x) are the derivatives of ν(r,x) and µ(x) with respect to xj ,

respectively.

Before proceeding to the asymptotic analysis, it is worth mentioning an important

result present in [56]. In this work, the author associates to any binary source an

additive channel in which the source output forms the error pattern. Furthermore, he

shows that the average fraction of source digits erroneously reconstructed for syndrome-

source-coding of a binary source coincides with the bit error probability when the

corresponding syndrome decoder is used with the given linear code on the additive

channel associated with the source.

For a memoryless Bernoulli source1 with a probability of emitting a one pv, the associ-

ated additive channel is a BSC with crossover probability pv. This means that we can

model the received distributions of the source code variable nodes as the distribution

of the output of a BSC with crossover probability pv.

Let I
(j)
v,l (I

(j)
c,l ) denote the mutual information between the messages sent through type-j

edges at the output of variable (check) nodes at iteration l and the associated variable

node value. Due to the fact that the source and channel variable nodes have chan-

nel observations with different distributions, we will describe the mutual information

equations for source and channel LDPC multi-edge variable nodes, separately.

Following the notation of [64] we can write for the source code variable nodes, i.e., for

j ∈ {1, 4}

I
(j)
v,l =

∑

d

λ
(j)
d

JBSC



(dj − 1)[J−1(I
(j)
c,l−1)]

2 +
∑

s 6=j

ds[J
−1(I

(s)
c,l−1)]

2, pv



 , (6.9)

where λ
(j)
d

is the probability of a type-j edge being connected to a variable node with

edge degree vector d. The function JBSC is given by [64]

JBSC(σ
2, pv) = (1− pv)I(xv ;L(1−pv)) + pvI(xv;L(pv)) , (6.10)

where xv denotes the corresponding bitnode variable, L(1−pv) ∼ N (σ
2

2 + Lsc
v , σ2), and

L(pv) ∼ N (σ
2

2 − Lsc
v , σ2).

The derivation of the function JBSC(·) can be easily understood if we recall that under

1We assume a memoryless Bernoulli source with output alphabet X = {0, 1}.
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the Gaussian approximation and for infinitely long codes, the variance of the outgoing

message of a degree-dv variable node can be written as σ2
v = σ2

ch+(dv−1)σ2
r , where σ

2
ch is

the variance of the received channel message, and σ2
r is the variance of the messages sent

by the neighboring check nodes. Furthermore, the messages sent from the neighboring

check nodes are considered to be independent and Gaussian. Within this assumption,

the sum of the dv−1 messages sent from the check nodes is approximated by a Gaussian

with mean σ2/2 and variance σ2.

Consequently, since the equivalent channel for the source code variable nodes is a BSC

with crossover probability pv, the distribution of the messages qv→c sent from the source

code variable nodes will be a mixture of two Gaussian distributions, i.e.,

qv→c ∼ (1− pv)N (
σ2

2
+ Lsc

v , σ2) + pvN (
σ2

2
− Lsc

v , σ2) ,

and the mutual information I(xv; qv→c) can be written as in Eq. (6.10), which does not

have a closed form, but can be numerically computed recalling that

I(xv;L) = 1− E[log2(1 + e−L)] , (6.11)

and that for a Gaussian random variable x ∼ N (σ
2

2 + a, σ2)

E[log2(1 + ex)] =
1√
2πσ2

∫ ∞

−∞
log2(1 + ey)e

−(y−σ2

2 −a)2

2σ2 dy . (6.12)

For the channel code, the multi-edge mutual information evolution equations are derived

in the same way as done for multi-edge UEP LDPC codes in Chapter 4. This leads to

the following mutual information equation for the channel code variable nodes, i.e., for

j ∈ {2, 3} we can write

I
(j)
v,l =

∑

d

λ
(j)
d

J





√

4/σ2
n + (dj − 1)[J−1(I

(j)
c,l−1)]

2 +
∑

s 6=j

ds[J−1(I
(s)
c,l−1)]

2



 . (6.13)

Finally, the mutual information between the messages sent by a check node through a

type-j edge and its associated variable value for both source and channel LDPC codes
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(i.e., for all j) can be written as

I
(j)
c,l = 1−

d
(j)
cmax∑

i=1

∑

d:dj=i

ρ
(j)
d

J





√

(dj − 1)[J−1(1 − I
(j)
v,l )]

2 +
∑

s 6=j

ds[J−1(1− I
(s)
v,l )]

2



 ,

(6.14)

where ρ
(j)
d

is the probability of an type-j edge being connected to a check node with

edge degree vector d, and d
(j)
cmax is the maximum number of type-j edges connected to

a check node.

In order to limit the search space of the forthcoming optimization algorithm, we consider

in the following derivations that both source and channel LDPC codes are check-regular.

Furthermore, the check nodes of source and channel LDPC codes are considered to

have edge degree vectors d = (dc1 , 0, 1, 0) and d = (0, dc2 , 0, 1), respectively. As a

consequence, the multi-edge check node degree distributions of the source and channel

LDPC codes are given by ρ(1)(x) = x
dc1−1
1 and ρ(2)(x) = x

dc2−1
2 , respectively.

In our multi-edge representation for the channel LDPC factor graph, the variable nodes

only have connections to type-2 and type-3 edges, i.e., all channel code variable nodes

have an edge degree vector d = (0, d2, d3, 0) where d2 ∈ {2, . . . , d(2)vmax}, and d3 ∈ {0, 1}.
Thus, for the channel LDPC code, we can summarize the set of mutual information

evolution equations as follows:

• variable nodes messages update:

I
(2)
v,l (d) = J

(√

4/σ2
n + (d2 − 1)[J−1(I

(2)
c,l−1(d))]

2 + d3[J−1(I
(3)
c,l−1(d))]

2

)

(6.15)

I
(2)
v,l =

∑

d

λ
(2)
d

J

(√

4/σ2
n + (d2 − 1)[J−1(I

(2)
c,l−1(d))]

2 + d3[J−1(I
(3)
c,l−1(d))]

2

)

(6.16)

• check nodes messages update:

I
(2)
c,l (d) = 1− J

(√

(dc2 − 1)[J−1(1− I
(2)
v,l )]

2 + J−1(1− I
(4)
v,l (d))

2

)

(6.17)
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• channel to source decoder messages update:

I
(3)
v,l (d) = d3 · J

(√

4/σ2
n + d2[J−1(I

(2)
c,l−1(d))]

2

)

(6.18)

I
(4)
c,l = 1− J

(√

dc2 [J
−1(1− I

(2)
v,l )]

2

)

(6.19)

• source decoder messages update:

I
(4)
v,l (d) = T1(I

(4)
c,l−1, I

(3)
v,l−1(d)) (6.20)

I
(3)
c,l (d) = T2(I

(4)
c,l , I

(3)
v,l (d)) (6.21)

where T1(·) and T2(·) are the transfer functions of the source decoder. Recall that

we are considering here that the source decoder is fixed. Given the source code degree

distributions λ(1)(r,x) and ρ(1)(x), those functions can be explicitly computed by means

of eqs. (6.9) and (6.14) for every edge degree vector d2. It is worth noting that in

the computation of T1(·) and T2(·), the rightmost sum in Eq. (6.14) will be zero if

I
(3)
v,l (d) = 0, since the corresponding check node is not receiving any information through

type-3 edges in this case.

Combining eqs. (6.16) - (6.21), we can summarize the mutual information evolution for

the channel code as

I
(2)
v,l = F2(λ, dc, I

(2)
v,l−1, pv, σn) , (6.22)

where dc = [dc1 , dc2 ], and λ = [λ(1), λ(2)] with λ(j) denoting the sequence of coefficients

λ
(j)
d

for all d and j ∈ {1, 2}. The initial conditions are I
(3)
v,0(d) = I

(2)
c,0 (d) = I

(3)
c,0 (d) =

0, ∀ d, and I
(4)
c,0 = 0.

For the source code factor graph, the variable nodes only have connections to type-

1 and type-4 edges, i.e., all source code variable nodes have an edge degree vector

d = (d1, 0, 0, d4) where d1 ∈ {2, . . . , d(1)vmax}, and d4 ∈ {0, 1}. Similar to the channel

code factor graph, we can summarize the set of mutual information evolution equations

as follows:

2For the computation of T1(·), note that by means of eqs. (2.23) and (6.7) we can write λ
(4)
d

(r,x) =
[ ∫

λ
(1)
d

(r,x)
∫
1
0 λ

(1)
d

(r,x)

]

′

x4

, where f ′

x denotes the partial derivative of f with respect to x.
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• variable nodes messages update:

I
(1)
v,l (d) = JBSC

(

(d1 − 1)[J−1(I
(1)
c,l−1(d))]

2 + d4[J
−1(I

(4)
c,l−1(d))]

2, pv

)

(6.23)

I
(1)
v,l =

∑

d

λ
(1)
d

JBSC

(

(d1 − 1)[J−1(I
(1)
c,l−1(d))]

2 + d4[J
−1(I

(4)
c,l−1(d))]

2, pv

)

(6.24)

• check nodes messages update:

I
(1)
c,l (d) = 1− J

(√

(dc1 − 1)[J−1(1− I
(1)
v,l )]

2 + [J−1(1− I
(3)
v,l (d))]

2

)

(6.25)

• source to channel decoder messages update:

I
(4)
v,l (d) = d4 · JBSC

(

d1[J
−1(I

(1)
c,l−1(d))]

2, pv

)

(6.26)

I
(3)
c,l = 1− J

(√

dc1 [J
−1(1− I

(1)
v,l )]

2

)

(6.27)

• channel decoder messages update:

I
(3)
v,l (d) = T4(I

(3)
c,l−1, I

(4)
v,l−1(d)) (6.28)

I
(4)
c,l (d) = T5(I

(3)
c,l , I

(4)
v,l (d)) (6.29)

where T4(·) and T5(·) are the transfer functions of the channel decoder, which is

considered to be fixed. Given the channel code degree distribution λ(2)(r,x) and ρ(2)(x),

those functions can be explicitly computed by means of eqs. (6.13) and (6.14) for every

edge degree vector d 3. Similarly to the channel code, in the computation of T4(·) and
T5(·), the rightmost sum in Eq. (6.14) will be zero if I

(4)
v,l (d) = 0, since the corresponding

check node is not receiving any information through type-4 edges in this case.

Combining eqs. (6.24) - (6.29) we can summarize the mutual information evolution for

the source code as

I
(1)
v,l = F1(λ, dc, I

(1)
v,l−1, pv, σn) , (6.30)

where dc = [dc1 , dc2 ], and λ = [λ(1), λ(2)] with λ(j) denoting the sequence of coefficients

3For the computation of T4(·), note that by means of eqs. (2.23) and (6.7) we can write λ
(3)
d

(r,x) =
[ ∫

λ
(2)
d

(r,x)
∫
1
0 λ

(2)
d

(r,x)

]

′

x3

, where f ′

x denotes the partial derivative of f with respect to x.
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λ
(j)
d

for all d and j ∈ {1, 2}. The initial conditions are I
(4)
v,0(d) = I

(4)
c,0 (d) = I

(1)
c,0 (d) =

0, ∀ d and I
(3)
c,0 = 0.

By means of eqs. (6.22) and (6.30), we can predict the convergence behavior of the

iterative decoding for both channel and source codes and then optimize the multi-edge

edge-perspective variable node degree distributions λ(1)(r,x) and λ(2)(r,x) under the

constraint that the mutual information for both codes must be increasing as the number

of iterations grows.

6.5 Optimization

Having derived the mutual information evolution equations, we are now able to present

an optimization algorithm derived to maximize the overall rate of the proposed JSC

code. Optimization strategies for LDPC-based JSC schemes present in the literature

either consider full knowledge of the channel code [64] or of the source decoder [69]

(where the authors also showed that an LDPC code optimized for the AWGN is not

necessarily optimum for the JSC problem).

In this section, we introduce an optimization algorithm that takes into account the extra

connections between the factor graphs of the source and channel codes we proposed

previously. By means of a multi-edge-type analysis, the algorithm presented herein

extends the optimization technique for LDPC-based JSC coding schemes presented in

the literature for the case where the source code variable nodes (and not only the check

nodes) are connected to the channel LDPC code factor graph.

In our proposed algorithm, we first compute the rate optimal channel LDPC code

assuming that the transmission is carried over an AWGN channel with noise variance σ2
n.

This is a standard irregular LDPC optimization [24] and since we are not considering

any connection to the source code in this first step, it can be done by means of eqs. (6.9)

and (6.14) with d = (0, d2, 0, 0) and d2 ∈ {2, . . . , d(2)vmax}, where d
(j)
vmax denotes the

maximum number of type-j edges connected to a variable node. The optimized degree

distribution obtained at this step will be denoted as λ
(2)
0 (r,x).

After having optimized the channel code variable nodes degree distribution, we assign

the variable nodes of higher degree to the message bits. This is done in order to

better protect the compressed message transmitted through the channel, since the

more connected a variable node is, the better its error error rate performance. This
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can be done as follows,

1. Given λ
(2)
0 (r,x), compute the node-perspective multi-edge degree distribution

ν0(r,x) =
∫
λ
(2)
0 (r,x)dx2

∫ 1
0
λ
(2)
0 (r,x)dx2

.

2. Assign a fraction Rcc of nodes (the ones with higher degree) to the systematic

part of the codeword, where Rcc is the rate of the channel code. This is done by

turning a variable node with edge degree vector d = (0, d2, 0, 0) into a variable

node with edge degree vector d = (0, d2, 1, 0). This gives rise to a modified node-

perspective degree distribution ν(r,x), where a fraction of Rcc nodes have one

connection to type-3 edges.

3. Given ν(r,x), compute the new edge-perspective multi-edge variable node degree

distribution λ(2)(r,x) =
νx2(r,x)

νx2 (1,1)
.

Once we have optimized the channel code, we optimize (maximizing its compression

rate) the source LDPC code considering its connections to the channel LDPC code

graph.

Let dvmax = [d
(1)
vmax , d

(2)
vmax , d

(3)
vmax , d

(4)
vmax ] be a vector whose components d

(j)
vmax represent

the maximum number of connections of a single variable node to type-j edges. Also,

recall that the components of the vector dc = [dc1 , dc2 ] define the number of connections

of the source code check nodes to type-1 edges (dc1) and the number of connections

of the channel code check nodes to type-2 edges (dc2). Additionally, λ(j), denote the

sequence of the coefficients of λ(j)(r,x). Given dvmax , dc, pv, and σn, the optimization

problem can be written as shown in Algorithm 5.

Since we are considering the convergence only through edges of type-1, the stability

condition C3 remains the same as for regular LDPC codes ensembles with codewords

transmitted over a BSC with transition probability pv. Furthermore, the rate constraint

C4 must be considered due to the fact that the number of type-4 edges connected to the

source code variable nodes must be equal to the number of channel code check nodes.

For given λ(2), dc, pv, and σn, the constraints C1, C2, C3, and C4 are linear in the

parameter λ(1). This means that the optimization of both source and channel codes

can be solved by linear programming. For a given channel condition, every different set

of vectors dvmax , dc will give rise to systems with a different overall rate. In practice,

we fix the vector dvmax and vary dc1 and dc2 in order to obtain the joint system with



98 6.6. SIMULATION RESULTS

Algorithm 5 Joint source-channel code optimization

1. Optimize the rate of the channel LDPC code without considering the connections
to the factor graph of the source LDPC code. Save the obtained the degree

distribution λ
(2)
0 (r,x).

2. Compute λ(2)(r,x) by assigning as systematic bits a fraction of the variable nodes
with higher degrees of the optimized channel LDPC code.

3. Considering λ = [λ(1), λ(2)], maximize
∑d

(1)
vmax

s=2

∑

d:d1=s λ
(1)
d

/s under the following
constraints,

C1 (proportion constraint):
∑

d λ
(1)
d

= 1 ,

C2 (convergence constraint): F1(λ, dc, I, pv, σn) > I ,
∀ I ∈ [0, 1) ,

C3 (stability constraint):
∑

d:d1=2 λ
(1)
d

< 1

2
√

pv(1−pv)
· 1
(dc1−1) ,

C4 (rate constraint):
∑

d:d4>0
λ
(1)
d

d1
= 1/(dc1dc2

∑

d:d3=1
λ
(2)
d

d2
) .

maximum overall rate for a binary symmetric source with transition probability pv and

a channel noise variance σ2
n.

6.6 Simulation results

In this section, we present simulation results obtained with an LDPC-based JSC coding

system constructed according to the degree distributions optimized by the algorithm

previously proposed. We optimized a system with the following parameters: pv = 0.03,

σ2
n = 0.95, dvmax = [30, 30, 1, 1], and dc = [22, 6]. The compression rate obtained for

the source code was Rsc = 0.2361, and the transmission rate obtained for the channel

LDPC code was Rcc = 0.4805. This gives an overall coding rate Rover ≃ 2.03. Note

that the value of pv was chosen in order to allow a comparison with the results presented

in [64] and [65]. The resulting multi-edge distributions are given in Tables 6.1 and 6.2.

Table 6.1: Optimized multi-edge variable node degree distribution for type-1 edges.
d (2,0,0,0) (2,0,0,1) (3,0,0,0) (9,0,0,0) (10,0,0,0) (30,0,0,0)

λ
(1)
d

0.034955 0.098275 0.22059 0.20734 0.22014 0.21870
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Table 6.2: Optimized multi-edge variable node degree distribution for type-2 edges.
d (0,2,0,0) (0,2,1,0) (0,3,1,0) (0,7,1,0) (0,8,1,0)

λ
(2)
d

0.33334 0.005203 0.31028 0.23786 0.11332

In order to show the merits of the proposed optimization, we compare its performance

with two LDPC-based JSC systems with the same overall rate Rover = 2.03 to which we

will refer as systems I and II. Those two systems have only the connections between the

check nodes of the source LDPC code and the systematic variable nodes of the channel

LDPC code as depicted in Fig. 6.1. For System I, the source and channel LDPC codes

were optimized separately for the BSC and the AWGN, respectively. System II consists

of a source code jointly optimized with a fixed channel code previously optimized for the

AWGN channel as done in [65]. All the performance curves were obtained considering

BPSK modulated signal transmitted over an AWGN channel and a total of 50 decoding

iterations.

The simulation results for the three systems with a source message of length n = 3200

are depicted in Fig. 6.4. The results for System I confirm that codes individually

optimized do not have a good performance for the JSC system. System II shows some

improvement of the bit error rate by means of the joint optimization of the source and

channel LDPC codes, but still shows an error floor for high SNR’s. As discussed before,

this error floor is a consequence of the compression of source codewords that form error

patterns not correctable by the source LDPC code. Fig. 6.4 shows that by means of our

proposed system (depicted as JSC opt), we managed to significantly lower this error

floor.

As a second set of simulations, we compare the results of our previously optimized code

(whose degree distributions are shown in Tables 6.1 and 6.2) for n = 3200 and n = 6400.

Furthermore, we design a code with dvmax = [30, 30, 1, 1], dc = [10, 6], pv = 0.03,

and σ2
n = 0.95 to which we will refer as System III. The simulation results for such

systems are shown in Fig. 6.5, where it can be recognized that the error floor caused by

uncorrectable error patterns can be further lowered by increasing the codeword size or

lowering the compression rate. The simulation for System III considered a block size

of n = 3200. Tables 6.3 and 6.4 show the resulting degree distributions for System III,

which has an overall rate Rover ≃ 1.76.

As previously pointed out, lowering the compression rate pushes the overall rate further

away from capacity, which can be expressed as C/H(S), where C denotes the capacity
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Figure 6.4: Performance of joint source-channel coded systems for n = 3200 and Rover = 2.03.

Table 6.3: Optimized multi-edge variable node degree distribution for type-1 edges.
d (2,0,0,0) (2,0,0,1) (3,0,0,0) (5,0,0,0)

λ
(1)
d

0.076899 0.21621 0.58665 0.12024

Table 6.4: Optimized multi-edge variable node degree distribution for type-2 edges.
d (0,2,0,0) (0,2,1,0) (0,3,1,0) (0,7,1,0) (0,8,1,0)

λ
(2)
d

0.33334 0.005203 0.31028 0.23786 0.11332

of the transmission channel and H(S) denotes the entropy of the source. For the source

and channel parameters we used in our optimization, i.e., pv = 0.03 and σ2
n = 0.95, the

asymptotically optimal Shannon limit is C/H(S) ≃ 2.58 source symbols per channel

use.

A possible strategy to enhance the performance of our proposed system is to place

infinite reliability on some of the variable nodes (shortening) [70, 71]. The use of this

technique should be a matter of further research in order to approach the JSC system

capacity more closely without having to increase n or decrease the overall transmission
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rate. Nevertheless, our results already show a considerable enhancement of the bit-error

rate performance when compared with existing LDPC-based JSC systems.

Figure 6.5: Performance curves of joint source-channel coded systems with different overall
rates and input block sizes.





Chapter 7

Concluding Remarks

We investigated the asymptotic analysis and design of modern coding schemes for

systems with unequal-error-protection requirements and joint source-channel coding ap-

plications. Regarding unequal error protection, we started with an asymptotic analysis

of hybrid turbo codes and then studied low-density parity-check and LT codes proposing

optimization algorithms to enhance the unequal-error-protecting capabilities of both

schemes by means of a multi-edge framework. Lastly, an LDPC-based joint source-

channel coding system was studied. In the following, we summarize the contributions

of the thesis and point out some possible future research topics.

As a first contribution, we derived the construction of local EXIT charts for a hybrid

concatenation of convolutional codes, which we named hybrid turbo codes and showed

the relation between local and global EXIT charts. Furthermore, we pointed out that

by means of this derived relation between local and global convergence, the analysis

of the global system can be reduced to the study of a serial concatenated code, since

the convergence behavior of the global system can be predicted from the local (serial)

EXIT chart.

Afterwards, we performed a multi-edge-type analysis of unequal-error-protecting LDPC

codes. By means of such an analysis, we derived an optimization algorithm that aims

at optimizing the connection profile between the protection classes defined within a

codeword of a given UEP-LDPC code. This optimization allowed us not only to

control the differences in the performances of the protection classes by means of a

single parameter, the interclass connection vector. It also allowed us to design codes
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with a non-vanishing UEP capability when a moderate to large number of decoding

iterations is applied. Finally, the optimization algorithm introduced herein has the

ability to generate UEP-LDPC codes with superior performance for applications where

a low or high number of decoding iterations is needed.

Further research in this area might be the investigation of unequal-error-protecting

LDPC codes with more than three protection classes defined within a codeword. Also,

we restricted our optimizations to check regular LDPC codes. It would be interesting

to consider irregular check nodes to verify if extra gains in the error rate performance

are achievable applying our proposed optimization.

As a last investigation subject on unequal-error-protecting schemes, we introduced

a multi-edge type analysis of unequal-error-protecting LT codes. Furthermore, we

derived the density evolution equations for UEP LT codes, analyzed two of the existing

techniques for generating UEP LT codes, and proposed a third scheme called flexible

UEP LT approach. Finally, we showed by means of simulation that our proposed

codes perform better than existing schemes for high overheads and have advantages

for applications where precoding is needed, e.g., Raptor codes, since it only uses one

precoding for the whole data block avoiding finite-length effects that can arise from

separately encoding protection classes with a low number of bits.

A possible extension of the work done on unequal-error-protecting LT codes would

be to modify the optimization algorithm in order to optimize the codes according to

the protection requirements of each individual protection class, i.e., the bit error rate

required for each class would be a parameter of the optimization.

Lastly, we proposed an LDPC-based joint source-channel coding scheme and by means

of the multi-edge analysis previously developed for LDPC codes, proposed an opti-

mization algorithm for such systems. Based on a syndrome source-encoding idea,

we presented a novel system where the amount of information about the source bits

available at the decoder is increased by improving the connection profile between the

factor graphs of the source and channel codes that compose the joint system. The

presented simulation results show a significant reduction of the error floor caused by

the encoding of messages that correspond to uncorrectable error patterns of the LDPC

code used as source encoder in comparison to existent LDPC-based joint source-channel

coding systems.

This topic offers interesting further research possibilities. One possibility is the con-
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struction of an unequal-error-protecting JSC system applying UEP LDPC codes as

syndrome-based source compressors. Another possible research topic is the improve-

ment of the performance of our proposed JSC system by lowering the probability

of an uncorrectable source pattern using shortening, which means placing infinite

reliability on some source LDPC variable nodes. Those infinite reliability nodes are to

be punctured prior to the transmission in order to keep the compression rate unchanged,

and they have their positions known by both encoder and decoder.

Finally, an iterative optimization of the component codes of the herein proposed JSC

system can be developed considering at the initial iteration that one of the component

LDPC codes is fixed (we can for example take an LDPC code optimized for the AWGN

as channel code), and then optimize the other following the standard approach of

computing the extrinsic information transfer chart. In the next iteration, the code

previously optimized is fixed and the optimization of the other component code is

carried out.





Appendix A

List of Mathematical Symbols

αj fraction of input symbols within protection class j

b = (b0, b1, . . . , bmr
) received degree vector

βj average number of type-j edges connected to a variable node

c channel encoder output vector

C(D) convolutional encode output sequence

Cj protection class j

D discrete delay operator

dv regular LDPC variable node degree

dvmax
maximum variable node degree

dc regular LDPC check node degree

dcmax
maximum check node degree

d = (d1, d2, . . . , dme
) edge degree vector

δ(j) = (δj1, δ
j
2, . . . , δ

j
j ) interclass connection vector of protection class j

e error vector

ǫ erasure probability of a binary erasure channel

G generator matrix

G(D) convolutional code generator matrix

γ LT code overhead

Γ(x) window selection degree distribution

Γi probability of window i being selected

H parity-check matrix

k number of code bits at the encoder input

Λ(x) node perspective variable node degree distribution

Λi number of variable nodes with degree i

λ̃(x) normalized node perspective variable node degree distribution
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λ(x) normalized edge perspective variable node degree distribution

λi fraction of edges connected to degree-i variable nodes

λ(j)(r,x) edge perspective multi-edge variable node degree distribution of

type-j edges

λ
(j)
d

fraction of type-j edges connected to type-d variable nodes

M memory of a convolutional code

me number of edge types

mr number of received channel distributions

µ(x) multi-edge node perspective check node degree distribution

µd fraction of check nodes of type d

M(v) neighborhood of a variable node v

N (c) neighborhood of a check node c

Nc number of protection classes

n number of code bits at the encoder output

nit,g number of global decoding iterations

nit,j number of decoding iterations for branch j

ν(r,x) node perspective multi-edge variable node degree distribution

νr,d fraction of variable nodes of type (b,d)

P (x) node perspective check node degree distribution

Pi number of check nodes with degree i

p transition probability of a binary symmetric channel

pj selection probability of a class-j input symbol among all input

class-j input symbols

qv→c message sent from variable node v to check node c

R linear block code rate

Ro rate of outer code

Rsc source code compression rate

Rcc channel code transmission rate

Rover overall coding rate

rc→v message sent from check node c to variable node v

r received vector

ρ̃(x) normalized node perspective check node degree distribution

ρ(x) normalized edge perspective check node degree distribution

ρi fraction of edges connected to degree-i check nodes

ρ(j)(d) edge perspective multi-edge check node degree distribution of

type-j edges

ρ
(j)
d

fraction of type-j edges connected to type-d check nodes

σ2
ch variance of channel messages

σ2
n noise variance

σ2
r variance of messages sent from a check node
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σ2
v variance of messages sent from a variable node

U(D) convolutional encoder input sequence

u source output and channel encoder input vector

Vn n-dimensional vector space

wi window i

Ω(x) LT code output symbol degree distribution

Ωi fraction of output symbols with degree i

Ω(j)(x) LT code output symbol degree distribution for window j

ωj selection probability of a class-j input symbol among all input

symbols

X channel input alphabet

x channel input symbol

xv represented value of a variable node v

Y channel output alphabet

y channel output symbol

yv channel observation for the value of a variable node v



Appendix B

List of Acronyms

ACE approximate cycle extrinsic message degree

AWGN additive white Gaussian noise

BCJR Bahl-Cocke-Jelinek-Raviv

BEC binary erasure channel

BER bit-error rate

BI-AWGN binary-input additive white Gaussian noise

BP belief propagation

BPSK binary phase shift keying

BSC binary symmetric channel

CLID closed-loop iterative decoder

CND check node decoder

DE density evolution

EXIT extrinsic information transfer

GF Galois field

HCC hybrid concatenated code

JSC joint source-channel

LDPC low-density parity-check

LIB less important bits

LLR log-likelihood ratio

LT Luby transform

MI mutual information

MIB most important bits

NSC non-recursive non-systematic convolutional

PCC parallel concatenated code

PEG progressive edge-growth
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RSC recursive systematic convolutional

SCC serial concatenated code

SNR signal-to-noise ratio

UEP unequal error protection

URT unequal recovery time

VND variable node decoder
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