
Advanced Detection Schemes of Digital

Signals in Impulse Noise

by

Khodr Ahmad Saaifan

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in Electrical Engineering

Approved, Dissertation Committee:

Prof. Dr.-Ing. Werner Henkel

Jacobs University Bremen

Prof. Dr.-Ing. A. J. Han Vinck

Universität Duisburg-Essen

Dr. rer. nat. habil. Mathias Bode

Jacobs University Bremen

Date of Defense: January 6, 2015





I

Abstract

In this thesis, we investigate the optimum approach to mitigate the effects of impulse noise

in wireless communication channels. First, we present a measurement campaign to verify

the statistical properties of a Middleton Class-A (MCA) model for impulse noise. This

campaign measures wireless interference that corrupted a 2.4 GHz industrial, scientific,

and medical (ISM) band. We extend this verification to characterize the spatial coupling

and correlation of impulse noise for multiple antenna systems.

We then investigate the optimum detector for binary signals corrupted by MCA noise.

We approximate the MCA model to a single weighted Gaussian density such that the

nonlinearities of the optimum detector can be evaluated in a closed-form expression. The

approximate MCA model discriminates the noise probability density function (PDF) of

Gaussian and impulsive events using a threshold detection scheme. By means of such

approximations, we provide a precise analysis for the behaviors of optimum nonlinearities

in reducing the effects of impulse noise. We also introduce a decision boundary analysis

to justify and analyze the performance of the optimum detector in different MCA noise

environments. We also approximate the nonlinearities to investigate the behaviors of the

other suboptimum detectors such as a locally optimum detector (LOD) and a clipping

detector. As a suboptimum approach, we further approximate the optimum nonlinearities

using linear segments to introduce new suboptimum detectors such as a piecewise linear

detector and a clipping-like detector.

Next, we extend the approximate MCA model to derive the optimum combining schemes

for time and space diversity in the presence of fading and impulse noise. We assume

perfect knowledge of noise states to evaluate the analytical performances of the optimum

combining schemes for time, receive, and transmit/receive diversity in Rayleigh fading

and MCA noise. Although this assumption is unrealistic, it leads to a tight performance

bound for the optimum combining schemes in impulse noise. These evaluations allow us

to study the performance loss of spatial diversity with respect to the number of transmit

and receive antennas.

Finally, we utilize the spectral dimensions in the mitigation problem of impulse noise for

orthogonal frequency division multiplexing (OFDM) systems. We start with the receiver

design of OFDM systems applied to fading channels with MCA noise, such as the optimum

receiver and a conventional OFDM detector. We then evaluate an upper performance

bound for the optimum receiver in flat fading with MCA noise. This analysis indicates a

significant performance improvement of the optimum detector over a conventional OFDM

detector in impulse noise. We finally develop a sphere decoding along with sparse Bayesian

learning (SBL) to realize the optimum OFDM detector in MCA noise.
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Chapter 1

Introduction

Interference is one of the main factors that severely limits the performance of wireless

communication systems. Since the communication channels are not interference-free

media, the signal transmission is often corrupted by adding noise or interference, e.g.,

additive white Gaussian noise (AWGN), radio frequency interference (RFI), and co-

channel radio interference. The sources of interference can be either natural or man-made

such as natural atmospheric processes, switching transients of electrical devices, household

appliance, car ignitions, etc. In environments with a large number of interfering sources,

a Gaussian distribution dominates as a statistical model. A well-known example is an

AWGN model. However, when the potential sources of interference emit strong impulses,

the noise exhibits impulsive nature [1–3]. Thus, the AWGN model will not be accurate

for modeling such interference.

Recent studies show sufficient evidences of impulse noise in indoor and outdoor wireless

channels [1, 4, 5], wireless data transceivers deployed in laptops [6], co-channel interfer-

ence [3, 7], and aeronautical communication systems [8–11]. One of the most important

steps in the development of the signal detection in impulse noise environments is the

statistical modeling of interference. The most accepted models for impulse noise are a

Middleton Class-A (MCA) model and symmetric alpha-stable (SαS) distributions [1,12].

The MCA and SαS models are derived for a Poisson distributed interferer under bounded

and unbounded path-loss assumptions [1, 13], respectively. Since the unbounded path-

loss assumption of the SαS model is not realistic, the MCA model appears to be more

physically relevant.

The effects of impulse noise on the operation of a communication system designed under

the assumption of AWGN are drastic. This elevates the need for redesigning commu-

nication systems to effectively differentiate the signal from noise. The researchers have

1



2 1.1. STATISTICAL MODELS OF IMPULSE NOISE

been working hard on the development of a communication system over impulse noise

channels [14–17]. A signal detection in MCA noise shows that the optimum detector

provides a significant performance improvement over a conventional detector [14], even

though the impulse noise is strong. However, the research towards the optimum approach

is limited so far.

One of the research directions for mitigating the effects of impulse noise is to use time

and spatial dimensions such as time diversity, space diversity, and space-time (ST) cod-

ing. However, conventional combining schemes of diversity could not maintain the same

diversity advantages in MCA noise [18, 19]. Therefore, one of the challenging problems

is to exploit the advantages of the optimum combining scheme for fading channels in the

presence of impulse noise. The same challenge is observed in orthogonal frequency division

multiplexing (OFDM) systems, which suffer severely in strong impulse noise, since then,

the spreading effect is actually a disadvantage in contrast to weaker impulse noise.

This thesis introduces a modern study of the optimum detection schemes in the presence

of MCA noise. We treat the effects of impulse noise using time, space, and frequency

dimensions. Since the available physical modeling of MCA noise is limited to two receive

antennas, impulse noise measurements are required to verify and extend the MCA model

for an arbitrary number of receive antennas.

1.1 Statistical Models of Impulse Noise

The statistical modeling of impulse noise leads to heavy-tailed distributions as models for

the amplitude distribution of impulse noise. The tails of these distributions decay at a

rate less than those of a Gaussian distribution, which admits a large number of models.

The existing models of impulse noise are classified as either empirical models or statistical-

physical models. On the one hand, the empirical models provide tractable distributions,

which fit the statistical distributions of measured data. On the other hand, the statistical-

physical models admit more accurate and complex distributions whose parameters have a

direct physical significance. In this section, we have looked on the most accepted models

for impulse noise, such as the MCA model, the SαS distribution, a Gaussian mixture

model, and generalized Gaussian distributions.

1.1.1 The Middleton’s Class-A Model

In 1972, Middleton developed three analytical models for impulsive effects of RFI [1,20,21].

Among them, the Class-A model is the most accepted one for impulse noise superimposed
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to AWGN. The MCA model assumes that the received interference, w(t) = wG(t)+wI(t),

consists of two additive noise components: a Gaussian component wG(t) and an impulsive

component wI(t). The Gaussian component is thought to represent AWGN while the

second part comprises impulsive events. The probability density function (PDF) of a

real-valued noise observation, w, is given by [1]

pw(w) =

∞∑

m=0

αm
√

2πσ2
m

e
− w2

2σ2
m , (1.1)

where

αm =
Ame−A

m!
, (1.2)

and

σ2
m = σ2m/A+Υ

1 + Υ
. (1.3)

The average variance of the MCA process is defined by σ2 = σ2
G + σ2

I , where σ2
G and

σ2
I are the variances of wG(t) and wI(t), respectively. The MCA model is defined using

two parameters A and Υ, which are related to the underlying physical process generating

the impulse noise. The impulse index, A, represents the mean number of impulses that

occur in a specified time interval. The Gaussian factor, Υ = σ2
G/σ

2
I , defines the Gaussian

to impulse noise power ratio. The term AΥ controls the impulsiveness of MCA noise.

In (1.1), we note that the MCA density is a weighted linear combination of an infinite

number of Gaussian densities with different variances, σ2
m. The weights of Gaussian

densities, αm, ∀m, can be seen as a Poisson distribution of a random variable m. For this

reason, m sometimes refers to the noise states of MCA noise, i.e., m = 0 is a Gaussian

state and m > 1 represent the impulsive states. Mathematically, the average variance of

MCA noise can be obtained as

E{w2} =
∞∑

m=0

αmσ
2
m ,

= σ2 . (1.4)

In Fig. 1.1, we depict the MCA distribution with different values of A and Υ. From

this figure, we observe that the tails of the MCA density become wider for ΥA below

1. However, when ΥA is increased to infinity, the variance σ2
m in (1.3) converges to σ2.

Therefore, the tails of the MCA density asymptotically approach those of a Gaussian

density with variance σ2. The applications of MCA models have been seen in the

modeling of interference by the switching transients in power lines, car ignition, and

home appliances. The MCA model also approximates multiuser interference in ultra-
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Figure 1.1: PDF of MCA noise with different values of Υ and A. Note that the noise
variance, σ2, is unity

wideband communication systems [22]. Besides the MCA model, Middleton proposes two

additional models for broadband impulse noise. A Middleton Class-B model is used for

interference whose spectrum is broader than a receiver bandwidth. A Class-C noise is a

mixture of Class-A and Class-B interference. The practical application of the Middleton

Class-B model is limited because it has a complex density function, which requires up to

5 parameters.

1.1.2 The Symmetric Alpha-Stable Model

The SαS model captures the impulsive phenomena that encountered in many applications

such as digital communications, biomedicine, and radar. The SαS model lacks of a closed-

form expression for its PDF. Then, the best description of the SαS model can be given

by its characteristic function [12, 13, 23]

ϕ(̟) = exp
(

jυ̟ − γ|̟|α
)

, (1.5)

where 0 < α ≤ 2 is the characteristic exponent, υ (−∞ < υ < ∞) is the location

parameter, and γ (γ > 0) is the dispersion of the distribution. When 1 < α ≤ 2,

the location parameter υ corresponds to the mean of the SαS distribution, while for

0 < α ≤ 1, υ corresponds to its median. The parameter γ determines the spread of

the distribution around its location parameter υ, which is similar to the variance of the

Gaussian distribution. The characteristic exponent α is the most important parameter
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of the SαS distribution, which controls the tails of the distribution. Figure 1.2 depicts

the SαS distribution for different values of α. We observe that a smaller α corresponds

to heavier tails of the SαS density. This implies that the random variables of small
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Figure 1.2: PDF of SαS noise with different values of α.

characteristic exponents are highly impulsive. There are two important special cases of

SαS distributions. When α = 1, the distribution reduces to a Cauchy distribution with

parameters γ and υ. When α = 2, the distribution reduces to a Gaussian distribution

with mean υ and variance 2γ.

The SαS distributions, except for the Gaussian case, possess unrealistic assumptions

regarding the infinite variance of interference. Since in practice the variances are always

bounded, the SαS seems to be unrealistic for communication systems. However, the

SαS model can potentially be used to approximate the Middleton Class-B model in the

absence of Gaussian noise. The co-channel interference for spatially Poisson-distributed

interferers reduces to the SαS distribution [3,7]. The same seems to be true in a multiple

access system and for back-scattered echos in radar systems [24].

1.1.3 The ε-Mixture Model

The ε-mixture model is a commonly used empirical model for impulse noise. This model

can be written as a weighted sum of two or more Gaussian distributions. A large number

of Gaussian terms yields a non-tractable model. However, two terms are being sufficient
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in most problems [25, 26]. The ε-mixture density of two Gaussian terms is given as [27]

pw(w) =
1− ε
√

2πσ2
0

e
− w2

2σ2
0 +

ε
√

2πσ2
1

e
− w2

2σ2
1 , (1.6)

where 0 < ε < 1 represents the probability of having impulses. The ratio σ2
1/σ

2
0 should

be chosen high enough to broaden the tails of the mixture density. The ε-mixture

can approximate a wide variety of symmetric zero-mean random variables, such as the

Laplacian distribution [28] and the SαS distribution [26]. In contrast to the MCA model,

the second term of (1.6) is thought to approximate the impulsive terms m ≥ 1 of the

MCA density. The relations between both models can be given as [16]

σ2
1

σ2
0

= 1 +
1

AΥ
, (1.7)

and

ε = 1− e−A . (1.8)

In the general description of ε-mixture model, the second term can be any symmetric

PDF, e.g., Cauchy or Laplacian, instead of Gaussian [29].

1.1.4 Generalized Gaussian Distributions

A generalized Gaussian distribution has been considered as an alternative to the SαS

model [30]. The generalized Gaussian model is used to model multiple access interfer-

ence in spread spectrum communications [31]. Furthermore, the asymmetric generalized

Gaussian distribution provides an accurate modeling for underwater acoustic data trans-

mission [32]. The tails of the generalized Gaussian distribution decline exponentially,

meaning that it is not as heavy-tailed as the SαS distribution. The generalized Gaussian

distribution can be expressed as

pw(w) =
κ

2σ2Γ(1/κ)
e−

|w−µ|κ

σ2 . (1.9)

where Γ(·) is the gamma function. The above distribution has three parameters µ, κ,

and σ2. The parameters κ and σ2 > 0 denote the shape and variance, respectively.

The distribution goes to Gaussian when κ = 2, and it reduces to Laplacian when κ =

1. The generalized Gaussian distribution with µ = 0 and κ = 1/5 reduces to an HK

(Henkel/Kessler) model [33, 34]. The HK model was investigated empirically to model
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impulse noise on twisted pairs. This model has been found to be a good fit for all measured

impulse noise collected in the networks of Deutsche Telekom and British Telecom.

1.2 Signal Detection in Impulse Noise

The detection problems of binary signals corrupted by impulse noise are considered in

many works [14,16,17,26,27]. In general, the optimum receiver in the presence of impulse

noise requires a high computational complexity. In [35], the decision region analysis is

introduced as a new approach to depict the typical nonlinearity of the optimum detector

in SαS noise. Moreover, this approach has been investigated to clarify the behavior

of suboptimum detectors, such as a linear detector, a clipping detector, and a blanking

detector. However, the optimum nonlinearity has hitherto not been known for binary

signals corrupted by MCA noise. Herewith, we consider a classical detection problem of

binary signals in MCA noise. Similar to prior works, we assume that the observation space

consists of several observations (N samples) of the same transmitted signals corrupted

by statistically independent noise observations. The hypothesis S1 corresponds to a

transmitted signal +B, and the hypothesis S0 corresponds to a transmitted signal −B.

Under both hypotheses, we have

S1 : yk = +B + wk

S0 : yk = −B + wk

, k = 1, · · · , N , (1.10)

where B =
√

Eb

N
. Thus, the noise observations, wk, are samples of a real-valued MCA

noise process with average variance σ2. For equiprobable transmitted signals +B and

−B, the maximum-likelihood (ML) detector computes the log-likelihood ratio (LLR) as

ΛML = log

(∏N
k=1 pw(yk −B)

∏N
k=1 pw(yk +B)

)
S1
≥
<
S0

0 , (1.11)

where

pw(wk) =

∞∑

m=0

αm
√

2πσ2
m

e
− w2

k

2σ2
m , (1.12)

is the MCA density of received noise. In the following subsections, we consider two types

of detection schemes. One is based on the ML detection criterion, which is optimum from

a theoretical perspective. A second type is suboptimum, such as a conventional detector,

a locally optimum detector (LOD), and a clipping detector.
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1.2.1 Optimum Detector

The performance of the optimum detector is quantitatively studied in [14]. The optimum

decision rule (1.11) can be rewritten as

ΛML =
N∑

k=1

g(yk)
S1
≥
<
S0

0 , (1.13)

where

g(yk) = log (pw(yk − B))− log (pw(yk +B)) , (1.14)

denotes the optimum nonlinearity. The previous expression indicates that the optimum

detector comprises of a set of nonlinear operations, g(yk), followed by a linear decision

rule as illustrated in Fig. 1.3. From (1.14) and (1.12), we observe that the optimum

g(·)
Output

decision

yk
N∑

k=1

Figure 1.3: A nonlinear structure of the optimum detector

nonlinearity, g(yk), requires a high computational complexity because of the sum of many

exponential terms. To reduce the complexity, the MCA density can be approximated by

the maximum value of the first few terms [17, 36]. Accordingly, the natural logarithm of

the likelihood functions, pw(yk ± B), can be approximated as

log (pw(yk ± B)) ≈ max
m=0,1,2

{

log

(

αm
√

2πσ2
m

e
− (yk±B)2

2σ2
m

)}

,

≈ max
m=0,1,2

{

−(yk ± B)2

2σ2
m

+ log

(

αm
√

2πσ2
m

)}

.

(1.15)

This approximation offers a practical realization of the optimum nonlinearity. However,

it does not explain how the optimum nonlinearity treats the effects of impulse noise.

1.2.2 Suboptimum Detectors

In (1.14), we observe that the natural logarithm of pw(yk −B) and pw(yk +B) could not

simplify further the optimum nonlinearity, g(yk). However, approximating the likelihood

functions pw(yk − B) and pw(yk +B) leads to several suboptimum solutions.
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Linear detector: This scheme assumes that the noise is Gaussian, and hence, it ignores

all impulsive terms of the MCA model, i.e., αm = 0, m ≥ 1. Thus, the likelihood functions

pw(yk − B) and pw(yk +B) are Gaussian, which leads to

gLD(yk) = log

(

1
√

2πσ2
0

e
− (yk−B)2

2σ2
0

)

− log

(

1
√

2πσ2
0

e
− (yk+B)2

2σ2
0

)

,

=
2B

σ2
0

yk , k = 1 , · · · , N .

(1.16)

Thus, the linear detector
∑N

k=1 gLD(yk) possesses a single linear operation, which has an

inferior performance in impulse noise [14].

Locally optimum detector: The LOD provides a closed-form approximation of the

optimum nonlinearity for small signal levels B. This detector uses a Taylor series expan-

sion of log (pw(yk ±B)) around B ≈ 0, which yields

log (pw(yk ± B)) = log (pw(yk))±B
d

1!dyk
log (pw(yk))+B2 d2

2!dy2k
log (pw(yk))±· · · . (1.17)

Inserting (1.17) into (1.14), ignoring all signal terms of order 2 and higher, we obtain

gLO(yk) = −2B
d

dyk
log (pw(yk)) , k = 1 , · · · , N . (1.18)

The performance of the LOD is almost optimum for small signals, but it becomes subop-

timum at high signal levels [14].

Clipping detector: A clipping nonlinearity was proposed to remove the dependence

of the LOD on the MCA density [15]. The clipping nonlinearity limits the received signal

amplitudes (containing noise) to a certain value γc. The clipping detector is simple since

it adds almost no complexity to the linear detector. The clipping nonlinearity can be

given as

gCD(yk) =

{

yk , |yk| < γc ,

γce
j arg(yk) , elsewhere .

(1.19)

From (1.19), we observe that the operations of the clipping detector are strongly depending

on the choice of the threshold γc. A too high γc leads to a linear detector, whereas an

extremely low one may distort the received signal. There are two methods for finding

the optimum level of γc. One method is to evaluate the threshold which maximizes the

signal-to-noise ratio (SNR) at the output of the clipping operation. This method does

not guarantee a closed-form expression for γc [37] even for the simple Gaussian mixture
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model. The second method optimizes the threshold, which clips the received observations

that affected by impulse noise [38, 39]. For an MCA model with 2 terms m = 0 and

m = 1, the probability that the received observation, due to the impulsive term, exceeds

a threshold γ can be given as [39]

P (|yk| ≥ γ|m = 1) = 2

∫ ∞

γ

1
√

2πσ2
1

e
− (yk−B)2

2σ2
1 dyk = erfc

(

γ −B
√

2σ2
1

)

, (1.20)

where erfc(·) is the complementary error function. However, when the samples are

corrupted by a Gaussian term, the probability that yk exceeding γ can be given as

P (|yk| ≥ γ|m = 0) = 2

∫ ∞

γ

1
√

2πσ2
0

e
− (yk−B)2

2σ2
0 dyk = erfc

(

γ −B
√

2σ2
0

)

. (1.21)

In [39], the optimum γ is selected to maximize the combination of (1.20) and (1.21) as

follows:

γc = argmax
γ>B

{

α1P (|yk| ≥ γ|m = 1)− α0P (|yk| ≥ γ|m = 0)
}

, (1.22)

where αm is the probability of a noise state m. This yields

γc = B +

√

2σ2
0σ

2
1

σ2
1 − σ2

0

log

(
α0σ1

α1σ0

)

. (1.23)

Therefore, this method shows that the threshold γc depends on a signal level B and noise

parameters. However, the clipping nonlinearity has no additional advantages over a linear

detector when the signal level B goes to high values [14, 15].

1.3 Impulse Noise Mitigation Across Time, Space,

and Frequency

Diversity is one of the most attractive techniques to combat the detrimental effects of

fading in wireless channels. Diversity schemes use the available dimensions, such as time,

space, and frequency, to supply the receiver with several replicas of the same transmit

signal. In this section, we present prior works for mitigating the effects of fading and

impulse noise through these dimensions. We begin with the time diversity approach

of binary signals in fading channels with impulse noise [19]. Then, for space diversity,

we look into both transmit and receive diversity schemes in both fading and impulse

noise [18, 19, 40]. However, when it comes to frequency, we investigate the mitigation



1. INTRODUCTION 11

schemes for impulse noise in OFDM systems [37, 41, 42]. Some recent studies show that

the null-subcarriers of the OFDM systems can be used for impulse noise estimation [43,44].

Therefore, we further discuss this approach for OFDM signals corrupted by MCA noise.

1.3.1 Time Diversity

Time diversity utilizes several time slots to supply the receiver with replicas of the same

transmit signal. Figure 1.4 illustrates a digital communication system with time diversity.

We restrict this model to a binary signal set. However, the extension to anM-ary signal set

is straight forward. At a time slot tnD
, nD = 1, · · · , ND, the transmitter uses rectangular

Figure 1.4: A baseband model for binary signal transmission over fading channels with
impulse noise

pulses, s(t) = 1√
Tb
rect

(
t−tnD

Tb

)

, to transmit binary antipodal signals +s(t) and −s(t) over

a signaling interval, Tb. The transmitted signals are assumed to undergo frequency non-

selective slowly fading channels. This means that the coefficients of the fading channels

remain constant during the signaling interval Tb. Thus, the received signals for the ND

time slots can be given as

ynD
(t) = ±

√
Eb

ND
hnD

s(t) + znD
(t) , nD = 1, 2, · · · , ND , (1.24)

where hnD
represents the fading coefficient of a complex Gaussian channel for the nth

D

time slot. To guarantee independent fading coefficient between different time slots, the

separation between two consecutive time slots should be greater than the coherence time

of the channel [45]. znD
(t) is a complex-valued MCA noise process in the nth

D signaling

interval. Since the received signals, ynD
(t), is passed through a matched filter followed by
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a sampler. The received signal observations can be given as

ynD
= ±

√
Eb

ND
hnD

+ znD
, nD = 1, 2, · · · , ND , (1.25)

where znD
, nD = 1, · · · , ND, represent the samples of a complex-valued MCA process

at the output of matched-filtering for the ND time slots. Under the assumption that

the duration of impulsive waveforms comprising znD
(t) is less than or equal to Tb, the

noise samples, znD
, at different time slots can be assumed statistically independent1. The

complex-valued MCA process is given as [18, 19]

pz(znD
) =

∞∑

m=0

αm

2πσ2
m

e
− |znD

|2

2σ2
m , (1.26)

where znD
= zInD

+ jzQnD
. In this case, the average power of the baseband MCA noise

process is E{|zk|2} = 2σ2. There are several combining methods, which treat the effects

of impulse noise and fading [19]. In the following, we briefly discuss those schemes for

binary signals in fading channels with complex-valued MCA noise.

Conventional schemes: The conventional combining schemes, such as maximum ratio

combining (MRC), selection combining, and equal gain combining are well-known schemes

for combating the effects of fading in AWGN. These schemes possess simple realizations.

However, they provide a limited performance in fading channels with impulse noise [19].

The MRC scheme is simply

ΛMRC =

ND∑

nD=1

h∗
nD

ynD

S1
≥
<
S0

0 . (1.27)

From (1.27), we note that MRC weights the signal observations according to the gain of

fading, which is a suboptimum method for treating the effects of MCA noise.

Optimum combining: The optimum detector of binary signals in fading channels and

1When the transmitted signals are separated enough over time, we can assume independent channels
for both fading and interference processes.
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MCA noise computes

ΛML = log





∏ND

nD=1 pz

(

ynD
−
√

Eb

ND
hnD

)

∏ND

nD=1 pz

(

ynD
+
√

Eb

ND
hnD

)




S1
≥
<
S0

0 ,

=

ND∑

nD=1

g(ynD
, hnD

)
S1
≥
<
S0

0 ,

(1.28)

where

g(ynD
, hnD

) = log
(

pz

(

ynD
−
√

Eb

ND
hnD

))

− log
(

pz

(

ynD
+
√

Eb

ND
hnD

))

, (1.29)

denotes the nonlinearity of the optimum combining scheme. We observe that the above

nonlinearities possess a complex representation of the MCA noise density. Therefore, the

LOD and the clipping detector can easily be developed as a suboptimum solution for

binary signals in fading channels and impulse noise.

1.3.2 Spatial Diversity

Antenna diversity uses spatial dimensions by employing multiple transmit and/or receive

antennas to supply the receiver with several replicas of the same transmit signal. Since

the antennas are often spaced far enough, the fading gains between different antenna pairs

can be assumed statistically independent. This assumption may not hold true for impulse

noise at different receive antennas. Since the receive antennas are victims to the same

physical interference process, the statistical-physical modeling of MCA noise proved that

the noise observations for 2-receive antennas are dependent and may be correlated [46].

The algebraic extension of this model leads to a multivariate Class-A distribution, which

can be used for an arbitrary number of receive antennas [18]. In this section, we consider a

receiver design for spatial diversity using multiple receive antennas, and transmit/receive

diversity using multiple-input multiple-output (MIMO) channels in the presence of MCA

noise.

1.3.2.1 Receive Diversity

We consider a communication system equipped with a single transmit antenna and NR

receive antennas (see Fig. 1.5). The received signal at the NR receive antennas can be
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Figure 1.5: A baseband model for binary signal transmission with space diversity

expressed as

ynR
(t) = ±

√

EbhnR
s(t) + znR

(t) , nR = 1, 2, · · · , NR , (1.30)

where +s(t) and −s(t) are the transmit antipodal signals. hnR
, nR = 1, · · · , NR, are

complex-valued fading coefficients for the NR channels. znR
(t) represents the interference

process as seen by the nth
R receive antenna. After matched-filtering, the received observa-

tions, ynR
, can be given as

ynR
= ±

√

EbhnR
+ znR

, nR = 1, 2, · · · , NR , (1.31)

where znR
denotes a complex baseband impulse noise sample. Since the noise observations,

znR
, nR = 1, · · · , NR, comprise of impulse noise of the same physical sources, the noise

samples for different receive antennas are jointly dependent. For 2-receive antennas, a

bivariate MCA distribution is derived as the statistical-physical model for the received

noise vector, z = [z1, z2]
T , as [46]

pz(z) =
e−A

(2π)2|Σ0|
e−

1
2
zHΣ0

−1z +
1− e−A

(2π)2|Σ1|
e−

1
2
zHΣ1

−1z , (1.32)

where | · | denotes a determinant, and (·)H represents the conjugate transpose. Σ0 and

Σ1 are the covariance matrices of the Gaussian and impulse terms, respectively. Hence,

Σm, m = 0, 1, are given as

Σm =

(

σ2
m,1 ρmσm,1σm,2

ρmσm,2σm,1 σ2
m,2

)

, (1.33)



1. INTRODUCTION 15

where

σ2
m,nR

= σ2
nR

m/A+ΥnR

1 + ΥnR

, nR = 1, 2 , (1.34)

and ρm is the correlation coefficient of noise observations z1 and z2. Since σ2
nR

= σ2
G + σ2

I,

and σ2
I = σ2

G/ΥnR
, the above model implies that the received interference, znR

(t), ∀nR,

are possessing unequal Gaussian factors ΥnR
at the 2-receive antennas. For an arbitrary

number of receive antennas, NR, a multivariate MCA distribution [18,19] can be used as

pz(z) =
∞∑

m=0

αm

(2π)NR|Σm|
e−

1
2
zHΣm

−1z , (1.35)

where Σm is given as

Σm =







σ2
m,1 · · · 0
...

. . .
...

0 · · · σ2
m,NR







. (1.36)

From (1.36), it is obvious that the noise observations, znR
, nR = 1, · · · , NR, are dependent

but uncorrelated. When ΥnR
= Υ, ∀nR, the model in (1.35) reduces to a balanced

multivariate MCA distribution [19]. The optimum combining scheme of receive diversity

computes the following statistics

ΛML = log

(
pz(y −

√
Ebh)

pz(y +
√
Ebh)

)
S1
≥
<
S0

0 , (1.37)

where h = [h1, · · · , hNR
]T is the channel vector. The prior works show that MRC

approximates the optimum combining scheme for balanced multivariate MCA noise [19].

However, it is not obvious how the optimum scheme should behave in correlated and

unbalanced MCA noise.

1.3.2.2 Transmit/Receive Diversity

MIMO refers to the transmission over radio links formed by multiple transmit and receive

antennas. Figure 1.6 depicts a MIMO system equipped with NT transmit and NR receive

antennas. One of the key advantages of the MIMO system lies in the ability of achieving

transmit diversity. Herewith, we consider an orthogonal ST coding scheme, which provides

a full diversity gain in Rayleigh fading with AWGN channels. The ST coding uses ND

time slots to encode a block of NB ≤ NT information symbols, snB
, nB = 1, · · ·NB, into
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Figure 1.6: MIMO Systems

a ST code matrix, C ∈ CNT×ND , as

C =









c1,1 c1,2 · · · c1,ND

c2,1 c2,2 · · · c2,ND

...
...

. . .
...

cNT ,1 cNT ,2 · · · cNT ,ND









, (1.38)

where the entries cnT ,nD
denote the coded symbols transmitted from the nth

T transmit

antenna during the nth
D time slot. The Alamouti’s ST transmission scheme is one of the

most famous orthogonal ST block codes. The Alamouti’s ST code matrix can be given

as [47]

C2 =

(

s1 −s∗2
s2 s∗1

)

, (1.39)

where the information symbols s1 and s2 are taken from a complex signal set such as PSK

or QAM. The Alamouti scheme achieves full transmit diversity for two transmit antennas.

The orthogonal ST block codes for three and four transmit antennas can be given as [48]

C3 =






s1 −s∗2 −s∗3 0

s2 s∗1 0 −s∗3

s3 0 s∗1 s∗2




 , (1.40)

and

C4 =









s1 −s∗2 −s∗3 0

s2 s∗1 0 −s∗3
s3 0 s∗1 s∗2

0 s3 −s2 s1









, (1.41)
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respectively. The received signal vectors ynD
, nD = 1, · · · , ND, can be expressed as

ynD
=
√

Eb

NT
HcnD

+ znD
, nD = 1, · · · , ND , (1.42)

where H ∈ C
NR×NT is a MIMO channel matrix with complex-valued Gaussian distributed

random entries. cnD
∈ CNT×1 is the nth

D column vector of the transmit ST code matrix, C.

Eb is the transmitted energy per symbol. znD
∈ CNR×1 is a noise vector of complex-valued

MCA observations for different receive antennas. To specify the MCA model over the time

dimension, we assume that the noise vectors znD
, for different time slots, are statistically

independent. It follows that the joint distribution of the received noise vectors, znD
,

nD = 1, · · · , ND, can be given as

p(z1, · · · , zND
) =

ND∏

nD=1

pz(znD
) ,

=

ND∏

nD=1

∞∑

mnD
=0

αmnD

(2π)NR|ΣmnD
|e

− 1
2
zHnD

ΣmnD

−1znD .

(1.43)

The optimum decoder of the orthogonal ST block codes in the presence of MCA noise

is considered in [18, 40]. For a multivariate MCA model given in (1.35), the optimum

decoding metric can be given as [18]

ĈML = argmax
C

ND∏

nD=1

pz

(

ynD
−
√

Eb

NT
HcnD

)

. (1.44)

From (1.44), we observe that the optimum decoder performs an exhaustive searching pro-

cess to compute the metrics for all possible transmit ST coded matrices. The performance

evaluation of MIMO systems in uncorrelated MCA noise shows a loss in the performances

of the optimum ST decoding in impulse noise over those in AWGN [18]. However, it is not

clear how the ST coding behaves in the case of correlated MCA noise. Hence, there is a

need to investigate the performance evaluation of the optimum ST decoding that utilizes

noise correlations to improve the performance.

1.3.3 OFDM Signals

OFDM is essentially a discrete form of multicarrier modulation, which transmits serial

data streams on a set of parallel subcarriers. Under ideal channel conditions, the parallel

subcarriers are orthogonal. The number of subcarriers is chosen such that the bandwidth
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of each subcarrier is much less than the coherence bandwidth of the fading channel. Thus,

each subcarrier undergoes flat fading. Figure 1.7 illustrates a discrete-time model of a

s0

s1

sN−1

IDFT

x0

x1

xN−1

P/S

CP

From QAM
modulator

channel +
zn

ynxn
S/P To QAM

demodulator
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y1

CP

yN−1

DFT

Y0

Y1

YN−1

Figure 1.7: A discrete-time model of a conventional OFDM system

conventional OFDM system with N subcarriers. In this figure, the incoming information

bits are mapped into N complex symbols, sk, k = 0, · · · , N − 1, according to the used

modulation scheme, such as PSK or QAM. The discrete-time samples of the OFDM signal

is generated using the inverse discrete-Fourier transform (IDFT) as follows:

xn = 1√
N

N−1∑

k=0

ske
−j 2π

N
kn , n = 0, · · · , N − 1 . (1.45)

The OFDM symbol x = [x0, · · · , xN−1]
T can be expressed in matrix notation as follows

x = WH
Ns , (1.46)

where WH
N is the IDFT matrix. We consider that the OFDM symbol, x, passes through a

multipath fading channel. The discrete-time model of the multipath channel can be given

as [45]

h(n; ν) =
L−1∑

l=0

hl[n]δ(n− νl) , (1.47)

where L is the number of paths and hl[n] is the channel gain of the lth path. The path

gains, hl[n], ∀l, are characterized as a complex-valued Gaussian random variable with

time index n and statistically independent for any l. νl is the channel delay (in sample)

associated with the lth path. Without loss of generality, we assume that 0 ≤ ν0 ≤
ν1 ≤ · · · ≤ νL−1 < N . To suppress intersymbol interference, the cyclic prefix (CP) is

perpended to the OFDM symbol by copying the last µcp samples to the beginning of the

current OFDM symbol. Then, xn, n = N −µcp, · · · , N −1, 0, · · · , N −1, represents the
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transmitted OFDM sequence. For slowly fading channels, one can further assume that

the path gains remain constant during the duration of the OFDM symbol, i.e., hl[n] ≈ hl.

The received OFDM sequence can be given as

yn =
√

Eb

L−1∑

l=0

hlxn−νl + zn , n = −µcp, · · · , −1, 0, · · · , N − 1 . (1.48)

where zn denotes the additive complex noise sequence. The received sequences y−µcp
, · · · ,

y−1 are affected by ISI, so we discard them. In matrix notation, given that νL−1 ≤ µcp,

the received OFDM symbol after the CP removal is given by

y =
√

EbH̄x+ z , (1.49)

where H̄ ∈ CN×N is a circulant convolution channel matrix of i.i.d. complex Gaussian

entries. H̄ is fully specified by one vector h = [h0, · · · , hL−1, 01×N−νL−1
]T , which is the

first column of H̄. The remaining columns of are cyclic permutations of h with offset

equal to the column index. The conventional OFDM system applies a discrete-Fourier

transform (DFT) operation to compute the following decision variables

Y =
√

EbWNH̄x+WNz ,

=
√

Ebdiag(Λ)s+ Z , (1.50)

where WN is the DFT matrix and the elements of Λ are the eigenvalues of H̄. The DFT

pairs convert the frequency-selective fading into a set of parallel flat-fading channels. Since

WN is unitary, when z is Gaussian, it follows that WNz is still Gaussian with unchanged

average noise power. The DFT receiver is the optimum in the case of Gaussian noise.

In impulse noise, due to the spreading effect of the DFT matrix, the conventional DFT

operation averages the effects of impulse noise over all used subcarriers. This justifies

why the conventional OFDM system is more robust to impulse noise than single carrier

systems. There are two main approaches to mitigate the effects of impulse noise for OFDM

systems. Those approaches are classified as a time-domain approach and a frequency-

domain approach. The time-domain approach cancels the effects of impulses before the

DFT operation such as a clipping and a blanking nonlinearity [37,39,41]. In the frequency-

domain approach, a set of unused subcarriers can be used to estimate the presence of

impulse noise in the received OFDM symbol [49]. Sparse Bayesian learning (SBL) [43,44]

is one of the most effective approaches to mitigate the effects of impulse noise using a set of

null-subcarriers. This method assumes that the received noise vector has two components:

a Gaussian component zG and impulsive component zI . Since the impulsive component
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zI is sparse in time, the SBL approach provides an efficient estimate of zI by allocating

a set of null subcarriers. Subtracting the reconstructed interference, ẑI , from the OFDM

symbol achieves up to 5 dB gain in an SNR [49]. Adapting the SBL algorithm to jointly

estimate the transmitted sequence along with the sparse impulse noise vector from all

subcarriers provides up to 10 dB gain over a conventional OFDM receiver [49].

1.4 Outline of the Thesis

In this thesis, we introduce modern detection schemes of digital signals in the presence of

MCA noise. We treat the effects of impulse noise utilizing temporal, spatial, and spectral

information at the receiver. The rest of the thesis is divided into five chapters as follows:

Chapter 2 considers an empirical verification of the MCA model for 2.4 GHz wireless

interference. We begin with the statistical properties of a white MCA noise process. We

also present the band-limitation effects of filtering on the temporal correlation of noise

samples. For spatial dimensions, we introduce a correlated multivariate MCA model as an

analytical model for spatially coupled impulse noise. Using our own measurement setup,

we verify the multivariate MCA model for wireless interference in the 2.4 GHz band. The

measurement setup can handle up to four interfering signals using 4-receive antennas.

In Chapter 3, we consider the classical detection problem of binary signals in MCA

noise. We introduce an approximate representation of the MCA model, where we further

simplify the two-term model to a single term. Such an approximation leads to a closed-

form representation of the optimum nonlinearity. In addition, we introduce a decision

boundary analysis to justify the performance of the optimum detector in different MCA

noise environments. Additionally, we use the approximate nonlinearity to justify and

analyze the behavior of suboptimum detectors such as an LOD, and a clipping detector.

For further simplification, we propose a piecewise linear approximation of the optimum

nonlinearity, which reduces the complexity of the optimum detector.

Chapter 4 deals with the optimum schemes for mitigating the effects of fading and

impulse noise. We derive an asymptotic upper performance bound of the optimum

combining schemes for time and space diversity. We analyze and justify the performance of

each scheme in different conditions of impulse noise. We further show how the approximate

MCA model can be used to simplify the optimum combining schemes in closed form. For

ST coding, we derive an upper bound of the pairwise error probability (PEP) of the
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optimum ST decoding in the presence of spatially correlated MCA noise. In addition, we

introduce an approximate metric of the optimum ST decoding in MCA noise similar to a

minimum distance (MD) metric of the optimum decoding in Gaussian noise.

Chapter 5 considers the detection problems of OFDM signals over fading channels with

MCA noise. First, we discuss the different detection schemes of OFDM signals in MCA

noise, such as the optimum OFDM receiver, a zero-forcing (ZF) detector, and nonlinear

detectors. We show that the blanking nonlinearities are related to the minimum mean-

square error (MMSE) detector for mitigating the effects of MCA noise. Second, we derive

an upper performance bound of the optimum OFDM detector in MCA noise. Since the

optimum receiver requires perfect knowledge of noise states, we adopt the SBL approach

to estimate the state of MCA noise using nulling subcarries. Finally, we introduce a first

step towards the realization of the optimum OFDM detector in impulse noise.

In Chapter 6, we conclude this thesis and provide future research directions.





Chapter 2

Impulse Noise Measurements

The 2.4 GHz industrial, scientific, and medical (ISM) band is originally reserved for the

use of radio frequency emissions of ISM equipments such as microwave ovens, medical

equipment, car ignition, and hairdryers. Since this band is licensed-free, it is already

shared by communication systems such as Bluetooth, cordless phones, and a wireless local

area network (LAN). Thus, the coexistence of ISM appliances can severely interfere with

the operations of communication systems at the 2.4 GHz band. Interference measurements

at the 2.4 GHz ISM-band show that the interference exhibits the impulsive nature of the

MCA distribution [6]. As we showed in Chapter 1, the MCA model describes only the

amplitude distributions, which already come with question marks, almost no correlation

(spectral) properties, neither in time nor space, except for rudimentary 2-antenna systems

in [46]. In addition, the algebraic extension of the MCA model for multiple-antenna

systems is not well explained and verified.

In this chapter, we employ impulse noise measurements to verify the MCA model for

multiple-antenna systems. First, we investigate the statistical properties of the MCA

noise process. Then, we introduce a correlated multivariate MCA model as an algebraic

extension of the MCA model for an arbitrary number of receive antennas. To validate this

extension, we used a measurement setup with 4-receive antennas to measure 4 interference

processes in parallel.

2.1 Statistical Properties of MCA Interference

The analytical model of MCA interference [1] provides the amplitude distributions of the

received passband noise at the output of the intermediate frequency (IF) stage of the

23
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receiver. The passband MCA noise, w(t), can be expressed as

w(t) = Re{z(t)ej2πfct} , (2.1)

where z(t) = zI(t) + jzQ(t) is the equivalent lowpass noise process and fc is the carrier

frequency. In fact, Middleton assumed that the bandpass filter (BPF) of the receiver

stages has a negligible effect on the amplitude distribution of the received interference.

This implies that the impulse response of the bandpass filter is extremely short compared

to the duration of the impulse noise. Thus, Class-A noise is regarded as the interference

process whose spectrum is equal to or less than the receiver bandwidth. The MCA density

of the passband noise samples of w(t) is given as

pw(w) =

∞∑

m=0

αm
√

2πσ2
m

e−w2/2σ2
m , (2.2)

where

αm =
Ame−A

m!
, (2.3)

and

σ2
m = σ2m/A+Υ

1 + Υ
. (2.4)

The parameters A and Υ were designated as the impulsive index and the Gaussian factor

of the MCA model, respectively. The above model assumes that the received passband

interference, w(t), consists of two independent noise components: Gaussian background

noise wG(t) and impulsive noise wI(t). The variances of these components are related to

Υ as

σ2
G = σ2 Υ

1 + Υ
, (2.5)

and

σ2
I = σ2 1

1 + Υ
, (2.6)

where σ2 = E{w2} is the average power of the passband noise process. From the above

equations, it is clear that the ratio σ2
G/σ

2
I defines the Gaussian factor Υ. The average

power of the MCA noise process, σ2, is related to σ2
G and σ2

I as follows:

σ2 = σ2
G + σ2

I ,

= σ2
G +

σ2
G

Υ
. (2.7)
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From (2.4)-(2.6), we relate σ2
m to σ2

G as

σ2
m = σ2

G +
m

A
σ2
I ,

= σ2
G

(

1 +
m

AΥ

)

. (2.8)

The above equation implies that σ2
0 = σ2

G < σ2
1 < · · · < σ2

∞. The first term of (2.2)

represents the scaled distribution of the Gaussian noise, wG. The remaining terms,

m = 1, · · · ,∞, are thought to model the presence of impulse noise wI . Accordingly,

the parameter m can be designated as the noise state of w(t), i.e., m = 0 refers to a

Gaussian state and m = 1, 2, · · · ,∞ refer to impulsive states1. Therefore, the impulsive

component, wI , is comprised of a single event summarizing all possible impulsive states,

where the probability of being in each state is given by αm. Numerically, the impulsive

index, A, can take on any real positive values. However, Middleton defined A over a

specific range, A ∈ [10−6, 1], as follows

A =
AI

T
T̄I , (2.9)

where AI denotes the average number of impulsive emissions in the observation period T .

T̄I denotes the mean duration of the impulsive emissions. The definition of A may not

hold true for A > 1. To enhance the understanding, we provide some details of the MCA

density for different values of A.

For A < 1, the probability αm tends to zero rather rapidly as m increases. Therefore,

the first two terms of (2.2) are sufficient to approximate the MCA density. The samples

of MCA noise w(t) can be seen as the emissions of either a Gaussian state, m = 0, or

an impulsive state, m = 1. Since T = NT̄I , the impulsive index, A = AI

N
, expresses the

probability of being in the impulsive state. This explains why the value of A is upper

bounded by 1. Figure 2.1 depicts a pictorial view of noise observations for A = 0.1

and N = 10. Since σ2
1/σ

2
0 = 1 + 1

AΥ
, the term AΥ controls the variance of the impulse

Figure 2.1: A pictorial view of MCA noise observations for A = 0.1 and N = 10

1Impulsive states represent the presence of impulse noise with Gaussian noise.
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noise (the impulsiveness of noise). For A > 1, the probability αm does not as rapidly

decrease with m. Hence, the first two term will not be sufficient to approximate the MCA

density. Since αm follows a Poisson distribution of the noise state m, A can be seen as

the expectation of m in the observation time T = NT̄I . Thus, we have

A =

∑N
k=1mk

N
, (2.10)

where mk represents the noise state of the kth observation. The parameter AI , for A > 1,

can be seen as the sum of noise states for the impulsive samples rather than the average

number of impulsive emissions. Figure 2.2 depicts a pictorial view of the noise states for

A = 1.6 and N = 10. In Fig. 2.2, we show that 5 noise states are required to model

Figure 2.2: A pictorial view of MCA noise observations for A = 1.6 and N = 10

the MCA noise for A = 1.6. Moreover, we note that the events are not dominated by

a single noise state, and hence, the statistics of the MCA samples approach a Gaussian

distribution with variance
∑∞

m=0 αmσ
2
m = σ2.

To investigate the tail behavior of the MCA distribution with respect to A, we evaluate the

complementary cumulative distribution function (CCDF) of the received noise amplitude,

|w|, as follows:

P (|w| > γ) = 2

∫ ∞

γ

pw(w)dw ,

=
∞∑

m=0

αmerfc

(
γ√
2σm

)

. (2.11)

In Fig. 2.3, we illustrate the CCDF curves of the MCA density for different A. We observe

that the CCDF has a plateau shape [21]. For A < 1 and AΥ < 1, the width and the

height of the plateau curve are dominated by σ2
1/σ

2
G ≈ 1/AΥ and A, respectively. This

suggests a 2-term approximation of the MCA model in the form of

pw(w) ≈
1−A
√

2πσ2
0

e−w2/2σ2
0 +

A
√

2πσ2
1

e−w2/2σ2
1 , (2.12)
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Figure 2.3: CCDF of MCA noise with different values of A. Note that the noise variance,
σ2, is unity

where the second term of (2.12) is sufficient to approximate the impulsive terms of the

MCA model. In addition, we note that when A > 1, the CCDF of the MCA model

approaches a Gaussian distribution with variance σ2.

To investigate the distribution of the equivalent lowpass noise z(t), the passband MCA

noise w(t) can be expressed in terms of quadrature components zI(t) and zQ(t) as follows:

w(t) = Re{(zI(t) + jzQ(t))e
j2πfct} ,

= zI(t)cos(2πfct)− zQ(t)sin(2πfct) . (2.13)

Since the MCA model assumes that the spectrum of the receiver filter, BT , is greater than

the spectrum of impulse noise, the quadrature components of w(t) can be seen as lowpass

MCA noise processes. This justifies the complex extension of the MCA distribution [18],

which represents the joint density of baseband noise, z(t) = zI(t) + jzQ(t), as

pz(z) =
∞∑

m=0

αm

2πσ2
m

e−|z|2/2σ2
m , (2.14)

where |z|2 = z2I + z2Q.



28 2.1. STATISTICAL PROPERTIES OF MCA INTERFERENCE

2.1.1 Temporal Dependence and Correlation

We assume that the MCA noise process w(t) is sampled uniformly at times kTs, k =

1, 2, · · · , N , where Ts is the sample spacing. Since the MCA model ignores the time

dependence between samples of w(t), the MCA noise sample at the kth sampling instant

can be represented as

w(kTs) = wmk
δ(t− kTs) , (2.15)

where δ(t) is a Dirac delta function and mk denotes the state of noise observations

(Gaussian for mk = 0 or impulsive for mk ≥ 1) at the kth sampling instant. The MCA

noise samples, wmk
, ∀k, are Gaussian random variables with zero mean and variances σ2

mk
.

To investigate the effects of the BPF on the statistical properties of w(kTs), we assume an

ideal BPF with a spectrally flat response to all frequencies in the range |f − fc| ≤ 1
2
BT .

The normalized impulse response of the ideal BPF can be given as

hBPF (t) =
1

BT

sin(πBT t)

πt
, (2.16)

Figure 2.4 shows a typical impulse response of the ideal BPF filter. At the input of the

0

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

h
B

P
F

(t
)

- 3
BT

4
BT

3
BT

2
BT

1
BT

- 1
BT

- 2
BT

- 4
BT

Figure 2.4: The impulse response of an ideal BPF

filter, the MCA noise samples, w(kTs), ∀k, can be seen as a series of ideal mathematical

impulses whose weights are Gaussian random variables of variances σ2
mk

. Thus, each

impulse at the output of the filter is shaped and stretched in time according to hBPF (t).

Therefore, the temporal correlation of impulse noise is determined by the impulse response

of the filter. Similar to bandpass white Gaussian noise [45], sampling the filtered noise

with a sampling rate BT can guarantee independent noise observations in time dimension.

This means that the receiver can be supplied with up to N independent noise observations

within a signaling interval, Tb = N/BT . This approach justifies the assumption of inde-



2. IMPULSE NOISE MEASUREMENTS 29

pendent noise observations considered in the classical detection problem of narrowband

signals corrupted by MCA noise in [15].

2.1.2 Spatial Dependence and Correlation

The statistical-physical modeling [46] showed that the impulse noise, wnR
(t), at two receive

antennas, is correlated and may have unequal Gaussian factors, ΥnR
= σ2

G/σ
2
I,nR

. Since

this modeling was limited to two-antenna systems, we adopt the algebraic extension for

an arbitrary number of receive antennas. Similar to [46], we assume that the received

interference at the nR
th receive antenna consists of two components as follows:

wnR
(t) = wG,nR

(t) + wI,nR
(t) . (2.17)

We also assume that E{|wG,nR
|2} = σ2

G and σ2
I,nR

= σ2
G/ΥnR

, ∀nR = 1, · · · , NR. Thus,

the average variance of passband MCA noise, σ2
nR
, for the nR

th channel can be expressed

as

σ2
nR

= σ2
G +

σ2
G

ΥnR

∀nR = 1, · · · , NR . (2.18)

This means that σ2
nR
, ∀nR = 1, · · · , NR, are not necessarily identical. Similar to (2.8),

σ2
m,nR

, ∀nR, can be given as

σ2
m,nR

= σ2
G

(

1 +
m

AΥnR

)

∀nR = 1, · · · , NR . (2.19)

When the received noise observations are spatially dependent and correlated, the algebraic

extension of (2.2) leads to a correlated multivariate MCA model as

pw(w) =
∞∑

m=0

αm

(2π)NR|Σm|
e−

1
2
wTΣ

−1
m w , (2.20)

where w = [w1, · · · , wNR
]T is the received noise vector at the NR receive antennas. Σm

is the noise covariance matrix, which is given by

Σm =







σ2
m,1 · · · ρm,1NR

σm,1σm,NR

...
. . .

...

ρm,NR1σm,NR
σm,1 · · · σ2

m,NR







, (2.21)

where ρm,nRǹR
denotes the correlation coefficient of noise observations at the nth

R and ǹth
R

receive antennas for the mth term of (2.20). We may further assume that the impulsive
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components, m ≥ 1, possess identical correlation coefficients, ρm,nRǹR
= ρInRǹR

, ∀m =

1, 2 · · · , ∞, that differs from those of Gaussian components, ρ0,nRǹR
= ρGnRǹR

. In the

following, we describe a measurement campaign that be conducted to verify the algebraic

extension of the MCA model for wireless interference at 2.4 GHz.

2.2 Measurement Campaign and Setup

In this section, we describe a measurement receiver for impulse noise in the 2.4 GHz band.

The measuring receiver employs 4-antenna elements to collect impulse noise form different

receive antennas.

2.2.1 Measurement Receiver

The measurement setup consists of an RF receiver, a digital oscilloscope, a network

analyzer, and a laptop. Figure 2.5 illustrates the RF receiver for measuring impulse

noise. The receiver consists of 4-antenna elements, a bank of bandpass filters (centered

at fc = 2.435 GHz), and downconversion mixers. The antenna array is mounted on

a conducting steel sheet with adjustable antenna spacing2. The antenna elements are

quarter-wave monopole antennas designed for the center frequency of the bandpass filters.

The bandpass filters pass the signals within a wireless LAN range, i.e., the range of 2.340-

2.530 GHz. The 6 dB RF bandwidth of the BPF is 190 MHz, which determines the

bandwidth of the noise measurement, BT . The signals from the filters are mixed down

Figure 2.5: Impulse noise measurement setup

2The distance between the adjacent elements is approximately equal to λ/4.
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with a carrier from a local oscillator (LO). The frequency of the LO signal is selected

such that the intermediate frequencies, fIF , of the output signals are within the frequency

range of the oscilloscope, i.e., we chose the LO carrier to be fLO = 2.1 GHz for a digital

oscilloscope with a 400 MHz bandwidth. We use a Matlab program to acquire and transfer

the measurement data from the oscilloscope to a controlling laptop. The measurements are

originally sampled by the oscilloscope with a sampling rate of 5 GHz. However, the stored

data are further downsampled (by a factor of 4) to decrease the size of measured data.

Thus, the sampling interval is given by Ts = 0.8ns. The measured waveforms are stored

in segments of duration 0.2µs (250 samples per the segment3). The program only stores

segments with impulse noise since the oscilloscope is triggered to capture the impulsive

events. In each acquisition, we acquire a block of 1000 segments and the triggering time

of each segment. Figure 2.6 depicts measured impulse noise. We note that each segment

Figure 2.6: A typical measured segment with impulse noise

contains two noise components (Gaussian and impulsive). Those components are used to

compute the statistical distributions of the measured impulse noise. The measurements

are repeated to collect sufficient data (we collected 100 blocks for each measurement) to

analyze the statistical characteristics of impulse noise.

2.2.2 Measurement Results

We measured impulse noise from several sources. In preliminary measurements, we looked

into the noise of ISM sources such as car ignition and an electrical drill. The last one

only leads to visible impulse noise in the near field. For more elaborate results, we took

additional measurements in different factories, which verifies the presence of impulsive

interference in industrial environments. In Fig. 2.7, we show a snapshot of measured

noise segments form the 4 receive antennas caused by car ignition. Figures 2.8 and 2.9

illustrate two snapshots of impulse noise segments measured in two factories caused by

a shoe manufacturing machine and an assembly machine for automotive components,

3Parameters can be modified and had to be adjusted depending on the local impulse noise conditions.
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receptively. Figures 2.7, 2.8, and 2.9 indicate two interesting features of impulse noise at

the 2.4 GHz band. First, we observe that the impulsive segments (time samples) consist

of very short impulses which are similar to the pulse train of the MCA process [1]. Second,

we note that impulsive events at different antennas (space observations) appeared jointly,

which is consistent with the spatial dependency of the multivariate MCA model.
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Figure 2.7: Impulse noise segments at the receive antenna array (with λ/4 antenna
spacing) caused by car ignition

2.3 Model Verification

In this section, we use the measured impulse noise to validate the temporal and space

properties of the MCA model. First, we involve the measured impulse noise of the IF-

stage to analyze the statistical characteristics of the passband MCA process. Then, we

further use the equivalent quadrature components of the measured data to investigate

the distributions of the baseband MCA process. Finally, we verify the multivariate MCA

distribution for modeling the measured interference from different receive antennas.
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Figure 2.8: Impulse noise at the receive antenna array (with λ/4 antenna spacing) caused
by a shoe making machine
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Figure 2.9: Impulse noise at an antenna array (with λ/4 antenna spacing) caused by
assembly machines of an automotive supplier
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2.3.1 MCA Model for Measured Interference

The IF stage of the measurement receiver downconverts the measured spectrum in the

range 2.340-2.530 GHz to frequencies between 240 MHz and 430 MHz. We start the

analysis with the temporal characteristics of the measured interference at the IF stage.

Since impulse noise at the different receive antennas has the same temporal properties, we

limit the analysis to the measured interference of the first receive antenna. We compute

the autocorrelation function of the measured data as

φnR
(τ) = E{wnR

(t)wnR
(t + τ)} . (2.22)

We take the waveforms of each passband measured segment, wnR
(t), and correlate it with

wnR
(t + τ). We then average over the results of all measured segments. In Fig. 2.10,

we depict the autocorrelation functions of the impulse noise caused by car ignition,

automotive manufacturing, and the shoe production machine. We observe that the
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Figure 2.10: Autocorrelation functions

autocorrelation function of measurements at the IF-stage has a Sinc-shaped function,

which agrees with the impulse response of the analog BPF of the IF-stage. However,

since the filter has a bandwidth of 190 MHz, we note that the noise samples are partially

correlated (a few samples around τ = 0).

In the statistical analysis, we are interested to model the effects of interference on a wireless

LAN spectrum. Thus, the measured segments are further filtered using a BPF to select the

noise components inside the wireless LAN range at the IF-stage. Furthermore, to eliminate

the amplitude attenuation and phase shifts due to the mixers, cabling, etc., for the four

channels, the frequency components of the measured segments are calibrated according
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to the measured frequency response, HnR
(f)4. Figure 2.11 depicts the calibration and

the baseband processing of the measurements. After passband filtering and calibration,

Figure 2.11: Measurements processing from passband to baseband

we computed the voltage histograms of the measurement data. We used the impulsive

component of measured segments (recall Fig. 2.6) to compute the tails distribution of the

voltage histogram. Since we measured only the segments of impulse noise, we further

scaled down the tail distribution according to a rate of impulsive segments. We used the

triggering time of measured segments to compute the rate of segments that are affected

by impulses. The rate of impulsive segments caused by car ignition, the shoe machine,

and the automotive supplier were obtained as 16.6 segments/s, 3.78 segments/s, and

2.1 segments/s, respectively. Figure 2.12 depicts the voltage histograms of measured

impulse noise caused by car ignition, automotive manufacturing, and the shoe production

machine. To confirm the MCA density for modeling the passband measurements, we

computed the CCDF from the voltage histogram. We used a curve fitting approach to

approximate the CCDF of the measured data with the MCA model. Figure 2.3 illustrates

the CCDF curves of the measured interference along with those of the MCA model. This

figure indicates several interesting points regarding the ISM interference in wireless LAN

channels. First, we note that the terms AΥ for all measurements are less than unity,

which reflects the impulsive nature of ISM interference in the 2.4 GHz band. Second, we

observe that the impulsive indexes, A, for all measurements are less than the specified

values, A ∈ [1, 10−6], of the MCA model. This complies with the experienced number of

impulsive segments per second for each campaign, which reveals a small probability for

impulsive components of the ISM sources in wireless channels. Third, we note that the

first few terms of the MCA model are sufficient to approximate the measured densities.

Thus, for car ignition and automotive industries, we only need two terms to approximate

the plateau shapes of the measured CCDF. However, we note that the plateau shape

4In an additional setup, we used a vector network analyzer to measure the transfer functions, HnR
(f),

nR = 1, · · · , 4.
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Figure 2.12: The voltage PDF of the measured interference caused by different ISM
sources at 2.4 GHz

of shoe machine interference requires three terms of the MCA density. This result is in

agreement with the impulsiveness of shoe machine interference, which is more dispersive

and stronger than those of car ignition and automotive assembly machines (see Fig. 2.8).

To validate a complex extension of the MCA model given in (2.14), we convert the
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Figure 2.13: CCDF of measured interference caused by different ISM sources at 2.4 GHz

passband measurements into the equivalent lowpass signals (quadrature components).

Figure 2.14 depicts the MCA fitting of the voltage histograms for the quadrature noise
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components. We observe that the PDFs of the quadrature components follow the MCA

Figure 2.14: The MCA density and the voltage histograms of the quadrature components
for baseband measurements

density of the passband measurements. This means that the lowpass noise process can

be defined with the same parameters A and Υ of the passband noise process. Therefore,

the results of Fig. 2.14 approve the complex MCA model in representing the baseband

impulse noise.

2.3.2 Model Extension for Multi-antenna Systems

In this subsection, we verified the multivariate MCA model given in (2.20) to model

the received interference from the different receive antennas. Thus, for each campaign,

we computed the CCDF plots of the measured interference from the multiple receive

antennas. Then, we investigated the spatial correlations of Gaussian components and

impulsive components at the different receive antennas.

In Fig. 2.15 and 2.16, we depict the CCDF of the four measured data sets for impulse noise

caused by car ignition and the automotive assembly machine, respectively. From both

figures, we observe two interesting aspects. First, the MCA processes at the four receive

antennas are possessing unequal average variances E{w2
nR
}, nR = 1, · · · , 4. Second, we

note that the Gaussian factors, ΥnR
, ∀nR, are not necessarily identical, which leads to

unequal variances σ2
G and σ2

I for the noise processes at the different receive antennas.
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Regarding the multivariate MCA model given in (2.20), we note that the spatial cor-

relation coefficients of the different MCA noise components are not identical. Thus,

we compute the correlation coefficients of the measured segments from the first two

antennas to prove this assumption. Table 2.1 summarizes the spatial correlations of

the measured impulse noise. We observe that the correlation coefficient of the Gaussian

Figure 2.15: The multivariate MCA model and the measured CCDFs of impulse noise at
an antenna array with λ/4 spacing caused by car ignition

component, ρG,12, is less than the correlation coefficient of the impulse component, ρI,12,

for all measurements. This proves that the MCA noise components come with different

levels of correlation.

Table 2.1: Spatial correlation coefficients of impulse noise

correlation coefficients ignition shoe machine automotive assembly machine

ρG,12 0.35 0.18 0.0043
ρI,12 0.42 0.59 0.043

2.4 Conclusion

In this chapter, we summarized results from a measurement campaign to verify the

statistical proprieties of the MCA model for ISM interference at 2.4 GHz. Analytically,
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Figure 2.16: The multivariate MCA model and the measured CCDFs of impulse noise at
an antenna array with λ/4 spacing caused by an automotive assembly machine

we evaluated the time and spatial properties of MCA interference. Using measurements,

we verified the MCA model for the 2.4 GHz band wireless interference. We showed

that the MCA distribution fits well to the voltage histograms of the measured data. In

particular, we noted that two or three scaled Gaussian densities (with different variances)

are sufficient to capture the impulsive behavior of 2.4 GHz wireless interference. We noted

that the impulsive indexes, A, for different measurements are having small values, which

reflect the small impulsive rate of interference at the 2.4 GHz band. For multiple antenna

systems, we verified a correlated multivariate MCA distribution to model the spatial cou-

pling and dependency of impulse noise between the receive antennas. The measurements

showed that the interference of multiple receive antennas are having different variances

for the Gaussian and impulsive components, which agrees with the assumption of unequal

Gaussian factors in the multivariate MCA model. In addition, we showed that spatial

correlations of the Gaussian component and the impulse component are not the same.

The measured correlations are in agreement with the spatial coupling of a rudimentary

MCA statistical-physical modeling for two-antenna systems in [46].





Chapter 3

Signal Detection in MCA Noise

In a detection problem of binary signals in MCA noise, we showed in Chapter 1 that the

optimum detector consists of a set of nonlinear operations followed by a linear decision

rule. The complex structure of these nonlinearities limits the literature into investigating

the behaviors of the optimum detector in impulse noise.

In this chapter, we introduce a simple PDF representation of the MCA model, which

leads to a closed-form approximation of the optimum nonlinearities. Then, we analyze the

behaviors of the optimum detector in different impulse noise environments. In addition, we

show for the first time how the decision boundaries of the optimum detector should look in

the presence of MCA noise. Furthermore, we use the approximate nonlinearity to explain

the operations of suboptimum nonlinearities such as a locally optimum nonlinearity and

a clipping nonlinearity. Then, we further approximate the optimum nonlinearity to

introduce new suboptimum detectors such as a piecewise linear detector and a clipping-

like detector. We conclude with a performance evaluation and simulation results of the

optimum and suboptimum detectors for different impulse noise scenarios.

3.1 Approximate Optimum Nonlinearity

In Section 1.2, we show that the optimum decision rule for binary signals corrupted by

MCA noise can be given as

ΛML =
N∑

k=1

g(yk)
S1
≥
<
S0

0 , (3.1)

where

g(yk) = log (pw(yk − B))− log (pw(yk +B)) , k = 1, · · · , N , (3.2)

41
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and

pw(wk) =

∞∑

m=0

αm
√

2πσ2
m

e
− w2

k

2σ2
m , (3.3)

denotes the optimum nonlinearities and the MCA distribution, respectively. The main

topic of this section is to reduce the optimum nonlinearities to closed-form approximations.

In the following subsections, we introduce a simple representation of the MCA model, and

hence, we derive closed-form approximations of the optimum nonlinearities.

3.1.1 A Simplified Model of MCA Noise

The 2-term approximation of the MCA density has already been applied in practical

realization of the optimum nonlinearities [16]. For AΥ < 1, the MCA model can be

approximated as

pw(wk) ≈

Gaussian term
︷ ︸︸ ︷

α0
√

2πσ2
0

e
− w2

k

2σ2
0 +

Impulsive term
︷ ︸︸ ︷

α1
√

2πσ2
1

e
− w2

k

2σ2
1 , (3.4)

where σ2
0 = σ2 Υ

1+Υ
and σ2

1 = σ2
G(1+

1
AΥ

). Compared to (3.3), the first term of (3.4) models

the Gaussian background noise (σ2
G) while the second term approximates the densities of

impulsive events m > 1. For AΥ < 1, the MCA model often fulfills σ2
1 >> σ2

0 . Then, we

note that the MCA density can be approximated as follows:

pw(wk) ≈







α0√
2πσ2

0

e
− w2

k

2σ2
0 if |wk| < d0 ,

α1√
2πσ2

1

e
− w2

k

2σ2
1 otherwise ,

(3.5)

where d0 denotes a threshold for discriminating impulse-free samples and affected samples

by impulse noise. The threshold can be evaluated as

α0
√

2πσ2
0

e
− w2

k

2σ2
0 =

α1
√

2πσ2
1

e
− w2

k

2σ2
1 , (3.6)

leading to

wk = ±
√

2σ2
0σ

2
1

σ2
1 − σ2

0

log

(
σ1α0

σ0α1

)

,

=: ±d0 .

(3.7)

Figure 3.1 confirms the idea behind the approximate MCA model. In this figure, we depict
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Figure 3.1: The plots of the MCA distribution compared with the approximate model

the MCA distribution, the Gaussian term, and the impulsive term of (3.4). We note that

the thresholds wk = ±d0 divide the MCA distribution into three separate regions. In the

region −d0 < wk < d0, we observe that the Gaussian term dominates the MCA density.

However, in regions wk > d0 and wk < −d0, we note that the impulsive term is sufficient

to approximate the tails of the MCA density.

3.1.2 Near Optimum Nonlinearities

For binary signaling +B and −B, the received observation yk form a one-dimensional

space. Hence, the conditional PDFs of the received observation under hypotheses S1 and

S0 can be depicted as shown in Fig. 3.2. From (3.5), the likelihood functions pw(yk − B)

−6 −4 −2 0 2 4 6
y

+B-B

p(yk| + B)p(yk| − B)

yk

Figure 3.2: Conditional PDFs of binary signals in MCA noise



44 3.1. APPROXIMATE OPTIMUM NONLINEARITY

and pw(yk +B) can be rewritten as

pw(yk − B) ≈







α0√
2πσ2

0

e
− (yk−B)2

2σ2
0 if |yk −B| < d0 ,

α1√
2πσ2

1

e
− (yk−B)2

2σ2
1 otherwise ,

(3.8)

and

pw(yk +B) ≈







α0√
2πσ2

0

e
− (yk+B)2

2σ2
0 if |yk +B| < d0 ,

α1√
2πσ2

1

e
− (yk+B)2

2σ2
1 otherwise ,

(3.9)

respectively. The above approximations divide the processing regions of optimum non-

linearities (3.2) into five regions R0, R1, R2, R3, and R4 as illustrated in Fig. (3.3). In

Figure 3.3: Processing regions of the nonlinearity operation

regions R0, R2, and R4, we have

pw(yk − B) ≈ α1
√

2πσ2
1

e
− (yk−B)2

2σ2
1 ,

pw(yk +B) ≈ α1
√

2πσ2
1

e
− (yk+B)2

2σ2
1 .

(3.10)

Now substituting (3.10) into (3.2), the optimum nonlinearity reduces to

g(yk ∈ R0,2,4) ≈
2B

σ2
1

yk . (3.11)
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In the region R1, the likelihood functions are simply

pw(yk − B) ≈ α1
√

2πσ2
1

e
− (yk−B)2

2σ2
1 ,

pw(yk +B) ≈ α0
√

2πσ2
0

e
− (yk+B)2

2σ2
0 .

(3.12)

Then, (3.2) reduces to

g(yk ∈ R1) ≈ −σ2
1 − σ2

0

2σ2
1σ

2
0

(

d20 −
(

y2k + 2B
σ2
1 + σ2

0

σ2
1 − σ2

0

yk +B2

))

. (3.13)

Using similar mathematical steps, the nonlinearity of the region R3 is given as

g(yk ∈ R3) ≈
σ2
1 − σ2

0

2σ2
1σ

2
0

(

d20 −
(

y2k − 2B
σ2
1 + σ2

0

σ2
1 − σ2

0

yk +B2

))

. (3.14)

In Fig. 3.4, we depict the exact nonlinearities compared with the approximate ones for

Class-A noise with parameters A = 0.1 and Υ = 0.1 for B ≥ d0. This figure illustrates

the behaviors of the approximate and the optimum nonlinearities for canceling the effects

of MCA noise. We observe that the regions R1 and R3 stand for the received signals

Figure 3.4: The optimum and the approximate nonlinearities for B ≥ d0

corrupted by Gaussian noise for hypotheses S0 and S1, respectively. Thus, these regions

can be seen as regions of reliable observations relative to impulsive regions R0, R2, and R4.

From (3.13) and (3.14), we note that the optimum nonlinearities in Gaussian regions R1

and R3 use a parabola function, which increases the weight of the reliable observations.

However, in impulsive regions R0, R2, and R4, we observe that the received signal is

scaled down by a factor that is inversely proportional to the variance σ2
1. Thus, the
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reliable signals in Gaussian regions carry a larger weight than those of impulsive regions,

which illustrates how the optimum nonlinearity treats the effects of impulse noise.

The above analysis is well-suited for high signal levels, i.e., when B ≥ d0. However, when

B < d0, the region R2 should overlap the Gaussian regions R1 and R3. Then, the optimum

nonlinearity becomes

g(yk ∈ R2) ≈
2B

σ2
0

yk . (3.15)

Figure 3.5 depicts the behaviors of the approximate and optimum nonlinearities for small

signal levels. We observe that the approximate nonlinearity in the region R2 weights the

Figure 3.5: The optimum and approximate nonlinearities for B < d0

signals by a factor that is inversely proportional to the variance σ2
0 , which depicts how

the optimum detector behaves at low signal levels.

3.2 Decision Regions in MCA Noise

In this Section, we investigate the decision regions of the optimum detector in the presence

of MCA noise. We show how the decision regions should look like for different impulse

noise environments.

3.2.1 Decision Boundary Evaluation

In this analysis, we consider a two-dimensional decision space of two received samples,

i.e., y = [y1 y2]. Figure 3.6 illustrates the decision space of binary signals for the two
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received observations. We observe that the received observations are centered at signal

points (+B,+B) and (−B,−B) for hypotheses S1 and S0, respectively. From (1.13), the

optimum decision boundary is given as

2∑

k=1

log (pw(yk −B))=

2∑

k=1

log (pw(yk +B)) . (3.16)

We again use the approximate likelihood functions given in (3.8) and (3.9) to derive the

optimum decision boundary in a closed-form expression. In Fig. 3.6, we depict the regions

Figure 3.6: The decision regions of binary signals in MCA noise

of the decision space for hypotheses S1 and S0. We observe that the decision space has

nine regions to be distinguished. Since the regions for the second and fourth quadrants

are identical, we restrict the analytical derivation for the regions of the second quadrant.

From Fig. 3.6, in regions D0 and D4, the impulsive terms are the dominant terms for

pw(y1,2 −B) and pw(y1,2 +B). Then, the decision boundary can be expressed as

2∑

k=1

log

(

α1
√

2πσ2
1

e
− (yk−B)2

2σ2
1

)

=

2∑

k=1

log

(

α1
√

2πσ2
1

e
− (yk+B)2

2σ2
1

)

, (3.17)

which can be solved as

y2 = −y1 . (3.18)
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The above solution is the exact linear decision boundary of the optimum detector in

AWGN [45]. In D1, the likelihood functions pw(y1 −B), pw(y1 +B), and pw(y2 +B) can

be approximated by the impulsive terms, whereas pw(y2 − B) is given by the Gaussian

term. Then, the decision boundary is solved as

y1 =
σ2
0 − σ2

1

4Bσ2
0

(

d20 − (y22 − 2B
σ2
1 + σ2

0

σ2
1 − σ2

0

y2 +B2)

)

. (3.19)

Similarly, in D2, we obtain

y2 = −y1 , (3.20)

y2 = y1 +
σ2
1 + σ2

0

σ2
1 − σ2

0

, (3.21)

and finally, in D3, we have

y2 =
σ2
1 − σ2

0

4Bσ2
0

(

d20 − (y21 − 2B
σ2
1 + σ2

0

σ2
0 − σ2

1

y1 +B2)

)

. (3.22)

In order to compare the decision boundaries of the above analysis with the exact bound-

aries of the optimum detector, we used a numerical method for solving (3.16). Figure 3.7

depicts the approximate and optimum decision boundaries for the optimum detector in

MCA noise with parameters A = 0.1 and Υ = 0.1. In this figure, we observe that the

approximate boundaries offer a tractable solution for the optimum decision boundaries.

We note that the decision boundaries of both solutions possess disjoint nonlinear areas.

From figures 3.7 and 3.4, it is interesting to note that the nonlinear decision areas for

hypotheses S1 and S0 provide the same treatments of the optimum nonlinearities in

nonlinear regions R3 and R1, respectively. However, the above figure depicts how the

nonlinearity operations modify the decision boundary of the optimum detector for the

two received observations. In addition, the figure justifies why the linear detector, which

ignores the nonlinear decision areas, provides a suboptimum performance in impulse noise.

3.2.2 Decision Boundary Analysis

We use the decision boundary to investigate the performance of the optimum detector

in different impulse noise environments. First, we examine the decision boundary plots

for different signal levels. Then, we investigate the decision boundaries in impulse noise

with different impulsive index, A. Figure 3.8 depicts the nonlinear decision boundaries

at different values of Eb/2σ
2. Since σ2 = σ2

G + σ2
I , the ratio Eb/2σ

2 can be seen as the



3. SIGNAL DETECTION IN MCA NOISE 49

Figure 3.7: The optimum and approximate decision regions in MCA noise with A = 0.1,
Υ = 0.1 for B ≥ d0. Shaded area: decide for S1, white area: decide for S0

Signal-to-interference-plus-noise ratio (SINR). We note that, at high SINR, the decision

boundaries possess small nonlinear regions. This justifies why the performance of the

optimum detector recede to the performance of the linear detector at high SINRs [14]. In

Fig. 3.9, we depict the decision boundaries for different values of A at SINR=10 dB. We

observe that as A increases, the nonlinear regions approach the linear boundary. Hence,

the decision boundaries reduce to a single linear boundary, which is optimum for Gaussian

interference. This is true, since the MCA density goes to the Gaussian distribution (with

variance σ2) when A goes to 1.

3.3 Suboptimum Detectors in MCA Noise

In this section, we use the approximate nonlinearities of the optimum detector to evaluate

the nonlinearity operations of a locally optimum detector and a clipping detector for

MCA noise. Hence, we introduce a piecewise linear detector, which replaces the optimum

nonlinearity with linear segments. Accordingly, we modify the clipping nonlinearity to fit

the optimum nonlinearity more than a conventional clipping operation.
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Figure 3.8: Decision regions at different SINRs for A = 0.1 and Υ = 0.1
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3.3.1 Nonlinearities of Suboptimum Detectors

Recall from Section 1.2 that the nonlinearities of the LOD and the clipping detector can

be given as

gLO(yk) = −2B
d

dyk
log (p(yk)) , (3.23)

and

gCD(yk) =

{

yk , |yk| < γc ,

γce
j arg(yk) , |yk| ≥ γc ,

(3.24)

where γc is the clipping threshold given in (1.23). In figures 3.10 and 3.11, we depict

the locally optimum and clipping nonlinearities compared with those of the optimum

detector for small and high signal levels, respectively. From Fig. 3.10, we observe that the

Figure 3.10: Suboptimum nonlinearities for B < d0

locally optimum nonlinearities, for B < d0, provide close operations to the optimum

ones. However, when the signal level B ≥ d0, we observe that the LOD provides

different nonlinearities than those of the optimum detector. This justifies the performance

degradation of the LOD at high signal levels. Into these figures, we also included a clipping

nonlinearity. We observe that the nonlinearity of a conventional clipping detector does

not provide a good approximation to the optimum one.

3.3.2 Piecewise Linear Detector

Since the optimum detector for impulse noise requires more complexity than the conven-

tional linear detector, this moves the attention to investigate suboptimum detectors. The
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Figure 3.11: Suboptimum nonlinearities for B ≥ d0

piecewise linear detector replaces the nonlinearity of the optimum detector by piecewise

linear segments. In (3.13) and (3.14), it is obvious that the approximate nonlinearities

are quadratic functions in regions R1 and R3, respectively. Since those functions are

symmetric, we only present the analysis of the region R3. The quadratic function of R3

can be written as

q(yk) = y2k − 2B
σ2
1 + σ2

0

σ2
1 − σ2

0

yk +B2 , yk ∈ [u0, uK] , (3.25)

where u0 and uK are the limits of the region R3. From figures 3.4 and 3.5, we observe

that the limits u0 and uK can be given as follow:

u0 =







−B + d0 if B < d0 ,

B − d0 if B ≥ d0 ,
, (3.26)

and

uK = B + d0 . (3.27)

Since we intend to approximate q(yk) using simple piecewise linear segments, we divide

the interval [u0, uK ] into K subintervals as illustrated in Fig. 3.12. The objective is to

determine the fitting parameters ai and bi of a linear segment qi(yk) = aiyk + bi, which

approximates q(yk) inside the i
th subinterval [ui−1, ui], i = 1, · · · , K. Herewith, we choose

ai and bi to minimize the mean squared error

εi =

∫ ui

ui−1

|q(yk)− qi(yk)|2dyk . (3.28)
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Figure 3.12: Piecewise linear approximation of the function q(yk)

This function can easily be minimized with respect to the coefficients ai and bi to yield

the following solutions

ai = ui−1 + ui − 2B
σ2
1 + σ2

0

σ2
1 − σ2

0

, (3.29)

and

bi = B2 − u2
i−1 + u2

i + 4ui−1ui

6
. (3.30)

To compute the segment spacing ∆i, solving qi(ui) = qi+1(ui) yields

∆i =
ui+1 − ui−1

2
, (3.31)

which results in equally-spaced subintervals, i.e., ∆i+1 = ∆i = ∆. Notice that when q(yk)

is not quadratic the solution will not necessarily lead to equally-spaced subintervals.

Two-piece Linear Approximation: This detector uses two linear segments, K = 2,

to approximate the function q(yk) in subintervals [u0, u1] and [u1, uK ]. From (3.31)

and (3.26), we define u1 as

u1 = u0 +∆ ,

=







d0 if B < d0 ,

B if B ≥ d0 .

(3.32)
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The two-piece functions q1(yk) and q2(yk) are then given as

q1(yk) = a1yk + b1 , yk ∈ [u0, u1] ,

q2(yk) = a2yk + b2 , yk ∈ [u1, uK ] ,
(3.33)

where the coefficients (a1, b1) and (a2, b2) can be obtained analytically by substitut-

ing (3.26), (3.27), and (3.32) into (3.29) and (3.30).

Clipping-like Detector: Using the approximate optimum nonlinearities, the clipping

characteristic can accordingly be modified to provide a more efficient treatment of MCA

noise. The clipping-like detector uses the same linear operation of the approximate

nonlinearity in the region R2. However, it limits the received signals in the nonlinear

regions to a certain threshold, b0. This is equivalent to replacing the nonlinear functions

in (3.25) with an adaptive limiter q0(yk) = b0. Again, we choose b0 to minimize the mean

squared error as follows:

ε =

∫ uK

u0

|q(yk)− b0|2dyk , (3.34)

which leads to

b0 = B2 − B
σ2
1 + σ2

0

σ2
1 − σ2

0

(u0 + uK) +
1

3
(u2

0 + u2
K) +

1

3
u0uK . (3.35)

Hence, the clipping threshold for the region R3 can be given as

γ0 =
σ2
1 − σ2

0

σ2
1σ

2
0

(
d20 − b0

)
. (3.36)

From (3.36) and (3.35), we observe that the clipping threshold for R3 is adapted according

to the value of u0. However, in the impulsive region R4, we replace the linear operation
2B
σ2
1
yk by a fixed threshold 2B

σ2
1
uK . Thus, the clipping-like nonlinearity performs two clipping

operations as

gCLD(yk) =







2B
σ2
m
yk , |yk| < u0 ,

γ0e
j arg(yk) , u0 < |yk| < uK ,

2B
σ2
1
uKe

j arg(yk) , |yk| ≥ uK ,

(3.37)

where the index m = 0 for u0 = −B + d0 and m = 1 for u0 = B − d0. Figures (3.13) and

(3.14) show the operations of a clipping-like and a two-piecewise nonlinearity for small and

high signal levels, respectively. Although the two-piece linear approximation can easily

be extended to an arbitrary number of linear segments, we observe from these figures that

the two segments seem sufficient to fit the optimum nonlinearities. We also observe that
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Figure 3.13: Piecewise nonlinearities for B < d0

the clipping-like nonlinearities with the adaptive clipping thresholds can provide a better

approximation than those of the conventional clipping detector.
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Figure 3.14: Piecewise nonlinearities for B ≥ d0

3.4 Performance Evaluation and Simulation Results

This section presents simulation results to assess the bit-error ratio (BER) of the approx-

imate nonlinearities compared with those of the optimum detector.
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3.4.1 The Performance of the Optimum Detector

We first evaluate the BER performance of the optimum detector in different impulse

noise environments. Figure 3.15 depicts the BER performances the optimum and the

approximate nonlinearities in impulse noise with A = 1; 0.1; 0.01 and Υ = 0.01 for N = 4.

We observe that the approximate nonlinearities provide performances close to those of
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Figure 3.15: Performance comparison in different impulse noise environments for N = 4

the optimum one. Furthermore, we note that as A increases, the BER performance of the

optimum detector approaches the one for Gaussian noise with variance σ2. This agrees

with the PDF of MCA noise, which goes to a Gaussian distribution with σ2 for A ≥ 1.

Now, we examine the performance improvement of the optimum detector when increasing

the number of received observations, N . In Fig. 3.16, we depict the BER performances

versus the signal-to-noise ratio (SNR), Eb/2σ
2
G, of the optimum and the approximate

nonlinearities in impulse noise withA = 0.1 and Υ = 0.01 forN = 1, 4, and 8, respectively.

We observe that the approximate nonlinearities yield performances close to those of the

optimum one for different N . The shown figure allows for some interesting statements

about the performance variations of the optimum detector. We observe that the BER

curve of the optimum detector, for different N , has a plateau shape with respect to

Eb/2σ
2
G. At low SNRs, the optimum nonlinearities provide a BER performance near to

the one for Gaussian noise with variance σ2
G (impulse-free limit). At moderate values of

the SNR, the BER curve shows an error floor. At high SNRs, the gap (the width of a

plateau curve) between the BER curve of the impulse-free limit and impulse noise is given
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Figure 3.16: Performance comparison of the optimum and approximate detector in
moderate MCA impulse noise with A = 0.1 and Υ = 0.01 for different N

by 1
NAΥ

. To deduce the performance variations of the optimum detector, we investigate

the behaviors of the approximate optimum nonlinearities at different values of the SNR.

Figure 3.17 illustrates two different operations of the optimum nonlinearities with respect

to the value of the SNR. For small values of the SNR, we observe that the intervals of the

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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0
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yk

g
(y
k
)

optimum nonlinearties

approximate nonlinearities

(a) Low SNR (b) High SNR

Figure 3.17: The nonlinearity operations at two different values of Eb/2σ
2
G

nonlinear regions R1 and R3 are very short compared with the intervals of linear regions

R0, R2, and R4. Hence, the operations of the optimum nonlinearities is dominated by
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those of the linear regions. Thus, the optimum detector can be approximated as

ΛML ≈
N∑

k=1

2B

σ2
k

yk , (3.38)

where σ2
k = σ2

G for yk ∈ R2 and σ2
k = σ2

1 for yk ∈ {R0, R4}. The expression in (3.38)

represents the optimum combining scheme of the received observations in Gaussian noise

with unequal variances. Accordingly, asN increases, the diversity order also increases, and

hence, the performance of the optimum detector improves. This justifies the performance

improvements (see Fig. 3.16) of the optimum detector at low SNRs as N increases.

However, at high values of the SNR, we note in Fig. 3.17b) that the optimum nonlinearities

can be approximated by a single linear operation. Thus, the optimum detector reduces

to a linear detector as

ΛML ≈
N∑

k=1

2B

σ2
1

yk . (3.39)

The above expression justifies the performance gaps observed in Fig. 3.16 between the

performances of the optimum detectors for Gaussian noise σ2
G (impulse-free limit) and

impulse noise at high values of the SNR.

3.4.2 Performances of the Suboptimum Detectors

In Fig. 3.18, we evaluate the performances of the proposed suboptimum detectors in

moderate impulse noise with A = 0.1 and Υ = 0.01 for two different number of received

observations N = 4 and 8. The figure illustrates several aspects regarding the performance

achievements of the suboptimum detectors. First, we observe that the two-piece linear

segments are sufficient to approach the optimum performance for both numbers of received

observations. Second, we observe that the proposed clipping-like detector provides much

better performance than the conventional clipping detector. Compared to the optimum

detector, we note that the clipping-like detector provides a tight upper performance bound

to the optimum detector. Last, we note that the performance of the proposed suboptimum

detectors improves with increasing the number of observations, N . At high SNRs, we

observe that the detectors with N = 8 provide a 3 dB gain over those with N = 4. This

means that the proposed suboptimum detectors maintain the same improvements of the

optimum detector at high values of the SNR.
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Figure 3.18: Performance comparison in moderate impulse noise for N = 4 and 8

3.5 Conclusion

In this chapter, we introduced a closed-form approximation of the optimum detector for

binary signals in MCA noise. To derive this analysis, we further simplify the MCA model

to a density of a single state (Gaussian or impulsive). Using this approximation, we

derived a closed-form expression of the optimum nonlinearities, which explains how the

optimum detector treats the effects of impulse noise with respect to different signal levels.

We additionally showed that this analysis leads to an accurate approximation of the

optimum decision regions for different noise environments. For the suboptimum detector,

we explained the behaviors of a locally optimum preprocessor and clipping nonlinearities

in canceling the effects of MCA noise. Hence, we proposed a linear approximation of

the optimum nonlinearities, which leads to a piecewise linear detector and a clipping-

like detector. The simulation results showed that the optimum detector for impulse noise

provides significant improvements with increasing the number of received observations, N .

To justify these improvements, we investigated the nonlinearity operations of the optimum

detector at different values of the SNR. At low SNRs, we showed that the optimum

detector reduces to a weighted linear combiner, and hence, the performance approaches

the impulse-free limit as N increases. At high SNRs, we assessed the linear operations the

optimum detector in impulse noise, which limit the performance improvements to those

of a linear detector.





Chapter 4

Diversity Schemes for Impulse Noise

Mitigation

In this chapter, we focus on time and space diversity schemes to mitigate the effects of

impulse noise in Rayleigh fading channels. First, we consider the optimum combining

schemes for time and receive diversity. We assume perfect knowledge of noise states [18],

which reduces the optimum detector to a tractable form. Thus, we introduce an upper

performance bound of the optimum detectors for time and space diversity techniques. For

MIMO systems, we derive an upper bound expression for the pairwise error probability

(PEP) of orthogonal space-time block coding (OSTBC) in the presence of spatially de-

pendent impulse noise. To realize the optimum combining schemes, we make use of a

threshold detection for estimating noise states of MCA noise. Then, we derive a closed-

form approximation of the optimum detectors for different diversity techniques.

4.1 Time-Diversity Scheme

We recall the baseband model (see Fig. 1.4) for time diversity in impulse noise. Since there

are ND time slots, carrying the same transmit signal, the received signal observations are

ynD
=
√

Eb

ND
hnD

s+ znD
, nD = 1, 2, · · · , ND , (4.1)

where s ∈ ±1 and hnD
denotes a complex-valued fading coefficient for the nth

D time slot.

The fading processes for the ND channels are assumed to be statistically independent

complex-valued Gaussian random processes. In (4.1), we assume that znD
, ∀nD, represent

baseband samples of a complex-valued MCA interference process. The complex-valued

61
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MCA density can be given as

pz(znD
) =

∞∑

mnD
=0

αmnD

2πσ2
mnD

e
−|znD

|2/2σ2
mnD , (4.2)

where σ2
m = σ2

G + m
A
σ2
I . Since |znD

|2 = zI
2
nD

+ zQ
2
nD

, the average variance of a baseband

MCA process, E{|znD
|2}, can be given as

E{|znD
|2} = 2

∞∑

mnD
=0

αmnD
σ2
mnD

,

= 2σ2 ,

(4.3)

where σ2 = σ2
G + σ2

I denotes the mean variance of the passband MCA process. For

statistically independent noise observations, the optimum decision rule is given by

ΛML = log





∏ND

nD=1 pz

(

ynD
−
√

Eb

ND
hnD

)

∏ND

nD=1 pz

(

ynD
+
√

Eb

ND
hnD

)




S1
≥
<
S0

0 . (4.4)

The performance evaluation of (4.4) is mathematically intractable. However, when the

noise states mnD
, ∀nD, are known at the receiver, the noise observations, znD

, can be seen

as conditional Gaussian random variables with different variances, σ2
mnD

. Thus, we have

pz(znD
|mnD

) =
1

2πσ2
mnD

e
−|znD

|2/2σ2
mnD . (4.5)

Therefore, by substituting (4.5) in (4.4) the optimum detector reduces to a weighted

maximum ratio combining as

ND∑

nD=1

Re{h∗
nD

ynD
}

σ2
mnD

S1
≥
<
S0

0 . (4.6)

With the above expression assuming perfect knowledge of noise states, it leads to a

tractable upper performance bound for the optimum detector in (4.4).

4.1.1 Asymptotic Upper Performance Bound

In this subsection, we use (4.6) to evaluate the performance of the optimum detector.

Suppose that the signal s = +1 was transmitted, the optimum decision variable, χ
D
, can
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be expressed as

χ
D
=

√

Eb

ND

ND∑

nD=1

|hnD
|2

σ2
mnD

+

ND∑

nD=1

Re{h∗
nD

znD
}

σ2
mnD

. (4.7)

For fixed sets of hnD
and mnD

, the decision variable χ
D
is Gaussian with mean

µχ
D
=

√

Eb

ND

ND∑

nD=1

|hnD
|2

σ2
mnD

, (4.8)

and variance

σ2
χ
D
=

ND∑

nD=1

|hnD
|2

σ2
mnD

. (4.9)

For binary antipodal signaling, the probability of error is simply the probability that χ
D

is less than zero. Hence, the conditional error probability can be computed as

Pe|hnD
,mnD

= Q

(

µχ
D

σχ
D

)

,

= Q





√
√
√
√

Eb

ND

ND∑

nD=1

|hnD
|2

σ2
mnD



 ,

(4.10)

where Q(x) = 1
2
erfc( x√

2
). Using Chernoff’s bound, Q(x) ≤ 1

2
e−

x2

2 , the conditional error

probability is upper-bounded as

Pe|hnD
,mnD

≤ 1

2
e
− Eb

2ND

∑ND
nD=1

|hnD
|2

σ2
mnD ,

≤ 1

2

ND∏

nD=1

e
− Eb

2NDσ2
mnD

|hnD
|2
.

(4.11)

Since the fading envelopes, |hnD
|, are i.i.d. Rayleigh distributed random variables, |hnD

|2
has a chi-square distribution with two degrees of freedom as

p(|hnD
|2) = 1

h̄nD

exp

(

−|hnD
|2

h̄nD

)

, |hnD
|2 ≥ 0 , (4.12)
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where h̄nD
= E{|hnD

|2} denotes the average power of the channel for the nth
D time slot.

By averaging (4.11) over the fading channel statistics, we obtain

Pe|mnD
=

∫ ∞

0

Pe|hnD
,mnD

p
(
|hnD

|2
)
d|hnD

|2 ,

≤ 1

2

ND∏

nD=1

1

1 + Eb

2NDσ2
mnD

. (4.13)

The final step in this derivation is to average Pe|mnD
over the noise state probabilities

αmnD
. Thus, we have

Pe ≤
1

2

∞∑

m1=0

αm1 · · ·
∞∑

mND
=0

αmND

ND∏

nD=1

1

1 + Eb

2NDσ2
mnD

. (4.14)

Since the noise states mnD
are statistically independent over the different time slots, it

implies that the upper bound of the error probability can be rewritten as

Pe ≤
1

2

ND∏

nD=1

∞∑

mnD
=0

αmnD

1

1 + Eb

2NDσ2
mnD

. (4.15)

For high Eb/σ
2
m, the right-hand side of (4.15) can be approximated as

Pe <
1

2

(
Eb

ND

)−ND

GD
︷ ︸︸ ︷
ND∏

nD=1

∞∑

mnD
=0

2αmnD
σ2
mnD

. (4.16)

By substituting (4.3) in (4.16), the upper performance bound can be expressed as

Pe <
1

2

(
Eb

2NDσ2

)−ND

. (4.17)

Since σ2 = σ2
G + σ2

I and σ2
I = σ2

G/Υ, (4.17) can be written in terms of σ2
G as follows:

Pe <
1

2

(
Eb

2NDσ
2
G

)−ND
(

1 +
1

Υ

)ND

, (4.18)

From (4.17) and (4.18), we can indicate two interesting observations regarding the upper

performance bound of the optimum detector in fading with impulse noise. First, the

performance of the optimum scheme is upper-bounded by those of the optimum detector

in Gaussian channels with variance σ2. Second, at high SNRs, the gap in the SNRs
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between the performances of impulse-free channels (Gaussian noise with σ2
G) and impulse

noise channels is given by
(
1 + 1

Υ

)
. We note that the performance gap depends only on Υ.

Thus, the optimum detectors in impulse noise with different A and equal Υ yield similar

performances at high SNRs.

To confirm these points, we simulated the performances of the optimum detectors with and

without noise state information (NSI) for ND = 2 in different MCA environments. First,

we illustrate in Fig. 4.1 the performances for impulse noise with different impulsiveness,

A. Second, in Fig. 4.2, we simulate the performances for impulse noise with different

Gaussian factors, Υ. From these figures, we observe that the optimum detectors, with

0 10 20 30 40 50 60

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/2σ 2
G, dB

B
E

R

 

 

optimum detector (with NSI)

optimum detector (without NSI)

Gaussian noise, σ 2
G

Gaussian noise, σ 2

upper bound

10log10(1 + 1
Υ)

A = 0.01, Υ= 0.01

A = 0.1, Υ= 0.01

A = 1, Υ= 0.01

Figure 4.1: BER performances of the optimum detectors for ND = 2 in impulse noise
with Υ = 0.01 and different A

and without NSI, provide almost the same performances. Thus, the upper performance

bound in (4.18) confines the performances of both detectors. In Fig. 4.1, we observe that

the performances for impulse noise with Υ = 0.01 and different A approach the same

upper bound. Hence, at high SNRs, the performances of the optimum detectors approach

those of Gaussian noise with variance σ2, which agrees with (4.17). However, at low

values of the SNR, we observe that the performance of the optimum detector approaches

those of impulse-free channels (Gaussian noise with σ2
G) as A decreases. In Fig. 4.2,

we confirm the different upper performance bounds of the optimum detector in impulse

noise environments with unequal Υ. We observe that the gap in the SNR between the

BER performances for impulse-free noise and impulse noise with different Υ is given by

10log10(1 +
1
Υ
) dB, which is in agreement with (4.18).
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Figure 4.2: BER performances of the optimum detectors for ND = 2 in impulse noise
with A = 0.1 and different Υ

4.1.2 Nonlinear Diversity Combining

The optimum detector in (4.4) possesses a complex ML decision rule. Although the

assumption of perfect noise states reduces the complexity of the optimum detector, it

appears to be unrealistic for a practical realization. In the following, we utilize a threshold

detection scheme to simplify a nonlinear combining rule. We observe in (3.5) that the

threshold d0, which discriminates Gaussian noise and impulse noise, is equivalent to the

ML estimate of the noise state m. Similarly, the estimate of noise states, mnD
, nD =

1, · · · , ND for the complex-value MCA model can be given as

m̃nD
=







0 if |znD
|2 ≤ d21 ,

1 otherwise ,
(4.19)

where d1 =
√

2σ2
0σ

2
1

σ2
1−σ2

0
log

α0σ2
1

α1σ2
0
denotes the threshold, which inspects the state of complex-

valued MCA noise. The threshold equation, |znD
|2 = d21, in the complex plane, can be

seen as a circle of radius d1. The inner and outer regions of this circle (see Fig. 4.3)

are corresponding to the Gaussian and impulsive states, respectively. Consequently, the
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Figure 4.3: The noise state estimation in the complex plane

complex-valued MCA density can be reduced to

pz(znD
) ≈







α0

2πσ2
0
e
− |znD

|2

2σ2
0 if |znD

|2 ≤ d21 ,

α1

2πσ2
1
e
−
|znD

|2
2σ2

1 otherwise .

(4.20)

Under the hypotheses S1 and S0, the likelihood functions pz(ynD
− √

Eb
ND

hnD
s) can be

represented as

pz(ynD
− √

Eb
ND

hnD
s) ≈







α0

2πσ2
0
e
−

∣

∣

∣

∣

ynD
−

√

Eb
ND

hnD
s

∣

∣

∣

∣

2

2σ2
0 if

∣
∣
∣ynD

− √

Eb
ND

hnD
s
∣
∣
∣

2

≤ d21 ,

α1

2πσ2
1
e
−

∣

∣

∣

∣

ynD
−

√

Eb
ND

hnD
s

∣

∣

∣

∣

2

2σ2
1 otherwise .

(4.21)

The above representation classifies the complex plane of the received signal observation,

ynD
, into 3 or 4 different regions. Figure (4.4) illustrates the 4 possible regions in the

complex plane. We observe that the threshold boundary equation,
∣
∣
∣ynD

− √

Eb
ND

hnD
s
∣
∣
∣

2

=

d21, for s ∈ {+1,−1}, depicts a circle centered at
(

√

Eb
ND

Re{hnD
}s, √

Eb
ND

Im{hnD
}s
)

. Thus,

we may have either 3 or 4 overlapping regions depending on the values of the signal level

and fading coefficients. The shown figure depicts the 4 overlapping regions C0, C1, C2,

and C3. For each region, we substitute the corresponding term of (4.21) into (4.4) to
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Figure 4.4: Overlapping regions of the received observation for hypotheses S1 and S0

approximate the optimum detector as

ΛML =

ND∑

nD=1

g(ynD
, hnD

)
S1
≥
<
S0

0 , (4.22)

where

g(ynD
, hnD

) ≈ 2
√

Eb

ND

Re{h∗
nD

ynD
}

σ2
1

, (4.23)

g(ynD
, hnD

) ≈ −σ2
1−σ2

0

2σ2
1σ

2
0

(

d21 − (|ynD
|2 + 2

√
Eb

ND

σ2
1+σ2

0

σ2
1−σ2

0
Re{h∗

nD
ynD

}+ 2 Eb

ND
|hnD

|2)
)

, (4.24)

g(ynD
, hnD

) ≈ 2
√

Eb

ND

Re{h∗
nD

ynD
}

σ2
0

, (4.25)

and

g(ynD
, hnD

) ≈ σ2
1−σ2

0

2σ2
1σ

2
0

(

d21 − (|ynD
|2 − 2

√
Eb

ND

σ2
1+σ2

0

σ2
1−σ2

0
Re{h∗

nD
ynD

}+ 2 Eb

ND
|hnD

|2)
)

, (4.26)

are the approximate nonlinearities of the optimum combining for the regions C0, C1, C2,

and C3, respectively. In Fig. 4.5, we depict the approximate nonlinearities of all regions

for a fixed value of hnD
. We observe that the approximate combining nonlinearities

behave similarly to those of the optimum detector considered in Section 3.1. However,

we note that the approximate combining nonlinearities scale the received observations

according to the fading coefficients and noise variances. To assess the performance of

this approximation, we simulated the BER performances of the nonlinear combining

scheme and the optimum detector utilizing different numbers of time slots, ND. Figure 4.6
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illustrates the BER performance versus the SNR for ND = 1, 2, and 4. We observe that

the performance of the nonlinear combining scheme approaches those of the optimum

detector for different ND. In addition, we note that the performances of both schemes are

improved considerably when ND increases, which complies with the upper performance

bound at different numbers of diversity channels, ND.

4.2 Spatial Diversity Reception

In this section, we consider the performance evaluation of the optimum receiver for spatial

(receive) diversity in combating the effects of fading and impulse noise. Thus, we assume a

communication system with NR receive antennas operating in impulse noise environments.

For binary signals, the baseband received observations for the NR receive antennas can

be given as

ynR
=
√

EbhnR
s+ znR

, nR = 1, 2, · · · , NR , (4.27)

where s ∈ ±1 and hnR
, nR = 1, · · · , NR, are statistically independent complex-valued

fading coefficients along the NR diversity channels. The noise observations, znR
, denote

spatially correlated baseband noise samples at the NR receive antennas. Form the pass-

band multivariate MCA model in (2.20), the baseband noise observations can be modeled

as

pz(z) =

∞∑

m=0

αm

(2π)NR|Σm|
e−

1
2
zHΣm

−1z . (4.28)

where z = [z1, · · · , zNR
]T and the covariance matrix, Σm, is given as

Σm =







σ2
m,1 · · · ρm,1NR

σm,1σm,NR

...
. . .

...

ρm,NR1σm,NR
σm,1 · · · σ2

m,NR







, (4.29)

where σ2
m,nR

= σ2
G

(

1 + m
AΥnR

)

, nR = 1, · · · , NR, and ρm,nRǹR
denote the correlation

coefficients of noise observations at the nth
R and ǹth

R receive antennas. Since ΥnR
6= Υ,

∀nR, this implies that impulse noise for different antennas possess unequal variances

σ2
nR

= σ2
G +

σ2
G

ΥnR

. Based on the received observation vector, y = [y1, · · · , yNR
]T , the

optimum detector computes the following LLR

ΛML = log

(
pz(y −

√
Ebh)

pz(y +
√
Ebh)

)
S1
≥
<
S0

0 , (4.30)
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Since (4.30) does not allow a simplification, we again assume that the NSI is available

at the receiver. Then, when m is known, the distribution of z reduces to a conditional

multivariate Gaussian density as

pz(z|m) =
1

(2π)NR|Σm|
e−

1
2
zHΣm

−1z . (4.31)

By substituting (4.31) in (4.30), the optimum detector reduces to

Re{hHΣ−1
m y}

S1
≥
<
S0

0 . (4.32)

The above expression leads to a tractable analysis of the upper performance bound for

the optimum detector in spatially correlated impulse noise.

4.2.1 Asymptotic Upper Performance Bound

From (4.32) and (4.27), supposing that the signal s = +1 was transmitted, the optimum

decision variable, χ
R
, can be expressed as

χ
R
=
√

Ebh
HΣ−1

m h+ Re
{
hHΣ−1

m z
}

. (4.33)

For fixed sets of m and h, the decision variable χ
R

is Gaussian with mean µχ
R

=√
Ebh

HΣ−1
m h and variance σ2

χ
R

= hHΣ−1
m h. Similar to (4.10), the conditional error

probability can be given as

Pe|h,m = Q
(√

EbhHΣ−1
m h
)

. (4.34)

Then, the Chernoff bound leads to

Pe|h,m ≤ 1

2
e−

Eb
2
hHΣ−1

m h . (4.35)

Since Σ−1
m is symmetric, we can write Σ−1

m = UΛmU
H , where U is a unitary matrix and

Λm is a diagonal matrix. Thus, we have

hHΣ−1
m h = ~~~

HΛm~~~ ,

=

NR∑

nR=1

ζm,nR
|~nR

|2 ,
(4.36)
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where ~~~ = UHh and ζm,nR
, ∀nR, are the diagonal elements of Λm, which stand for the

eigenvalues of Σ−1
m . By substituting (4.36) into (4.35), the upper bound of the conditional

error probability can be rewritten as

Pe|h,m ≤ 1

2

NR∏

nR=1

e−
Eb
2
ζm,nR

|~nR
|2 . (4.37)

The last two steps are to average Pe|h,m over the statistics of |~nR
| and m. Since U is a

unitary matrix, |~nR
| follows the same statistics of the channel coefficient |hnR

|. Similar

to (4.13), averaging Pe|h,m over the statistics of |~nR
|2 yields

Pe|m ≤ 1

2

NR∏

nR=1

1

1 + Eb

2
ζm,nR

. (4.38)

Therefore, the upper bound of the error probability can be given as

Pe ≤
1

2

∞∑

m=0

αm

NR∏

nR=1

1

1 + Eb

2
ζm,nR

. (4.39)

For high signal levels, the right hand side of (4.39) can be approximated as

Pe <
1

2

(
Eb

2

)−NR

GR
︷ ︸︸ ︷
∞∑

m=0

αm

NR∏

nR=1

1

ζm,nR

. (4.40)

To investigate how the optimum detector should behave in different impulse noise envi-

ronments, we consider spatial diversity with two receive antennas (NR = 2). Therefore,

the covariance matrix Σm can be given as

Σm =

(

σ2
m,1 ρmσm,1σm,2

ρmσm,2σm,1 σ2
m,2

)

. (4.41)

The eigenvalues of Σ−1
m can be computed as follow:

ζm,1 =
σ2
m,1 + σ2

m,2 +
√

(σ2
m,1 − σ2

m,2)
2 + 4σ2

m,1σ
2
m,2ρm

2

2σ2
m,1σ

2
m,2(1− ρm2)

,

ζm,2 =
σ2
m,1 + σ2

m,2 −
√

(σ2
m,1 − σ2

m,2)
2 + 4σ2

m,1σ
2
m,2ρm

2

2σ2
m,1σ

2
m,2(1− ρm2)

.

(4.42)
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By substituting (4.42) in (4.40), the term GR can be written as

GR =
∞∑

m=0

αmσ
2
m,1σ

2
m,2(1− ρ2m) ,

= Em{σ2
m,1σ

2
m,2(1− ρ2m)} , (4.43)

where Em{·} denotes the expectation with respect to the noise state m. For simplicity,

we assume that ρm = ρ, ∀m. Since σ2
m,nR

= σG

(

1 + m
AΥnR

)

, ∀nR, GR can be evaluated as

GR = (σ2
G)

2(1− ρ2)

(

1 +
1

Υ1

)(

1 +
1

Υ2

)(

1 +
1

A(1 + Υ1)(1 + Υ2)

)

. (4.44)

By substituting (4.44) in (4.40), the upper performance bound of the optimum detector

for 2-antenna systems can be expressed as

Pe <
1

2

(
Eb

2σ2
G

)−2

(1− ρ2)

(

1 +
1

Υ1

)(

1 +
1

Υ2

)(

1 +
1

A(1 + Υ1)(1 + Υ2)

)

. (4.45)

In (4.45), we note that the first term, 1
2

(
Eb

2σ2
G

)−2

, denotes the exact upper performance

bound for Gaussian noise with variance σ2
G (impulse-free noise). Therefore, the last four

terms can determine the performance gap between the impulse-free channels and spatially

correlated MCA noise. According to (4.45), we observe that the performance gap depends

on the impulsive index, A, and noise correlation, ρ. The term (1 − ρ2) indicates how

the performance gap decreases as ρ increases. However, the term
(

1 + 1
A(1+Υ1)(1+Υ2)

)

shows how the performance gap increases as A decreases. This differs from the upper

performance bound of the optimum detector for time diversity, which is independent on

A.

To confirm the above expression, we simulate the performance of the optimum detectors

(with and without NSI) for NR = 2 in different impulse noise environments. We limit the

simulation environments to impulse noise with equal Gaussian factors, ΥnR
= Υ, ∀nR.

Thus, the expression in (4.45) can be rewritten as

Pe <
1

2

(
Eb

2σ2
G

)−2

(1− ρ2)

(

1 +
1

Υ

)2(

1 +
1

A(1 + Υ)2

)

, (4.46)

which can be expressed in terms of σ2 as

Pe <
1

2

(
Eb

2σ2

)−2

(1− ρ2)

(

1 +
1

A(1 + Υ)2

)

. (4.47)
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In Fig. 4.7, we depict the performances of the optimum detectors in spatially uncorrelated

impulse noise with different A and Υ = 0.01. Additionally, we depict the performances of
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Figure 4.7: BER performances of the optimum detectors in impulse noise with Υ1,2 = 0.01
and different A for NR = 2

Gaussian noise with variances σ2
G and σ2 as references. First, we observe that the optimum

detectors with and without NSI provide identical performances. Second, we note that the

expression in (4.46) provides a tight upper performance bound to both detectors. Third,

we see clearly that, at high SNRs, the performance of the optimum detector in impulse

noise degrades as the impulsive index A decreases. Therefore, we note that the gap in the

SNR between the performances of the optimum detectors for impulse noise and Gaussian

noise is in accordance with (4.47). To confirm the performance of the optimum detector in

spatially correlated impulse noise, we simulate the BER versus ρ at Eb/2σ
2
G = 50 dB for

different values of A as illustrated in Fig. 4.8. In this figure, we show how the performance

improves a ρ increases, which is consistent with (4.47). Furthermore, we observe that the

performance loss of the optimum detector due to impulse noise increases inversely with

respect to A, which is in agreement with the last term of (4.47)

4.2.2 Spatial Diversity Combining

We investigate the noise state estimate of multivariate MCA noise, which realizes the

optimum decision rule in a closed-form approximation. Herewith, we start with the 2-
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term approximation of the multivariate MCA noise, which can be expressed as

pz(z) ≈
α0

(2π)NR|Σ0|
e−

1
2
zHΣ−1

0 z +
α1

(2π)NR|Σ1|
e−

1
2
zHΣ−1

1 z . (4.48)

Similar to (4.20), the multivariate MCA model can be further approximated as

pz(z) ≈







α0

(2π)NR |Σ0|e
− 1

2
zHΣ−1

0 z if

m̃=0
︷ ︸︸ ︷

zHMz ≤ d2 ,

α1

(2π)NR |Σ1|e
− 1

2
zHΣ

−1
1 z if

m̃=1
︷ ︸︸ ︷

zHMz > d2 ,

(4.49)

where M = Σ−1
0 −Σ−1

1 and d2 = 2 log
(

α0|Σ1|
α1|Σ0|

)

. From (4.49), we note that the elements of

z are subject to interference of identical noise states, m̃. From (4.49) and (4.27), suppose

the signal s was sent, the NSI can be extracted from the received signal vector, y, as

follows:

m̃y|s =







0 if
(
y −

√
Ebsh

)H
M
(
y −

√
Ebsh

)
≤ d2 ,

1 otherwise ,
(4.50)

where m̃y|s=+1 and m̃y|s=−1 are the noise state estimates under hypotheses S1 and S0,

respectively. Thus, the likelihood functions pz(y−
√
Ebh) and pz(y+

√
Ebh) can be given
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as

pz(y −
√

Ebh) ≈







α0

(2π)NR |Σ0|e
− 1

2
(y−

√
Ebh)

H
Σ

−1
0 (y−

√
Ebh) if m̃y|+1 = 0 ,

α1

(2π)NR |Σ1|e
− 1

2
(y−

√
Ebh)

H
Σ−1

1 (y−
√
Ebh) otherwise ,

(4.51)

and

pz(y +
√

Ebh) ≈







α0

(2π)NR |Σ0|e
− 1

2
(y+

√
Ebh)

H
Σ

−1
0 (y−

√
Ebh) if m̃y|−1 = 0 ,

α1

(2π)NR |Σ1|e
− 1

2
(y+

√
Ebh)

H
Σ−1

1 (y−
√
Ebh) otherwise ,

(4.52)

respectively. The above approximation divides the optimum decision rule in (4.30) into

four decision rules. For m̃y|+1 = 1 and m̃y|−1 = 1, the estimate of the NSI is impulsive

for both hypotheses. Hence, substituting (4.51) and (4.52) in (4.30) leads to

Re{hHΣ−1
1 y}

S1
≥
<
S0

0 . (4.53)

The decision rule for m̃y|+1 = 0 and m̃y|−1 = 0 can be expressed as

Re{hHΣ−1
0 y}

S1
≥
<
S0

0 . (4.54)

For m̃y|+1 = 1 and m̃y|−1 = 0, the decision rule is

(

y +
√

Ebh
)H

M
(

y +
√

Ebh
)

+ 4
√

EbRe
{

hHΣ−1
1 y
}

− d2
S1
≥
<
S0

0 . (4.55)

Finally, the decision rule for m̃y|+1 = 0 and m̃y|−1 = 1 leads to

(

y −
√
Ebh

)H

M
(

y −
√
Ebh

)

− 4
√

EbRe
{

hHΣ−1
1 y
}

− d2
S0
≥
<
S1

0 . (4.56)

To confirm the above analysis, we consider spatial diversity with NR = 2. Therefore, the

threshold boundary equation,
(
y −

√
Ebsh

)H
M
(
y −

√
Ebsh

)
= d2, reduces to a general

ellipse equation in the complex NR-dimensional space. However, for two-receive antennas

NR = 2, assuming real-valued hy and h, the threshold boundary equation depicts a

rotated ellipse regarding the spatial dimensions. Figure 4.9 illustrates the threshold

boundary equations in a two-dimensional space for hypotheses S1 and S0. Under both

hypotheses, the ellipses are centered at
(
+
√
Ebh1, +

√
Ebh2

)
and

(
−
√
Ebh1, −

√
Ebh2

)
,

respectively. The inner and outer regions of each ellipse are corresponding to m̃y|s = 0

and m̃y|s = 1, respectively. Therefore, the spatial space can be divided into four decision

regions D0, D1, D2, and D3 as illustrated in Fig 4.9. The decision rules for the regions D0

and D2 lead to (4.53) and (4.54), respectively. However, the decision rules for the regions
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D1 and D3 result in (4.55) and (4.56), respectively. To investigate the decision boundaries

of the optimum detector in spatially uncorrelated impulse noise, we assume MCA noise

with ΥnR
= Υ, ∀nR, and ρm = 0. Thus, the covariance matrix Σm reduces to σ2

mINR
.

Consequently, the threshold boundary equations reduce to |
(
y −

√
Ebsh

)
|2 =

σ2
0σ

2
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Figure 4.10: Decision regions for spatially uncorrelated impulse noise

which depict circles centered at
(√

Ebsh1,
√
Ebsh2

)
in the 2-dimensional space. Fig-

ure 4.10 depicts the threshold boundary equations for hypotheses S1 and S0. We observe

that the decision boundaries are confined only to regions D0 and D2. Since Σ−1
m = 1

σ2
m
I,
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the decision rules in (4.53) and (4.54) reduce to

Re{hHy}
S1
≥
<
S0

0 , (4.57)

which represents the optimum combining scheme for Gaussian noise. The above expression

can justify why the conventional MRC provides the same performance of the optimum

detector in the case of spatially uncorrelated impulse noise. In Fig. 4.11, we investigate

the performances of the optimum detector and MRC in uncorrelated MCA noise with

A = 0.1 and Υ = 0.01. From this figure, we observe that both detectors offer the same

performance for different numbers of receive antennas NR, which is in line with the above

analysis.
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Figure 4.11: BER performances of the optimum detector and MRC in impulse noise with
A = 0.1 and Υ = 0.01 for different NR

4.3 Space-Time Coding

We conclude this chapter with the performance evaluation of orthogonal ST block coding

(OSTBC) in the presence of spatially correlated MCA noise. Herewith, we recall the

baseband model (see Fig. 1.6) for NT ×NR OSTBC-MIMO systems. The OSTBC scheme

uses ND time slots to encode NB ≤ NT data symbols into an NT × ND ST code matrix.
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Therefore, the baseband received signal vectors ynD
can be expressed as

ynD
=

√

Eb

NT

HcnD
+ znD

, nD = 1, · · · , ND , (4.58)

where H ∈ CNR×NT is a MIMO channel matrix of i.i.d. complex Gaussian entries with

zero mean and unit variance. cnD
∈ CNT×1 denotes the nth

D column vector of the OSTBC

matrix, C ∈ C
NT×ND . For spatially coupled impulse noise, the received noise vector,

znD
∈ CNR×1, can be modeled by

pz(znD
) =

∞∑

mnD
=0

αmnD

(2π)NR|ΣmnD
|e

− 1
2
zHnD

ΣmnD

−1znD , (4.59)

where ΣmnD
can be given by (4.29). To specify (4.59) over the ND time slots, we assume

that the noise vectors znD
, nD = 1, · · · , ND, are statistically independent. Therefore, the

optimum ML decoder selects the code matrix that maximizes the log-likelihood function

as follows:

ĈML = argmax
C

ND∑

nD=1

log
(

pz

(

ynD
−
√

Eb

NT
HcnD

))

. (4.60)

Similar to the optimum ML decoding of OSTBC in uncorrelated impulse noise, (4.60)

cannot be further simplified. However, by stacking the ND received vectors, ynD
, ∀nD,

into a single column vector y = [yT
1 , · · · , yT

ND
]T , we have

y =

√

Eb

NT

(
CT ⊗ INR

)
h+ z , (4.61)

where C is the OSTBC matrix, ⊗ is the Kronecker product, INR
denotes the identity

matrix of size NR, and h = [hT
1 , · · · , hT

NT
]T sorts the MIMO channel H into a single

column vector. Under perfect knowledge of noise states mnD
, nD = 1, · · · , ND, the noise

vector z = [zT1 , · · · , zTND
]T can be seen as a complex multivariate Gaussian vector with

the following covariance matrix

Σ = E
[
zzH

]
=









Σm1 0 · · · 0

0 Σm2 · · · 0
...

...
. . .

...

0 0 · · · ΣmND









, (4.62)

where ΣmnD
is the covariance matrix of znD

during the nth
D time slot. Similar to a

conventional system when the received signals are impaired by correlated Gaussian noise,
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a noise-whitening matrix is applied to obtain the equivalent samples with uncorrelated

noise. The inverse of the positive definite covariance matrix Σ can be factorized as

Σ−1 = LR = LLH . Multiplying (4.61) by LH , we obtain

LHy =

√
Eb

NT
LH(CT ⊗ INR

)h+ LHz , (4.63)

where the elements of LHz are i.i.d. Gaussian distributed random variables with unit

variance. Then, the optimum ML receiver reduces to

Ĉ = argmin
C

∣
∣
∣LHy −

√
Eb

NT
LH(CT ⊗ INR

)h
∣
∣
∣

2

. (4.64)

In the following, we use (4.64) to evaluate the asymptotic PEP of the optimum ST decoder

for OSTBC in spatially correlated impulse noise. Furthermore, we show how the threshold

detection of noise states can realize (4.64) under no knowledge of noise states.

4.3.1 Asymptotic Pairwise Error Probability

Assume that C0 is the transmitted ST code matrix and the receiver can decide between

two ST code matrices C0 and C1. Denote Ψ0 = CT
0 ⊗ INR

and Ψ1 = CT
1 ⊗ INR

, the

probability that C0 was sent and C1 is detected can be expressed as

P (C0 → C1|h, mnD
) = P

(
∣
∣
∣LHy0 −

√
Eb

NT
LHΨ1h

∣
∣
∣

2

≤
∣
∣
∣LHy0 −

√
Eb

NT
LHΨ0h

∣
∣
∣

2
)

,

= P
(

χ
ST

≤ 0
)

. (4.65)

By substituting (4.61) in (4.65), χ
ST

can be given as

χ
ST

=
Eb

NT
hHBh+ 2

√
Eb

NT
Re
{

hH (Ψ0 −Ψ1)
H Σ−1z

}

, (4.66)

where B = (Ψ0 −Ψ1)
HΣ−1(Ψ0 −Ψ1) is a code distance matrix. Since χ

ST
is Gaussian

with

µχ
ST

=
Eb

NT

hHBh , (4.67)

and

σ2
χ
ST

=
4Eb

NT

hHBh , (4.68)
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the conditional PEP can be written as

P (C0 → C1|h, mnD
) = Q

(

µχ
ST

σχ
ST

)

,

= Q
(√

Eb

4NT
hHBh

)

. (4.69)

Since B is Hermitian, then there exists a unitary matrix U, i.e., UHU = I, such that

UHBU = ∆, where ∆ is a diagonal matrix. The diagonal elements, ∆, λ(nT−1)NR+nR
,

nT = 1, · · · , NT and nR = 1, · · · , NR, of ∆ are equivalent to the eigenvalues of B.

Therefore, (4.69) reduces to

P (C0 → C1|h, mnD
) = Q

(√
Eb

4NT
~~~
H∆~~~

)

.

= Q
(√

Eb

4NT

∑NT

nT=1

∑NR

nR=1 |~nRnT
|2λ(nT−1)NR+nR

)

, (4.70)

where ~~~ = UHh. Using the Chernoff bound, (4.70) can be upper-bounded as

P (C0 → C1|h, mnD
) ≤ 1

2

NT∏

nT=1

NR∏

nR=1

exp
(

− Eb

8NT
|~nRnT

|2λ(nT−1)NR+nR

)

. (4.71)

Since U is unitary, then ~~~ will follow the same distribution of h. Therefore, ~nRnT
, ∀nR

and ∀nT , are i.i.d. Gaussian random variables. Similar to (4.13), we average the right-

hand side of (4.71) with respect the statistics of |~nRnT
|2 to arrive at

P (C0 → C1|mnD
) ≤ 1

2

NT∏

nT=1

NR∏

nR=1

(
1

1+
Eb

8NT
λ(nT −1)NR+nR

)

. (4.72)

To simplify the analysis, we consider an NT ×NT OSTBC matrix. Since C is orthogonal,

i.e., CCH =
∑NB

nB=1 |snB
|2INT

, and Ψ = CT ⊗ INR
, the eigenvalues of B can be split as

λ(nT−1)NR+nR
= βnT

ζmnD
,nR

, nD ≡ nT = 1, · · · , NT , (4.73)

where βnT
and ζmnD

,nR
are the eigenvalues of (C0−C1)(C0−C1)

H andΣ−1
mnD

, respectively.

The last step in this derivation is to average P (C0 → C1|mnD
) over the statistics of mnD

,

nD = 1, · · · , ND. Since mnD
are independent at different time slots, it follows that

ζmnD
,nR

, nD ≡ nT = 1, · · ·NT , are also independent for different nT . Thus, we have

P (C0 → C1) ≤
1

2

NT∏

nT=1

EmnD

{
∏NR

nR=1

(
1

1+
EbβnT
8NT

ζmnD
,nR

)}

. (4.74)
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At high SNRs, the right-hand side of (4.74) can be approximated as

P (C0 → C1) <
1

2

(
Eb

8NT

)−NRNT

(
NT∏

nT=1

βnT

)−NR

GST
︷ ︸︸ ︷
NT∏

nT=1

EmnD

{∏NR

nR=1
1

ζmnD
,nR

}

. (4.75)

For ΣmnD
= σ2

GINR
, ∀mnD

, the eigenvalues ζmnD
,nR

can be given by 1/σ2
G, ∀nR. Therefore,

the above expression goes to the exact upper bound PEP of OSTBC in the absence of

impulse noise [50]. However, in the presence of impulse noise, the last term in (4.75) is

related directly to the eigenvalues of Σ−1
mnD

. To investigate this term in a closed-form

expression, we assume MIMO systems with two receive antennas. For NR = 2, ζmnD
,nR

,

nR = 1, 2, are given by (4.42). Thus, substituting (4.42) into (4.75) leads to

GST =

NT∏

nT=1

EmnD

{

σ2
mnD

,1σ
2
mnD

,2

(

1− ρ2mnD

)}

. (4.76)

For ρmnD
= ρ, GST can be expressed in terms of σG as follows:

GST =

(

(σ2
G)

2(1− ρ2)

(

1 +
1

Υ1

)(

1 +
1

Υ2

)(

1 +
1

A(1 + Υ1)(1 + Υ2)

))NT

. (4.77)

By substituting (4.77) in (4.75), the asymptotic PEP of the optimum ST decoding for

NT × 2 MIMO systems can be given as

P (C0 → C1) <
1

2

(
Eb

8NTσ
2
G

)−2NT

(
NT∏

nT=1

βnT

)−2

×

(

(1− ρ2)

(

1 +
1

Υ1

)(

1 +
1

Υ2

)(

1 +
1

A(1 + Υ1)(1 + Υ2)

))NT

. (4.78)

Similar to (4.45), the last term measures the performance gap between the impulse-

free noise and correlated MCA noise in fading channels. However, we observe that the

performance gap in (4.78) is highly dependent on the number of transmit antennas. To

confirm this analysis, we simulate the BER of a 2 × 2 MIMO system with Alamouti ST

coding scheme in fading with impulse noise. We assume impulse noise environments with
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ΥnR
= Υ, nR = 1, 2, and hence, (4.78) can be rewritten as

P (C0 → C1) <
1

2

(
Eb

8NTσ2
G

)−2NT

(
NT∏

nT=1

βnT

)−2

×

(1− ρ2)NT

(

1 +
1

Υ

)2NT
(

1 +
1

A(1 + Υ1)(1 + Υ2)

)NT

. (4.79)

Since σ2
nR

≡ σ2 = σ2
G(1 +

1
Υ
), ∀nR, (4.79) can be expressed in terms of σ2 as follows:

P (C0 → C1) <
1

2

(
Eb

8NTσ2

)−2NT

(
NT∏

nT=1

βnT

)−2(

(1− ρ2)

(

1 +
1

A(1 + Υ)2

))NT

,

(4.80)

where
(
1 + 1

Υ

)2NR is the gap between the BER performances for Gaussian noise with

variances σ2
G and σ2. Figure. (4.12) illustrates the BER performance of the optimum ST

decoding (with and without NSI) versus ρ in impulse noise with different A and Υ1,2 = 0.01

at an SNR of 45 dB. Additionally, we depict the performances of Gaussian noise with
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Figure 4.12: The BER performance of the optimum ST decoding versus the correlation
coefficient ρ for a 2× 2 MIMO system at an SNR = 45 dB

variances σ2
G and σ2 as references. We observe that the performance gaps between the

Gaussian limit (with variance σ2) and MCA noise is proportional to
(

1 + 1
A(1+Υ)2

)2

. This

explains the performance limitation of OSTBC in impulse noise, which is further increased
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by the number of transmit antennas, NT . However, we observe that the BER performances

improve only with increasing ρ, which is in agreement with (4.80). It is worth mentioning

that the dependency of the performance gap on impulse noise parameters A and Υ can

be removed in the case of a single receive antenna. For NR = 1, (4.76) can be given as

GST =
(

EmnD

{

σ2
mnD

})NT

=
(
σ2
)NT . (4.81)

Therefore, the performance gap of OSTBC does neither depend on A nor on NT , and

hence, the performance of the optimum ST decoding in impulse noise approaches the

Gaussian limit (with variance σ2) at high SNRs.

4.3.2 Approximately Optimum Receiver Metrics

The ML decoding of OSTBC in Gaussian noise leads to an MD decoder. However, when

it comes to MCA noise, we observe that the optimum ST decoding metric in (4.60) cannot

be further simplified. We hence again employed a threshold detection scheme to estimate

the noise states mnD
for different time slots. Thus, similar to (4.50), the noise state mnD

can be extracted from the received vector ynD
during the nth

D time slot as

m̃ynD
|cnD

=







0 if (ynD
− √

Eb
NT

HcnD
)HM(ynD

− √

Eb
NT

HcnD
) ≤ d2 ,

1 otherwise ,
(4.82)

where M = Σ−1
0 − Σ−1

1 and d2 = 2 log
(

α0|Σ1|
α1|Σ0|

)

. Using this estimate, the ML metric

in (4.60) can be approximated as follows:

ĈML ≈ argmin
C

ND∑

nD=1

∣
∣
∣LH

m̃ynD
|cnD

ynD
−
√

Eb

NT
LH

m̃ynD
|cnD

HcnD

∣
∣
∣

2

−
ND∑

nD=1

log

(
αm̃ynD

|cnD

|Σm̃ynD
|cnD

|

)

.

(4.83)

From (4.64) and (4.83), we note that the difference between the optimum decoding metric

(under perfect NSI) and the approximate ML metrics is the bias term, which depends on

the noise state estimate at the nth
D time slot. To assess this approximation, we simulated

the BER performance of the approximate ML metric and the optimum ST decoding of

OSTBC in different impulse noise environments. Figure (4.13) depicts the BER results

of the 2 × 2 MIMO system in spatially uncorrelated MCA noise with different A and

Υ1,2 = 0.01. We observe that the approximate ML decoder offers similar performances

to the optimum ST decoder for different impulse noise environments. Moreover, we note

that, at high SNRs, there is a gap in the SNR between of the performances of OSTBC in
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impulse noise and Gaussian noise (with variance σ2). We observe that this gap increases

as A decreases, which is consistent with the performance loss of the optimum ST decoding.

To deduce the performance loss of multiple-antenna systems with NR = 1, we simulate
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Figure 4.13: BER Performance of the optimum ST decoding for a 2× 2 MIMO system in
impulse noise

the BER of a 2× 1 multiple-input single-output (MISO) system in the presence of MCA

noise. Figure (4.14) depicts the BER performances of the optimum and approximate ML

decoding schemes in impulse noise with different A and Υ1,2 = 0.01. We observe that, at

high SNRs, the achievable performances in impulse noise with different A approach those

of Gaussian noise with variance σ2, which is in agreement with (4.81).

4.4 Conclusion

In this chapter, we investigated the optimum combining schemes for time and spatial

diversity of wireless communication systems in the presence of fading and impulse noise.

Analytically, we evaluated an expression for the upper performance bound of the optimum

detectors for time diversity, multiple antenna systems, and space-time coding in Rayleigh

fading and MCA noise. To simplify the analysis, we assume perfect knowledge of noise

states, which leads to tractable upper performance bounds. For time diversity, we showed

that the performance of the optimum detector in impulse noise with variance σ2 is upper-

bounded by those of Gaussian noise with variance σ2. However, for multiple antenna
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Figure 4.14: BER Performance of the optimum ST decoding for a 2× 1 MISO system in
impulse noise

systems, we showed that the upper performance bound of the optimum detector in

spatially coupled impulse noise is limited by the impulsiveness of the noise. Moreover,

we indicated how this limitation increases significantly with the numbers of transmit and

receive antennas. One interesting conclusion to be drawn from this chapter is that the

limitation of MIMO systems in impulse noise can be reduced by using a single receive

antenna, i.e., MISO systems. Then, increasing the number of transmit antennas will not

reduce the performance improvements of the optimum detector in different impulse noise

environments.



Chapter 5

Multicarrier Systems in Impulse

Noise

Our treatment of impulse noise up to this point has been focused on a single-carrier

systems involving dimensions in time and space. In this chapter, we shift the focus to

multicarrier systems in the presence of impulse noise. We consider several detection

schemes of OFDM signals corrupted by MCA noise, such as an optimum detector, a

conventional receiver, and a nonlinear detector. To investigate the error probability of

the optimum detector, we assume that the noise states of MCA noise are available at

the receiver. Under this assumption, we show that the performance of the optimum

detector in different impulse noise environments approaches the impulse-free limit as the

number of subcarriers increases. To realize such performances, we introduce a lattice

decoder along with sparse Bayesian learning (SBL) to implement the optimum detector

for OFDM systems in impulse noise.

5.1 Detection Techniques

Impulse noise often appears in the form of short pulses, which can be assumed very short

compared with the duration of an OFDM symbol. Since the spectrum of MCA noise

is comparable to the bandwidth of the OFDM system, all subcarriers are impaired by

impulse noise. This explains the limited performance of the conventional OFDM system

in strong impulse noise. There are several signal processing methods to mitigate the

effect of impulse noise in OFDM systems [37, 41, 42, 49, 51, 52]. Those methods can be

classified according to impulse noise suppression either in time or frequency. In a time-

87
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domain approach, impulse noise cancellation is implemented before OFDM demodulation

such as a clipping and a blanking nonlinearity [37, 41, 52]. However, this approach has

the disadvantage that it cancels the desired OFDM signal together with the impulse

noise, which degrades the system performance. In frequency-domain, there are several

algorithms for compensating the effect of impulse noise after OFDM demodulation [42,49].

However, none of these methods realizes an optimum detection of the OFDM signal

corrupted by impulse noise. In this section, we consider the optimum detection scheme

of OFDM signals in impulse noise. Thus, we consider a multicarrier system with N

subcarriers. The transmitted OFDM symbol x = [x0 x1 · · · xN−1]
T can be generated via

an IDFT matrix as follows:

x = WH
Ns , (5.1)

where WH
N is the IDFT matrix and s ∈ C

N×1 is the column vector of information symbols

taken from a complex constellation set. As in (1.49), the received OFDM symbol after

the CP removal is given by

y =
√

EbH̄x+ z , (5.2)

where H̄ ∈ CN×N is a circulant convolution channel matrix of i.i.d. complex Gaussian

entries and z ∈ CN×1 denotes the complex-valued MCA noise vector. Since the samples

of z are statistically independent, the noise vector z = [z0, · · · , zN−1]
T can be modeled

as

pz(z) =
N−1∏

n=0

∞∑

mn=0

αmn

2πσ2
mn

e−|zn|2/2σ2
mn , (5.3)

where σ2
mn

= σ2
G + mn

A
σ2
I . mn, n = 0, · · · , N − 1, represents the NSI of the received noise

vector z. αmn
is the Poisson distribution of a noise state mn for the nth noise observation,

zn. In the following, we introduce the optimum receiver design for OFDM systems in the

presence of MCA noise. Then, we discus two suboptimum detectors such as a zero-forcing

detector and a minimum mean-square error detector.

5.1.1 The Optimum Detector

We assume that the channel matrix H̄ is known at the receiver. Moreover, we further

assume that the noise statistics A and Υ are perfectly estimated from the received

samples [53]. From (5.3), the joint PDF of the received signal vector, y, conditioned

on the transmitted information symbol, s0, is given by

p(y|s0) =
N−1∏

n=0

∞∑

mn=0

αmn

2πσ2
mn

e
− |yn−

√
Ebh̄nWH

N
s0|2

2σ2
mn , (5.4)
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where h̄n is the nth row vector of the circulant channel matrix H̄. The optimum detector

selects the sequence, ŝ0, that maximizes this quantity as

ŝML = argmax
s

N−1∏

n=0

∞∑

mn=0

αmn

2πσ2
mn

e
− |yn−

√
Ebh̄nWH

N
s|2

2σ2
mn . (5.5)

For antipodal information sequences, the optimum detector should search over 2N possible

choices of the bits in the received signal vector y. Under perfect knowledge of the NSI, mn,

n = 0, · · · , N−1, the likelihood functions, p(y|s), reduce to a conditional N -dimensional

complex Gaussian PDF as follows:

p(y|s, mn) =
1

(2π)N |Σz|
e−

1
2(y−

√
EbH̄WH

N s)
H
Σ

−1
z (y−

√
EbH̄WH

N s) . (5.6)

Since the noise observations are statistically independent, the covariance matrix Σz is

given by Σz = diag[σ2
m0

, · · · , σ2
mN−1

]. For Σ−1
z = LLH , the ML estimate of s0 leads to

ŝML = argmin
s

∣
∣
∣LHy −

√
EbL

HH̄WH
Ns
∣
∣
∣

2

, (5.7)

which searches over all possible information symbols to select a closest signal vector ŝ0 =

ŝML to the received vector LHy. Therefore, the optimum detector that assumes perfect

NSI requires the same exhaustive searching process as in (5.5). However, the minimum

distance (MD) metrics in (5.7) can lead to a tractable performance evaluation of the

optimum detector for multicarrier systems in impulse noise.

5.1.2 Suboptimum Detectors

As a suboptimum solution, there are two well-known criteria to minimize (5.7). One is a

zero-forcing (ZF) criterion and the other is a mean-squared error (MSE) criterion. The

ZF solution provides a linear estimate of s0, which minimizes the MD metric defined as

Λ(s) =
∣
∣
∣LHy −

√
EbL

HH̄WH
Ns
∣
∣
∣

2

. (5.8)

This metric can easily be minimized with respect to s, which yields

ŝZF = 1√
Eb
WNH̄

−1y ,

= s0 +
1√
Eb
WNH̄

−1z . (5.9)
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From (5.9), we observe that the ZF detector applies a DFT matrix after eliminating the

channel matrix H̄. This leads to a conventional OFDM detector, which has a limited

performance in strong impulse noise (AΥ < 1). In the MSE criterion, we provide an

estimate of the OFDM symbol x, which minimizes the mean square value of the error

J(x) = E

[∣
∣
∣
√
EbH̄x−Ay

∣
∣
∣

2
]

, (5.10)

where A is a transformation matrix. The optimum choice of A that minimizes J(x) is

A =
(

σ2
sIN

(
σ2
sIN +Σz

)−1
)

, (5.11)

where σ2
s = Eb

∑Lp−1
lp=0 |hlp|2. Hence, the MMSE estimate x̂MSE follows as

x̂MSE =
(

σ2
sIN

(
σ2
sIN +Σz

)−1
)

y . (5.12)

We observe from (5.12) that the MMSE solution requires perfect knowledge of Σz, which

depends on the noise states, mn. Since Σz is a diagonal matrix, the MMSE estimate of

the nth observation is x̂n = σ2
s

σ2
s+σ2

mn

yn. For impulse noise with two states, i.e., mn = 0 for

Gaussian noise and mn = 1 for impulse, we have

x̂n =







σ2
s

σ2
s+σ2

0
yn if mn = 0 ,

σ2
s

σ2
s+σ2

1
yn if mn = 1 .

(5.13)

Thus, the received OFDM observations are scaled according to the variances of the

received noise. Since σ2
1 >> σ2

0 for AΥ < 1, the MMSE solution can be approximated by

a blanking nonlinearity [39] as follows:

x̂n ≈







yn if mn = 0 ,

0 if mn = 1 ,
(5.14)

which justifies the widespread use of the blanking nonlinearities in multicarrier systems

to mitigate the effects of impulse noise.

5.2 Performance Analysis of the Optimum Detector

Due to the lattice structure of the IDFT transform, the optimum detector is equivalent to

determine the ML estimate of a lattice point x̂ML from the received OFDM symbol y in the
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N -dimensional lattice space. Figure 5.1 illustrates the lattice space of the transmitted

OFDM symbols using a two-dimensional IDFT transform for binary PSK information

signals. To show how the decision regions of the optimum detector look like in the lattice

(a) Signal space (b) Lattice space

Figure 5.1: The two-dimensional lattice of WH
2 contains all lattice points for binary PSK

modulated symbols

space, we assume that the detector decides between two lattice points xi and xj . Under

no knowledge of the NSI, the optimum detector should estimate the noise states, mn, ∀n,
from the received OFDM samples yn. Under each lattice point, the NSI can be estimated

as

m̂n|xi,j
=







0 if
∣
∣yn −

√
Ebh̄nxi,j

∣
∣
2 ≤ d21 ,

1 if elsewhere ,
(5.15)

where d1 =
√

2σ2
0σ1

σ2
1−σ2

0
log

α0σ2
1

α1σ2
0
. This means the NSI seen by each lattice point xi and xj are

not necessarily identical. Then, the likelihood functions, p(y|xi,j, m̂n|xi,j
), can be given as

p(y|xi,j, m̂n|xi,j
) =

1

(2π)N |Σz|xi,j
|e

− 1
2(y−

√
EbH̄xi,j)

H
Σ

−1
z|xi,j

(y−
√
EbH̄xi,j)

, (5.16)

where Σz|xi,j
= diag[σ2

m̂0|xi,j
, · · · , σ2

m̂N−1|xi,j
] are the covariance matrices conditioned on

the noise state estimates m̂n|xi,j
. For equally likely lattice points, the optimum decision

regions between the lattice points xi and xj can be derived as

log
(
p(m̂0|xj

, · · · , m̂N−1|xj
)p(y|xi, m̂n|xi

)
)
= log

(
p(m̂0|xj

, · · · , m̂N−1|xj
)p(y|xj, m̂n|xj

)
)
.

(5.17)

Since the noise states are independent and p(m̂n|x) is given by αm̂n|x
, the joint PDF

p(m̂0|x, · · · , m̂N−1|x) cab be expressed as
∏N−1

n=0 αm̂n|x
. Therefore, by substituting (5.16)
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in (5.17), we have

yH(Σ−1
z|xj

−Σ−1
z|xi

)y + 2
√

EbRe{(xH
i H̄

HΣ−1
z|xi

− xH
j H̄

HΣ−1
z|xj

)y}

− Eb(x
H
i H̄

HΣ−1
z|xi

H̄xi − xH
j H̄

HΣ−1
z|xj

H̄xj) = 2

N−1∑

n=0

log

(
σ2
m̂n|xi

αm̂n|xj

σ2
m̂n|xj

αm̂n|xi

)

,

(5.18)

which depicts the nonlinear decision regions for xi and xj in the N -dimensional lattice

space. The decision region in (5.18) leads to an intractable performance evaluation of

the optimum detector for multicarrier systems in impulse noise. However, under perfect

knowledge of the noise states, we have Σz|xi,j
= Σz and αmn

= 1. Hence, the decision

region in (5.18) reduces to

2
√

EbRe{(xi − xj)
HH̄HΣ−1

z y} − Eb(x
H
i H̄

HΣ−1
z H̄xi − xH

j H̄
HΣ−1

z H̄xj) = 0 . (5.19)

The decision boundary in (5.19) depicts an affine hyperplane in the N -dimensional lattice

space. It is worth mentioning that, in the absence of impulse noise, i.e., Σz = σ2
GIN , the

affine hyperplane is further reduced to

2
√

EbRe{(x0 − x1)
HH̄HΣ−1

z y} = 0 , (5.20)

which represents a set of linear equations of that goes through the origin. This justifies

why the DFT transformation is optimum for OFDM signals corrupted by Gaussian noise.

In the following, we use (5.19) to evaluate the PEP between the lattice points xi and

xj . Then, we introduce the asymptotic probability of error for the optimum detector of a

multicarrier system in impulse noise.

5.2.1 Pairwise Error Probability

From (5.19), the optimum decision rule can be expressed as

Re{(xi − xj)
HH̄HΣ−1

z y} −
√

Eb

4
(xH

i H̄
HΣ−1

z H̄xi − xH
j H̄

HΣ−1
z H̄xj)

xi
≥
<
xj

0 . (5.21)

Under perfect knowledge of H̄ and mn, ∀n, supposing xi was sent, the decision variable

in (5.21) reduces to

χ
MC

= Re{(xi − xj)
HH̄HΣ−1

z z}+
√

Eb

4
(xi − xj)

HH̄HΣ−1
z H̄(xi − xj)

xi
≥
<
xj

0 . (5.22)
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The PEP is simply the probability that χ
MC

is less than zero. The decision variable, χ
MC

,

is Gaussian with mean

µχ
MC

=
√

Eb

4
(xi − xj)

HH̄HΣ−1
z H̄(xi − xj) , (5.23)

and variance

σ2
χ
MC

= (xi − xj)
HH̄HΣ−1

z H̄(xi − xj) . (5.24)

Hence, the conditional PEP can be computed as

P (xi → xj |H̄, mn) = Q
(

µχ
MC

σχ
MC

)

,

= Q
(√

Eb

4
(xi − xj)HH̄HΣ−1

z H̄(xi − xj)
)

. (5.25)

For simplicity, we assume that the fading channel is flat, e.g., H̄ = h0IN . Since σ2
mn

=

σ2
G(1 +

mn

AΥ
), n = 0, · · · , N − 1, (5.25) reduces to

P (xi → xj|h0, mn) = Q
(√

Eb

4σ2
G

|h0|2d2(xi,xj , mn)
)

, (5.26)

where

d2(xi,xj, mn) =
N−1∑

n=0

|xi,n − xj,n|2
1 + mn

AΥ

. (5.27)

Using the Chernoff bound, (5.26) can be upper-bounded as

P (xi → xj |h0, mn) ≤
1

2
exp

(

− Eb

8σ2
G

|h0|2d2(xi,xj , mn)
)

. (5.28)

Since |h0| is a Rayleigh-distributed random variable, |h0|2 has a chi-square probability

distribution with two degrees of freedom. Thus, we have

p(|h0|2) =
1

h̄
exp

(

−|h0|2
h̄

)

, |h0|2 ≥ 0 , (5.29)

where h̄ = E{|h0|2} denotes the average power of the channel. We average the conditional

PEP, given in (5.28), over the PDF of |h0|2 as follows:

P (xi → xj |mn) =

∫ ∞

0

P (xi → xj |h0,m)p
(
|h0|2

)
d|h0| ,

≤ 1

2

1

1 + Eb

8σ2
G

d2(xi,xj , mn)
. (5.30)
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At high SNR, the right-hand side of (5.30) can be approximated as

P (xi → xj |mn) <

(
Eb

σ2
G

)−1
4

d2(xi,xj , mn)
. (5.31)

By averaging (5.31) over the noise state probabilities, αmn
, the upper bound of the PEP

is

P (xi → xj) <

(
Eb

σ2
G

)−1

G(xi,xj)
︷ ︸︸ ︷
∞∑

m0=0

· · ·
∞∑

mN−1=0

4
∏N−1

n=0 αmn

d2(xi,xj, mn)
. (5.32)

From (5.32), we observe that the upper bound of the PEP performance consists of two

terms. The first term decreases inversely with the SNR, Eb/2σ
2
G. The second term depends

on the parameters of the MCA noise.

5.2.2 Upper Performance Bound

We assume a binary PSK modulation scheme for the information symbols s. Using the

union bound, the probability of error is upper-bounded by

Pe ≤
1

2N

2N−1
∑

i=0

2N−1∑

j=0
j 6=i

nd(i, j)

N
P (xi → xj) , (5.33)

where nd(i, j) is the number of bit errors when the symbol xi is erroneously detected

as a symbol xj . We first assess the asymptotic probability of error for the optimum

detector in Gaussian noise with variance σ2
G = σ2

0 . In the absence of impulse noise,

i.e., mn = 0, ∀n, the linear decision boundaries in (5.20) divides the lattice space (in

two-dimensional lattices) into 4 symmetric decision regions as illustrated in Fig. 5.2.

Accordingly, d2(xi,xj, mn), formn = 0, reduces to the Euclidean squared distance between

the corresponding signal points, (si − sj)
H(si − sj). Therefore, the probability of error is

upper-bounded by summing the PEPs of nearest-neighbor (Euclidean) lattice points as

Pe <

(
Eb

σ2
G

)−1
1

2N

2N−1
∑

i=0

Ni∑

j=1
j 6=i

nd(i, j)

N

4

d2min(xi,xj)
, (5.34)

where d2min(xi,xj) denotes the minimum Euclidean distance and Ni is the number of

neighboring lattice points for the point xi. Since d2min(xi,xj) = 4 and Ni = N for binary
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Figure 5.2: Decision boundaries of the optimum detector for Gaussian noise

PSK, (5.34) is further reduced to

Pe <

(
Eb

σ2
G

)−1

, (5.35)

which provides the upper performance bound of the optimum detector in Gaussian noise.

However, in the presence of impulse noise, we observe in (5.19) that the optimum detector

modifies the decision boundaries according to the noise states of received impulse noise

vector z. In the one hand, when the noise states of zn, n = 0, · · · , N − 1, are identical,

i.e., Σz = σ2
mIN , the decision boundaries reduce to a set of linear equations as in Fig. 5.2

for N = 2. On the other hand, when the noise states are not identical, the optimum

decision boundaries illustrate an affine hyperplane to cope with the effects of impulse

noise. In Fig. 5.3, we depict the decision boundaries given in (5.19) for a two-dimensional

received signal, y = [y0 y1]
T , corrupted by impulse noise. Figures 5.3a and 5.3b, show the

decision boundaries of the received signal corrupted by impulse noise with the noise states

[m0 = 1, m1 = 0] and [m0 = 0, m1 = 1], respectively. We observe that the probability

of error is dominated by the PEPs of lattice points that fall on the direction of impulse

noise. Thus, considering only the nearest-neighbor lattice points will not be correct for

the upper performance bound in the presence of impulse noise. In (5.32), we note that

P (xi → xj) is directly proportional to

G(xi,xj) =

∞∑

m0=0

· · ·
∞∑

mN−1=0

4
∏N−1

n=0 αmn

d2(xi,xj, mn)
. (5.36)



96 5.2. PERFORMANCE ANALYSIS OF THE OPTIMUM DETECTOR

(a) m0 = 1 and m1 = 0 (b) m0 = 0 and m1 = 1

Figure 5.3: Decision boundaries of the optimum detector in impulse noise with two
different noise states and σ2

1 = 20σ2
0

The probability of error of the optimum detector in impulse noise is upper-bounded by

summing the PEPs of maximum G(xi,xj), ∀i and ∀j, as

Pe <

(
Eb

σ2
G

)−1

GMC
︷ ︸︸ ︷

1

2N

2N−1
∑

i=0

Mi∑

j=1
j 6=i

nd(i, j)

N
Gmax(xi,xj) , (5.37)

where Gmax(xi,xj) represents the maximum value of (5.36), ∀i and ∀j. Mi is the number

of lattice points of maximum G(xi,xj) for the point xi. To investigate the probability

of error for different number of subcarriers N , we first consider a single-carrier case. For

N = 1, the expression in (5.37) reduces to

Pe <

(
Eb

σ2
G

)−1 ∞∑

m0=0

αm0

(

1 +
m0

AΥ

)

,

<

(
Eb

σ2
G

)−1

GMC
︷ ︸︸ ︷(

1 +
1

Υ

)

. (5.38)

The single-carrier systems in impulse noise is limited by a factor GMC = (1 + 1
Υ
), which

increases as Υ decreases. For N = 2, we observe in Fig. 5.3 that the probability of error

is dominated by P (x0 → x3) and P (x2 → x1) due to the presence of impulse noise. Since
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d2(x0,x3, mn) = 8/(1 + m0

AΥ
) and nd(0, 3) = 2, (5.37) can be rewritten as

Pe <

(
Eb

σ2
G

)−1 ∞∑

m0=0

∞∑

m1=0

4αm0αm1

8/
(
1 + m0

AΥ

) ,

<

(
Eb

σ2
G

)−1

GMC
︷ ︸︸ ︷(
1 + 1

Υ

)

2
. (5.39)

This result shows that the performance loss, GMC, is reduced by a factor of 2. However,

in the case of OFDM systems with N > 2, it is not clear how the performance loss, GMC ,

is reduced as N increases. To assess the performance improvements of the optimum

detector in different impulse noise environments, we used a Monte Carlo simulation to

compute GMC at various number of subcarriers. In Fig. 5.4, we illustrate GMC versus the

number of subcarriers, N , for MCA noise with different A and Υ = 0.01. Additionally,
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Number of subcarrier, N

G
M

C

 

 

Gaussian noise, σ 2
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(1 + 1/Υ)

A = 1, Υ= 0.01

A = 0.01, Υ= 0.01

A = 0.1, Υ= 0.01

Figure 5.4: GMC versus the number of subcarriers for MCA noise with different A

we depict the single-carrier limits in Gaussian noise with σ2
G and σ2 = σ2

G(1 + 1
Υ
) as

references. The shown results indicate that the optimum detector of multicarrier systems

yields a significant reduction in GMC as N increases. Furthermore, we note that GMC

obtained for impulse noise with equal Gaussian factors, Υ, reduces significantly as the

average rate of impulses, A, decreases. To examine the performance improvement of the

optimum multicarrier detector in different conditions of impulse noise, we compute GMC

versus N for impulse noise with various Gaussian factors. The results of the simulation
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are depicted in Fig. 5.5 for impulse noise environments with A = 0.1 and different Υ.

The shown results state an interesting point of the optimum detector for the multicarrier
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Figure 5.5: GMC versus the number of subcarriers for MCA noise with different Υ

systems in strong impulse noise. We observe that the optimum detector in impulse noise

with Υ = 0.001 reduces the loss factor from 103 to 10 at for N = 8. In addition, we note

that GMC approaches the impulse-free limit as Υ increases.

5.3 Optimum Detector Using Lattice Decoding

In the previous analysis, we showed how the optimum detector utilizes the lattice structure

of the OFDM symbols (in time domain) to minimize the performance loss as the number

of subcarriers increases. Herewith, we take a first step towards a practical realization of

the optimum detector of OFDM signals in MCA noise.

5.3.1 Lattice Sphere Decoding

We observe from (5.7) that the optimum decision rule is equivalent to finding the closest

lattice point to a received point LHy. Thus, the lattice decoder [54] can be used to realize

the implementation of the optimum detector under perfect knowledge of the NSI. The

lattice decoder searches over all possible lattice points that lie within a sphere of radius
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β0 around the received point LHy. The sphere equation of the optimum detector can be

expressed as
∣
∣
∣LHy −Gs

∣
∣
∣

2

≤ β0 , (5.40)

where G =
√
EbL

HH̄WH
N . The sphere equation in (5.40) requires perfect knowledge of

the noise states mn, n = 0, · · · , N−1, to compute Σ−1
z = LLH . Thus, we first use perfect

estimate of Σz to realize the performance improvements of the optimum detector. Using

a QR decomposition, the matrix G can be factorized into a product of a unitary matrix

Q and an upper triangular matrix R. Thus, (5.40) reduces to

∣
∣
∣LHy−QRs

∣
∣
∣

2

≤ β0 ,
∣
∣
∣QHLHy −QHQRs

∣
∣
∣

2

≤ β0 , (5.41)
∣
∣
∣y

′ −Rs
∣
∣
∣

2

≤ β0 ,

which is equivalent to solving the following linear least squares problem

N−1∑

j=n

∣
∣
∣y

′

j −
∑N−1

i=j Rj,isi

∣
∣
∣

2

≤ β0 , n = 0, · · · , N − 1 , (5.42)

which is the typical problem of the lattice (sphere) decoder for finding the closest signal

vector that satisfies the above set of conditions in the order from n = N−1 to n = 0. The

searching algorithms of the lattice decoder can be implemented sequentially as in [54,55],

or concurrently as in [56,57]. In the simulation results, we examine the performance of the

K-best algorithm [56,57] of lattice decoding for multicarrier systems in impulse noise. As

an illustration of the performance improvements of the optimum detector for multicarrier

systems in the presence of impulsive interference. Figures 5.6, 5.7, and 5.8 depict the BER

of the lattice decoder for BPSK-OFDM signals in a Rayleigh flat fading channel and MCA

noise with A = 1, A = 0.1, and A = 0.01, respectively. For comparison, the performances

obtained for a channel with Gaussian noise are also depicted as references. In Fig. 5.6,

we observe that the results obtained for MCA noise with A = 1 and Υ = 0.01 improve as

the number of subcarriers, N , increases. However, in moderate and strong impulse noise,

figures. 5.7 and 5.8 show that the optimum detector approaches the impulse-free limit as

N increases, which is in agreement with the results obtained in Fig. 5.4.
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Figure 5.6: The BER Performance of the sphere decoder for an BPSK-OFDM system in
MCA noise with A = 1 and Υ = 0.01

0 10 20 30 40 50 60
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/2σ 2
G, dB

B
E

R

 

 

MCA, N = 8

MCA, N = 16

MCA, N = 32

Gaussian, σ 2
G

Gaussian, σ 2

10log10(1 + Υ)

A = 0.1, Υ= 0.01

GMC

Figure 5.7: The BER Performance of the sphere decoder for an BPSK-OFDM system in
MCA noise with A = 0.1 and Υ = 0.01
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Figure 5.8: The BER Performance of the sphere decoder for an BPSK-OFDM system in
MCA noise with A = 0.01 and Υ = 0.01

5.3.2 Noise Covariance Estimation

The results of the previous subsection assume perfect knowledge of the impulse noise

covariance matrix Σz. To realize this assumption, we develop a sparse Bayesian learning

(SBL) scheme [43,44] with the lattice decoder for multicarrier systems in the presence of

impulse noise. SBL treats impulse noise as a random sparse signal corrupted by Gaussian

noise, which provides a reliable estimate of noise locations as well as noise amplitudes.

Figure 5.9 illustrates a receiver structure of multicarrier systems in impulse noise using

lattice decoding and SBL. We consider the N subcarriers consisting of null subcarriers

(null subcarriers)

DFT
y YNF SBL

algorithm
(Estimate Σ−1

z
)

Lattice
Decoder

ŝLD

SBL

Figure 5.9: A receiver structure of multicarrier systems using lattice decoding and the
SBL scheme

and data subcarriers. Since the received noise vector z has two noise components zI and
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zG, the received signal on the null subcarriers (after the DFT operation) can be given as

YNF
= WNF

zI +V , (5.43)

where NF is the number of null subcarriers. WNF
is an NF ×N submatrix of WN formed

by selecting the rows of the null signal subspace. V = WNF
zG is an NF × 1 Gaussian

noise vector with zero mean and variance σ2
G. Then, the conditional PDF of YNf

given

zI can be expressed as

p(YNF
|zI) =

1

(2πσ2
G)

NF
e
− 1

2

(YNF
−WNF

zI)
H
(YNF

−WNF
zI)

2σ2
G . (5.44)

For MCA noise, the entries of the impulse noise vector, zI , are Gaussian with zero mean

and variance mn/A
1+Υ

σ2
G, n = 0, · · · , N − 1. Thus, the prior distribution of zI can be given

as

p(zI) =
1

(2π)N |ΣzI |
e−

1
2
zHI Σ

−1
zI

zI , (5.45)

where the covariance matrix ΣzI is diagonal. Indeed, the diagonal elements of ΣzI are

the variances of the elements of zI . According to [43, 44], the nonzero variances indicate

to the presence of impulse noise. From (5.44) and (5.45), the distribution of YNF
is

p(YNF
) =

∫

p(YNF
|zI)p(zI)dzI ,

=
1

(2π)NF |ΣYNF
|e

− 1
2
YH

NF
Σ

−1
YNF

YNF , (5.46)

where ΣYNF
= σ2

GINF
+WNF

ΣzIW
H
NF

. Using Bayes’ rule, the posterior probability of zI

can be computed as

p(zI |YNF
) =

p(YNF
|zI)p(zI)

p(YNF
)

,

=
1

(2π)N |Σ|e
− 1

2
(zI−µI )

HΣ−1(zI−µI) , (5.47)

where

Σ =

(
1

σ2
G

WH
NF

WNF
+Σ−1

I

)−1

, (5.48)

and

µI =
1

σ2
G

ΣWH
NF

YNF
, (5.49)
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are the posterior covariance and mean, respectively. We follow the SBL scheme in [43] to

estimate ΣI that maximizes log (p(YNF
)) as follows:

ΣI = Σ+ µIµ
H
I . (5.50)

The learning algorithm of the SBL scheme starts with an initial value of ΣI to compute

the updates of the posterior statistics Σ and µI from (5.48) and (5.48), respectively.

The algorithm converges within a few iterations. Upon convergence, the current values

of µI and ΣI yields an estimate of the sparse vector zI and the covariance matrix ΣI ,

respectively. Therefore, the estimate of the covariance matrix Σz can be given by σ2
GIN +

ΣI . In the simulation results, we investigate the SBL algorithm with the sphere decoder

for multicarrier systems in impulse noise. We assume a BPSK-OFDM system with N = 64

in the presence of MCA noise with A = 0.1 and 0.01. Since the SBL algorithm requires a

set of null subcarriers, we limit the data subcarriers to 32 subcarriers. The SBL algorithm

with two different numbers of nulled subcarriers is used, i.e., NF = 24 and 32. For

the purposes of comparison, we simulated the performances of a conventional OFDM

detector in the same impulse noise environments. Figure 5.10 depicts the BER of the

conventional OFDM detector and the sphere decoder employing the SBL algorithm for

estimating impulse noise variances in a flat fading channel. Additionally, we illustrate
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Figure 5.10: The BER Performance of a sphere decoder employing the SBL scheme for
estimating impulse noise variances

the performance of the impulse-free channel as a reference. From this figure, we observe
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that the SBL scheme with a sphere decoder provides much better performance than the

conventional OFDM detector. In addition, we note that the SBL scheme with NF =

32 improves the performance of the sphere decoder more than with NF = 24. This

was expected, since increasing NF improves the estimates of noise variances Σz. This

improvement increases significantly when the noise becomes more sparse (decreasing A).

5.4 Conclusion

In this chapter, we considered different detection schemes for multicarrier systems in the

presence of MCA noise. We investigated the optimum detector as well as the suboptimum

detectors such as a conventional OFDM detector and a minimum mean square error

detector. Under perfect knowledge of the NSI, we derived the upper performance bound

of the optimum detector in impulse noise. The performance analysis showed that the

performance loss due to impulse noise reduces significantly with the number of subcarriers.

Therefore, we developed a lattice decoder to realize the optimum multicarrier detector

in impulse noise. We further investigated the SBL scheme for estimating the NSI of

MCA noise using null subcarriers. The simulation results showed that the lattice decoder

with the SBL scheme approaches the impulse-free limit as the number of null subcarriers

increases.



Chapter 6

Concluding Remarks

In this thesis, we have investigated modern detection schemes for binary signaling in

fading channels with impulse noise. In particular, we provided a simple representation of

a Middleton Class-A (MCA) model for impulse noise. This representation leads to suitable

approximations of the optimum detection by determining noise states (Gaussian or impul-

sive) at the receiver. Diversity techniques were also considered, and the approximate MCA

representation played an important role in finding and analyzing the optimum schemes for

wireless communication systems utilizing time and space diversity. We also provided the

optimum receiver design of orthogonal frequency division multiplexing (OFDM) systems

in impulse noise. We found analytically that the OFDM system employing the optimum

receiver appears to be the most effective method for significantly combating the effects of

impulse noise.

The first portion of this work concentrated on analyzing and verifying the statistical

properties of the MCA model for wireless impulse noise. Since MCA noise is character-

ized by very short pulses, we showed that temporal characteristics of impulse noise are

dominated by the impulse response of a passband filter. Additionally, we presented a

multivariate MCA distribution to model the spatial property of impulse noise for multi-

antenna systems. The measurement results showed that the wireless interference at a

2.4 GHz band possesses the impulsive character of MCA noise. We observed that a

few first terms of the MCA distribution are sufficient to fit the voltage histograms of the

measured data. For multi-antenna systems, we verified the multivariate MCA distribution

in modeling the received interference at different receive antennas. The measurements

showed that the spatial properties of the received interference are in accordance with a

correlated multivariate model of MCA noise with unequal Gaussian factors.
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Second, we considered an optimum detection approach of binary signals corrupted by

MCA noise. We introduced a simplified MCA model to derive a closed-form approxima-

tion of nonlinear operations of the optimum detector. The simplified MCA model uses a

threshold detection scheme to determine the noise states of impulse noise. We observed

that the optimum detector applies two different nonlinearities on the received signal ob-

servations according to signal levels with respect to a detection threshold of impulse noise.

Thus, at a low signal-to-noise ratio (SNR), we showed that the optimum nonlinearities

provide an impulse-free performance as the number of observations increases. However,

at a high SNR, the performance of the optimum detector approaches the one of a linear

detector in impulse noise. For two received observations, we used the simplified MCA

model to introduce a decision boundary evaluation of the optimum detector in MCA noise.

This investigation explains the nonlinearity behaviors the optimum detector in different

impulse noise environments. We further used the approximate nonlinearities to evaluate

the operations of suboptimum nonlinearities such a locally optimum and a clipping non-

linearity. We then studied a linear approximation of the optimum nonlinearities, which

introduces new suboptimum detectors such as a piecewise linear detector and a clipping-

like detector. The simulation results showed that the proposed approximations provide a

near performance to the optimum detector for different impulse noise environments.

In the third part, we investigated time and space diversity techniques for wireless com-

munication systems in the presence of fading and impulse noise. Under perfect knowledge

of noise states, we analytically evaluated an upper performance bound of the optimum

detectors for time and spatial diversity in Rayleigh fading and MCA noise. At high

SNRs, we showed that the performance of the optimum detector for time diversity is

limited by the Gaussian factor (a ratio of Gaussian noise power to impulse noise power)

of impulse noise. However, the asymptotic performance of the optimum detector for

receive diversity is further limited by the impulsive index (average rate of impulses) of

MCA noise. Moreover, for transmit/receive diversity, we showed that the performance

limitation of orthogonal space-time block coding (OSBTC) increases significantly with

the numbers of transmit and receive antennas. To realize the assumption of perfect noise

state information (NSI), we applied the herein simplified MCA model to provide a closed-

form approximation of the optimum detection method for time diversity, receive diversity,

and OSTBC schemes. Simulation results showed that the performance of the approximate

optimum detectors approach the optimum one for different environments of impulse noise.

Lastly, we investigated the optimum receiver design for multicarrier systems in fading
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and MCA noise. Under perfect knowledge of the NSI, we showed that the optimum

detector of OFDM signals reduces to a lattice decoder. The performance analysis of the

optimum detector with perfect NSI showed that the performance limitation of OFDM

signals in impulse noise is reduced significantly with increasing the number of subcarriers.

In particular, the performances approach the impulse-free limit for impulse noise with

a small rate of impulses. This differs from the time and space diversity schemes whose

performances are limited by the impulsive index and the Gaussian factor of MCA noise.

To realize the NSI at the receiver, we investigated sparse Bayesian learning (SBL) to

estimate the noise states using a set of nulling subcarriers. We then proposed a sphere

decoding with SBL to realize the optimum OFDM receiver. The presented simulation

results showed that the proposed implementation approaches the optimum performance

as the number of nulling subcarriers increases.
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List of Mathematical Symbols

A impulsive index of MCA noise

C space-time code matrix

cnD
nth
D column vector of C

d0 threshold for discriminating impulse noise and Gaussian noise

d1 threshold for discriminating the noise states of baseband impulse

noise

g(·) optimum nonlinearity operation

H MIMO channel matrix

H̄ circulant convolution channel matrix

hnD
fading coefficient for the nth

D time slot

hnR
fading coefficient for the nth

R receive antenna

h̄ first column vector of H̄

m noise state information

N number of received observations

ND number of time slots

NR number of receive antennas

NT number of transmit antennas

NF number of nulled subcarriers

Pe error probability

pw(w) probability density function of real impulse noise

pz(z) probability density function of complex impulse noise

Σm covariance matrix of MCA noise for the mth noise state

σ2
G variance of Gaussian noise

σ2
I variance of impulse noise

σ2 average noise variance of an MCA model

σ2
m noise variance of the mth noise state

Υ Gaussian factor of an MCA model

WH
N inverse DFT matrix

WN DFT matrix

w(t) passband impulse noise process

x OFDM symbol

Y received vector after a DFT operation

yk kth received observation

ynD
received signal for the nth

D time slot

ynR
received signal for the nth

R receive antenna
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z(t) baseband impulse noise process

znD
noise vector for the nth

D time slot

znR
noise vector for the nth

R receive antenna
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List of Acronyms

AWGN additive white Gaussian noise

BER bit-error ratio

BPF bandpass filter

BPSK binary phase shift keying

CCDF complementary cumulative distribution function

CP cyclic prefix

DFT discrete-Fourier transform

IDFT inverse discrete-Fourier transform

IF intermediate frequency

ISM industrial, scientific, and medical

LAN local area network

LLR log-likelihood ratio

LO local oscillator

LOD locally optimum detector

MCA Middleton Class-A

MD minimum distance

MIMO multiple-input multiple-output

MISO multiple-input single-output

ML maximum-likelihood

MMSE minimum mean-square error

MRC maximum ratio combining

NSI noise state information

OFDM orthogonal frequency division multiplexing

OSTBC orthogonal space-time block coding

PDF probability density function

PEP pairwise error probability

QAM quadrature amplitude modulation

RFI radio frequency interference

SBL Sparse Bayesian learning

SINR Signal-to-interference-plus-noise ratio

SNR signal-to-noise ratio

ST space-time

SαS symmetric alpha-stable

ZF zero-forcing
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