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Abstract

This thesis discusses how memory of the source, of disturbances, or of the channel can be

e�ciently dealt with inside the decoding of LDPC codes. Furthermore, how such codes can

be optimized for including source memory is also presented.

At the source, the memory is modeled via a Markov chain. The transition probabilities of the

model are used at the decoder to estimate the source symbols. Although computed at the

decoder, this information is considered to be a-priori information. The a-priori LLR can be

directly incorporated into the Tanner graph via directed edges between the variable nodes, a

novel simplified computation which provides equal performance to existing methods is shown.

A Turbo-like scheme is also proposed where a BCJR and an LDPC decoder decode the source

and received sequences iteratively, each utilizing extrinsic information computed by the other

decoder. The Turbo decoding scheme performs the best at low SNRs. Subsequently, a code

design algorithm is provided for obtaining optimized codes for the decoding model with direct

additional links between variable nodes. For the optimization, density evolution is used. The

optimized codes provide steeper performance curves than non-optimized ones.

Thereafter, impulse noise with memory is investigated, which is modeled by the Middleton

Class-A model. A Markov model provides the transition probabilities between background and

impulsive noise states. A Viterbi decoder estimates the noise sequence and an LDPC decoder

estimates the transmitted symbols. Information is iterated between the decoders to improve

the overall correction at the receiver. Possibilities for computing the noise states directly at

the decoder are also investigated. However, the noise-memory cannot be directly incorporated

into the Tanner graph. Lastly, a method is proposed to mitigate channel memory which

causes inter-symbol interference using an LDPC decoder. A decision-feedback equalization

like structure is used in which the intermediate LDPC decoder results are used for equalization.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The motivation behind this thesis is understanding and extending iterative LDPC decoding

to exploit memory or dependency present in di↵erent parts of the transmission chain. LDPC

codes are capacity approaching codes. In the 1990s, simulations of iterative coding techniques

provided possibilities for channel capacity approaching performance for both Turbo and LDPC

codes, providing substantial gains over existing methods of channel coding. At present, LDPC

codes are being implemented in current standards, e.g., for deep space communications, 5G

telecommunication standards etc.

Here, source, noise, and channel memory are incorporated into LDPC codes. Realization

of memory in each of these components of the transmission chain is di↵erent and requires

separate handling. We have investigated an LDPC decoder for decoding sources with mem-

ory, for mitigating impulse noise with memory, and for canceling inter-symbol interference; a

manifestation of dependency arising from the channel transfer function. A code optimization

procedure is also presented which takes into account the modified decoder for handling source

memory.

1.2 Thesis Contributions

The contributions of this thesis are listed below.

• Di↵erent methods for using source dependencies in LDPC decoding are provided and

compared.

• Optimized codes for sources which have dependency modeled by a discrete time Markov

chain are found by utilizing density evolution. The convergence constraint for the density

1



2 CHAPTER 1. INTRODUCTION

evolution procedure is reformulated to incorporate source memory.

• An LDPC decoding scheme for mitigating Middleton Class-A impulse noise model with

memory is provided.

• An LDPC based decision-feedback-equalizer for ISI cancellation is shown.

Together, these four parts form our analysis of LDPC decoder interaction with the other parts

of the transmission system.

1.3 Structure of the Thesis

In the following, we provide short descriptions of the contents of the chapters of this thesis.

Chapter 2: Basic Concepts

In this chapter, we provide the framework for all concepts, methods, and algorithms used in

this thesis. We provide an overview of Markov models, channel codes with a focus on LDPC

codes as well as Turbo codes.

Chapter 3: LDPC Decoding for Sources with Memory

This chapter focuses on the modification of the decoder for a data source modeled by a

Markov chain. A source sequence generated by such a model implies that information from

neighboring variable nodes can be used for decoding, for a systematic code. Following the

discrete time Markov chain which models the source, the information between neighboring

variable nodes are directed in a ’left-to-right’ orientation. We provide three decoding tech-

niques for utilizing this information and provide simulation results for each showing the gains

obtained by using the dependency. We investigate order-1 and order-2 Markov chains for the

simulations.

Chapter 4: Optimization of LDPC Codes for Sources with Memory

In this chapter, density evolution based techniques are used for finding optimized codes for

sources modeled by a Markov chain. The ’left-to-right’ edges between information variable-

nodes changes the typical mutual information calculation equations, replacing them with a

quadratic expression in the variable-node degree distribution polynomial. The BER curves of

the optimized codes are steeper compared to codes optimized for the AWGN channel, even
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when the standard codes have lower SNR thresholds at which convergence begins.

Chapter 5: LDPC Codes in Impulse Noise with Memory

In this chapter, we consider a channel disturbed by impulse noise with memory, modeled by

Middleton class-A model. The memory can be expressed as a Markov model and we show 4

di↵erent methods of mitigation at the decoder. A Turbo-like scheme, using a Viterbi decoder

for estimating the noise state sequence is proposed. The memory in the noise process is suc-

cessfully used for mitigation of impulse noise.

Chapter 6: LDPC-based Decision Feedback Equalization

In this chapter, an LDPC decoder is incorporated into decision feedback equalization. We

present an iterative method in which intermediate decoding results from an LDPC decoder

are used for cancelling the ISI, e↵ectively this is an iterative DFE. The LDPC decoder also

consequently benefits from better channel estimates leading to modified intrinsic information,

the interplay between the two decoders is in a Turbo-like fashion.

Chapter 7: Conclusion

In this chapter, we summarize the methods implemented for each memory aspect investigated.

We discuss the results obtained and the applicability of using LDPC decoding in conjunction

with processing in other parts of the communication chain. We conclude the thesis by outlining

the future aspects of investigation.
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Chapter 2

Basic Concepts

In this chapter, we provide a technical overview of the methods used in the rest of the work.

The overall thesis topic is an investigation of dependencies in di↵erent parts of the transmis-

sion block, as illustrated in Fig. 2.1. For both the source and noise realization of dependency,

Markov models are used. We begin our description there. We then move on to providing an

overview of LDPC codes, which are used as the standard channel code in this thesis.

In Fig. 2.1, a block diagram of a realization of a digital transmission scheme is shown.

Data Source Source Encoding Channel Encoding

Channel Decoding

Modulation

Demodulation

Channel

Source DecodingData Sink

Noise

Figure 2.1: Block-diagram of a transmission system

We have divided the processes in to three sub-divisions, on the transmission side, which address

the following:

• Data handling before transmission,

• Noise environment,

• Channel impulse response causing inter-symbol interference.

The topic of this thesis is treating memory or dependencies present in these three parts at

the channel decoder on the receiver side. As a channel code, we have used low-density parity-

check (LDPC) codes consistently, as well as always using BPSK modulation. We now briefly

5



6 CHAPTER 2. BASIC CONCEPTS

present the handling of dependencies in each of the three sub-divisions.

Data Handling before Transmission

In this part, the source data was modeled as resulting from a Markov model. This results in

the source information bits having a memory between them. Without doing separate source

encoding, we directly performed channel encoding, i.e., computed the parities for the source-

optimized channel code. On the receiver side, we used the source model directly in the channel

decoder. Simulations for three decoder realizations are shown and results are compared. For

designing source optimized LDPC codes based on the modified belief propagation decoding,

computational changes relating to LLR density transformations reflecting structural changes

in the Tanner graph have to be formulated. Subsequently, optimized codes are obtained using

all relevant constraints of the source optimized channel code and results are compared with

codes obtained by standard density evolution methods.

Noise Environment

This portion of the thesis is focused on impulse noise mitigation. We consider an impulse

noise model with memory, again described by a Markov model. We focus on deducing the

active noise environment (impulsive or background Gaussian) during transmission at the re-

ceiver, in order to mitigate the extreme e↵ects of impulse noise on system performance. We

implemented a Turbo-like scheme using a Viterbi decoder and an LDPC decoder iterating

between them to deduce the noise states and using the variance of the estimated noise state

for decoding the transmitted symbols, respectively.

Channel Impulse Response causing Inter-symbol Interference

For this section of the thesis, we investigated ISI cancellation in the Tanner graph by using

a decision-feedback equalizer structure within the LDPC decoder. This method provides an

iterative approach as well, however, in contrast to Turbo-equalization, this method has lower

complexity.

We now move on to describing the required models, methods, and algorithms for implementing

the above mentioned memory-incorporating LDPC designs.
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2.1 Markov Models

Markov models are stochastic models describing systems of random variables. They were first

proposed by A. A. Markov in 1913, an English translation of the original (Russian) paper is

available in [1]. Models are represented using a state-space description, i.e., random variables

representing which state the model is in at a specified time instant. A model is given by the

probabilities which govern the transitions between states and probabilities of observing specific

outputs depending on the states. We provide some basic definitions in the following.

Markov Property

A stochastic or probabilistic process has the Markov property if the next state of the system

only depends on the current state. In other words, the Markov property implies conditional

independence of the random variable at time t+ 1 on all past states, it is only dependent on

the present state, at time t.

Let St denote the random variable describing the states of a system at time t and let the

number of states be Ns. St takes values si where i 2 {0, 1, ..., Ns}. Then the Markov

property is given by

P (St|St�1, St�2, ..., S0) = P (St|St�1) . (2.1)

Processes that possess the Markov property are Markov processes which can be described via

Markov models. Two commonly used Markov models are the Markov chain and the hidden

Markov model. The di↵erence between the two being whether the state transitions can be

directly observed from the outcomes of the random process. The two models are described in

detail in the next sections.

Markov models are used prolifically in stochastic modeling. In the fields of finance, genetics,

information theory, and economics they are widely used to model systems such as stock price

fluctuations, bacteria reproduction, queuing theory, etc.

2.1.1 Markov Chains

Markov chains can be described by finite state machines. In Fig. 2.2, a state diagram of a

Markov model is shown.
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Figure 2.2: A discrete-time Markov chain

When the state transitions of a system are fully observable form the outcomes, the Markov

model is called a Markov chain. Thus, Markov chains are sequences of random variables which

describe a sequence of states of a stochastic process. The transition probabilities of a Markov

model are given by the transition probability matrix. For this thesis, we only consider Markov

chains on a finite state space with a discrete time index. Such chains are called Discrete-time

Markov chains (DTMC). When the time index of a process is continuous, they are called

continuous-time Markov chains (CTMC).

A transition matrix Q is a matrix used to describe a Markov model, given in Eq. (2.2), where

the (i, j)th entry of the matrix provides the probability to transition from the ith state to the

jth state. The transition matrix corresponding to Fig. 2.2 is shown below.

Q =

2

64
P (s0|s0) P (s1|s0) P (s2|s0)

P (s0|s1) P (s1|s1) P (s2|s1)

P (s0|s2) P (s1|s2) P (s2|s2)

3

75 =

2

64
1 0 0

0.2 0.5 0.3

0.3 0.4 0.3

3

75 . (2.2)

Each row of the matrix sums up to 1 since this is a stochastic model. The transition matrix

given here describes a time-homogeneous Markov chain.

A time-homogeneous Markov chain has the property that the transition matrix is time-

invariant, i.e., the transition probabilities do not change with the time steps that have elapsed.

Transition matrices provide the probabilities to be at di↵erent states at a future time step t

if the matrix is multiplied t times. This means that the t� step transition matrix, Qt has the
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following decomposition,

Q
t = Q ·Q · ...Q| {z }

t�times

=

2

64
P (St = s0|S0 = s0) P (St = s1|S0 = s0) P (St = s2|S0 = s0)

P (St = s0|S0 = s1) P (St = s1|S0 = s1) P (St = s2|S0 = s1)

P (St = s0|S0 = s2) P (St = s1|S0 = s2) P (St = s2|S0 = s2)

3

75 .

(2.3)

Let a state distribution vector at time t be denoted by ⇡t. If at time t � 1 the process is at

state s1, then

⇡t =
h
0 1 0

i
·Q , (2.4)

=
h
P (s0|s1) P (s1|s1) P (s2|s1)

i
. (2.5)

The steady-state distribution of a Markov chain is the stationary probability distribution of

the states to which the model converges after many time steps have elapsed. It is denoted by

⇡. Since it is independent of the time elapsed,

⇡ ·Q = ⇡ . (2.6)

The stationary state distribution can be obtained from the eigenvalue and eigenvectors of Q.

(⇡ ·Q)T = ⇡T

Q
T
· ⇡T = ⇡T

�
I �Q

T
�
⇡T = 0 . (2.7)

From Eq. (2.7), the stationary state distribution ⇡ is given by the left eigenvector of the

transposed transition matrix associated to eigenvalue 1.

A process having Markov property is often referred to as ‘memory-less’, since the next step

in time is independent of the past. However, the current state influences the next step, so

there is a dependency or ‘memory’ present between two subsequent time steps. As mentioned

in the introduction, the goal of this thesis is to investigate dependencies present in di↵erent

parts of our transmission system model. This dependency is referred to as memory in here.

While Markov models are generally defined to possess the Markov property, it is possible to

introduce Markov models with higher order memory. The standard Markov model having

the Markov property is commonly termed the order-1 Markov model and analogously models

with dependency arising from the two immediate previous states are termed order-2 Markov

models, and so forth. In this manner, it is possible to incorporate memory or dependency from



10 CHAPTER 2. BASIC CONCEPTS

Figure 2.3: A hidden Markov Model

arbitrary number of past states, thus making them powerful stochastic modeling tools.

In the remainder of the thesis we have used the term Markov model to refer to a discrete-time

Markov chain. We have used both order-1 and order-2 models.

2.1.2 Hidden Markov Models

A hidden Markov model (HMM) is one in which the states of the system are not readily

observable from the outcomes. In an HMM, we observe a sequence of outcomes which are

dependent on an underlying state space, although the state space is not observable.

Let the outcomes of a Markov process be denoted by the random variable O, and let the

states be denoted by S. Then according to the Markov property,

P (Ot|St, St�1, ..., S0, Ot�1, ..., O0) = P (Ot|St) . (2.8)

In Fig. 2.3, we observe that the outcomes oi are dependent on the states si. By observing a

sequence of outcomes ot, we cannot immediately deduce which states the model transitioned

through. For hidden Markov models, there is an additional probability matrix describing the

probability of the outcomes dependent on the states, called the emission probability matrix,
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denoted here by E.

E =

2

64
P (o1|s0) P (o2|s0) P (o3|s0)

P (o1|s1) P (o2|s1) P (o3|s1)

P (o1|s2) P (o2|s2) P (o3|s2)

3

75 =

2

64
0.4 0.2 0.4

0.4 0.3 0.3

0.3 0.2 0.5

3

75 . (2.9)

An HMM can thus be parameterized by ⇥ = (Q,E,⇡0).

For Markov chains, since the outcomes of the process directly relate to the states (it can be

assumed that the outcomes are the states), it is quite straight-forward to generate sequences

given a starting distribution or to compute the probabilities of di↵erent sequences. For a

detailed description on Markov models, please refer to [2]. For a tutorial like treatment of

HMMs, please refer to [3].

For hidden Markov models, there are three kinds of problems which can be formulated [2]:

• Likelihood computation: Given an observation sequence o = {O1, O2, ..., OT } and an

HMM ⇥, what is the probability of the observation sequence given the model, P (O|⇥)?

• Decoding: Given an observation sequence o = {O1, O2, ..., OT } and an HMM ⇥, what

is the most likely state sequence s = {S0, S1, ..., St} of the model?

• Training: For a given observation sequence o = {O1, O2, ..., OT } and the set of states

s, how do we find the parameters of the model: Q,E?

In this thesis, we are interested in the decoding problem. In order to find the most likely

sequence of states which generated a particular sequence of observations for a specific model,

two commonly used algorithms are the Viterbi and the BCJR algorithms. Both are trellis-

based methods.

2.1.3 Trellis Decoders

In Fig. 2.4, a trellis is shown. Each segment of a trellis diagram shows the possible state tran-

sitions of a finite state-machine. In each segment, all states are represented and the transition

from one state to possible other states are represented through branches. By concatenating

T segments, it is possible to trace all possible sequences of states of length-T which could

have been generated by the finite state machine.
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Figure 2.4: A two-segment trellis for a 3-state system

In trellis based decoding, a branch metric is computed for all branches for an observation

sequence. This allows for the computation of path metrics which are due to the branches

along the specified path.

A branch metric �t(s0, s) is defined as the metric from state s0 at time t�1 to state s at time

t for an observation ot. For an HMM, the branch metric is

�t(s
0, s) = P (s|s0) · P (ot|s) . (2.10)

2.1.3.1 Viterbi Decoding

The Viterbi algorithm, proposed as a decoding algorithm for convolutional codes by Andrew J.

Viterbi in [4] is a dynamic programming algorithm for an HMM process. As noted in [3], the

Viterbi algorithm has been independently invented in many diverse fields such as information

theory, molecular biology, and computer science by di↵erent authors. For a tutorial overview

of its derivation and uses, [5] is an excellent resource.

The Viterbi algorithm is a sequence estimator, i.e., it decodes to a state sequence given an

observation sequence and an automaton ⇥. Of the possible 2Ns·T sequences, it decodes to

one which minimizes deviation between the observed data and the data which would have

been produced by the chosen state sequence.

In the Viterbi algorithm, for decoding HMMs, at the starting step, branch metrics are com-

puted for a given starting state distribution ⇡0.

For every subsequent time index at all states, a cumulative metric is computed, by adding

the branch metric to the path metrics on valid transitions. At every state, the path with the

best metric is stored. The algorithm progressively traces out paths in the trellis, one step at
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a time, which best fits the observation sequence. At every time step, at every state, only the

path with the cumulative best metric is selected and stored. Since it is a sequence estima-

tor, a cumulative metric �t(s0) is used which quantifies the metric upto time t for every state s0.

The complexity of Viterbi decoding is O(2Ns) for Ns states, this is computationally much

simpler than processing all 2NsT paths [4].

In Alg. 1, the Viterbi algorithm for sequence estimation is provided.

Algorithm 1: The Viterbi Algorithm

1 Variables :-
2 �t(s0, s): Branch Metric;
3 �t�1(s0): Surviving path metric to state s0 at time t� 1;
4 �t(s0, s): Cumulative metrics for the path segments connecting s0 to s at time t;

5 Initialize : �0(s0) = 0;

6 for t = 1 to T: do
7 Compute all possible branch metrics �t(s0, s) ;
8 Compute �t(s0, s): Compute the cumulative metrics for all state transitions from

s0 to sfrom time t� 1 to t ;
9 Compare and Select( �t(s) = best(�t(s0, s)).) For each state s, compare the

incoming path metrics at time t and select and store only the path with the best
metric in �t(s).

10 end

Result: Output the path which leads to the best metric at the end time step.

The branch metric was not defined explicitly in the algorithm provided in Alg. 1. It is computed

according to the data available. For HMMs,

�t(s
0, s) = �t�1(s

0) · �t(s
0, s) . (2.11)

For HMMs, the starting state could be given by an initial state distribution ⇡o or it could be

taken as the steady-state distribution ⇡. For convolutional codes, the starting state is often

the all-zero state, since the encoder also starts from the all-zero state.

In Alg.1, line number (9), the select operation is to select the best metric. For HMMs, the

’best metric’ refers to the path with the highest probability.
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Variants of the Viterbi algorithm include log-domain Viterbi and the soft-output Viterbi algo-

rithm (SOVA). The log-domain Viterbi is more stable numerically and has the advantage that

the multiplication of Eq. (2.11) is replaced by an addition.

2.2 Channel Codes

Channel coding, i.e., error correction coding is a method through which information is aug-

mented using redundant or parity bits such that errors altering the information vector can

be corrected. This provides protection against noise. There are many di↵erent channel codes

available, of these we use LDPC codes in this thesis as our chosen method.

Linear codes

A linear code, C, consist of codewords ci such that

a · ci + b · cj 2 C , a, b 2 Fq. (2.12)

when the codeword elements are from the field Fq. A code C with parameters (N,K) are

a list of vectors of length N which have been augmented by N � K = M parity bits from

information vectors of length K. The code rate R = K/N = log2 |C|
N

quantifies how much

information is contained in the codewords. In mathematical terms, a linear code C with pa-

rameters (N,K) is a K� dimensional subspace of the vector space of FN
q with elements

from the finite filed Fq. The subspace has dimension K, hence there are K basis vectors

spanning the vector space. This set of basis vectors are the information vectors, i of the

code C. There are then qK information vectors and they are transformed via a linear map to

qK codewords. The total number of vectors in the space are qN . We use GF (2) as the un-

derlying field in this thesis, thus the number of valid codewords in an (N,K) linear code is 2K .

Thus, channel codes map information vectors to codeword vectors in a one-to-one fashion.

The codewords are then transmitted (or stored) and may be corrupted by noise and be con-

verted into any one of the qN vectors in that space. The decoding task is to deduce from the

received vector which one of the information vectors was encoded.

In order to decode e�ciently, we introduce a few important concepts first.
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Distance Metrics

Di↵erent distance metrics are useful for di↵erent channels. For digital channels like the Bi-

nary Symmetric Channel (BSC), we use a bit-wise distance between the components of the

codeword and the received word, this metric is the Hamming distance, dH . The Hamming

distance between two vectors a and b of length n with components ai and bi that may be

elements of an arbitrary number field, are given as the number of components that di↵er from

each other

dH = |M | , M = {j : aj 6= bj} . (2.13)

For transmission over analog channels, such as the Additive White Gaussian Channel (AWGN),

we use an analog measure, the Euclidean distance. The Euclidean distance measures the

distance between a received analog value y and a transmitted value x 2 {±1} for binary

transmission. The probability of y to be received for a transmitted value x uses the Euclidean

distance, dE =
p
(y � x)2 = |y � x| as

P (y|x = ±1) =
1

p

2⇡�2
exp�

|y�x|2

2�2 ; (2.14)

where the noise process has parameters N (µ,�2). The derivation of the two di↵erent distance

metrics for the two di↵erent channels are derived further on in this section, when discussing

the maximum-likelihood detection criterion.

A systematic code is a code where the information vectors i can be directly read from the

codeword.

Since linear codes are based on linear sub-spaces, their construction can be explained via

matrices. To this end we define two matrices, the generator matrix G and the parity-check

matrix H.

The generator matrix G is the linear map which produces the codewords from the information

vectors. It is a K ⇥N matrix such that

c = iG . (2.15)

The generator matrix can appear in a number of equivalent forms, elementary row operations

such as Gaussian elimination do not alter the matrix, hence does not alter the code. When

in standard form, the identity part of the G matrix ensures that the resulting codewords are

systematic.
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Complementary (dual) to the generator matrix in function, is the parity-check matrix H, an

(N �K)⇥N matrix that fulfills the following equation for all codewords c from a code C.

H

0

BBBBBBB@

c0

c1

c2
...

cN�1

1

CCCCCCCA

= Hc
T = 0 . (2.16)

The parity-check matrix checks whether a codeword fulfills the M = N �K parities of the

code via the M = N �K equations it applies to the codeword. A linear code C can hence

also be described as the solution space of a set of parity-check equations given by the parity-

check matrix H. Only valid codewords fulfill all parity-check equations. The H matrix is the

null-space of the code C. G and H are related via

GH
T = 0 = HG

T . (2.17)

2.2.1 Low-Density Parity-Check (LDPC) codes

LDPC codes are a class of linear error correcting block codes characterized by sparse parity-

check matrices. They were first developed in 1962 by Robert G. Gallager in his doctoral

dissertation [6, 7]. In the 1960s, implementation of LDPC codes was impractical and hence

they were not studied widely. With the advent of implementable iterative decoding techniques

and Turbo codes in the 1990s, LDPC codes experienced a resurrection. They were also in-

dependently discovered in 1995 in [8, 9]. Since the mid 1990s, extensive research into LDPC

codes has proven them to be extremely well suited for widespread implementation.

LDPC codes are capacity approaching codes, i.e., their performance is close to the theoretical

limit derived from channel capacity, for a variety of channel including the Additive White

Gaussian Noise (AWGN) channel. The decoding complexity also increases linearly with the

block length, hence they are easily scalable.

LDPC codes have emerged as the code of choice for many applications. They are part of the

digital video broadcasting version-2 (DVB-2) standard, as well as part of the Wi-Fi 802.11,

IEEE 802.16 standards, and used for 10GBase-T Ethernet, LTE etc, 5G and deep space com-

munications.

As the name suggests, low-density parity-check codes have H-matrices which have a low
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density of 1s, they are sparse. This type of construction, coupled with e�cient decoding

algorithms provide LDPC codes with their superior performance compared with other types of

codes. The decoding algorithms can be parallelized, providing high throughput. LDPC codes

can be visualized by Tanner graphs [10]. Tanner graphs are bi-partite graphs which illustrate

the code structure. In Fig. 2.5, a Tanner graph for the parity-check matrix from Eq. (2.18) is

shown.

H =

2

66664

1 0 1 0 0 1 0 0

0 1 0 1 1 0 1 0

0 1 1 0 0 0 1 1

1 0 0 1 1 1 0 0

3

77775
. (2.18)

Figure 2.5: Tanner graph of H-matrix shown in Eq. (2.18)

The circular nodes illustrate the bits of the codeword and are termed variable nodes (VN).

The square nodes represent the parity-check equations of the code and are termed check

nodes (CN). The degree of a variable (check) node is the number of edges or connections it

has to check (variable) nodes. The connection profile between the nodes is thus a visualization

of all the parity-check equations or the H-matrix itself.

In his thesis, Gallager described codes of regular graphs, or regular connection profiles. For a

code, when all the variable nodes and all the check nodes have identical degree, the code is

called a regular code. In [11], Luby et al. showed that irregular codes have better error correc-

tion performance than regular codes. Irregular codes are characterized by degree distribution

polynomials. The degree distribution polynomials are of the node or edge type, meaning they

are probability mass functions of di↵erent degree nodes or probability mass functions of edges

belonging to nodes of certain degree.

The variable and check node edge degree distribution polynomials, �(x) and ⇢(x) are

�(x) =
dvmaxX

i�2

�ix
i�1 , (2.19)



18 CHAPTER 2. BASIC CONCEPTS

and

⇢(x) =
dcmaxX

j�2

⇢jx
j�1 , (2.20)

where �i and ⇢j are the proportions of edges connected to VNs and CNs of degree i and j, and

dvmax and dcmax are the maximum variable and check node degrees, respectively. Similarly,

the node degree polynomials, �̃(x) and ⇢̃(x) are

�̃(x) =
dvmaxX

i=2

�̃ix
i�1 , (2.21)

and

⇢̃(x) =
dcmaxX

j=2

⇢̃jx
j�1 , (2.22)

where �̃i and ⇢̃j are the proportions of VNs and CNs of degree i and j, respectively. The

degrees of the nodes are from 2 upwards to avoid trivial cases. The conversion from one

parameterization to the other is given by,

�̃i =
�i/iP
k �k/k

, ⇢̃j =
⇢j/jP
k ⇢k/k

, (2.23)

�i =
i�̃iP
k k�̃k

, ⇢j =
j⇢̃jP
k k⇢̃k

. (2.24)

The rate of a code, R can be derived from the degree distribution polynomials as

R = 1�

dcmaxP
j�2

⇢j

j

dvmaxP
i�2

�i
i

. (2.25)

We define a few important properties of LDPC codes in the following.

A cycle is a path along the edges of the Tanner graph where the beginning and ending

node is the same. The length of a cycle is the number of edges it traverses.

The girth of a code is the length of its shortest cycle. Cycles of a code have an influ-

ence on the decoding performance of the code.

Cycles in the LDPC code graph degrade the performance of the iterative decoder. Finite

length codes contain cycles due to the construction of the code and thus have an e↵ect on

the decoding performance. Hence, the length of the shortest cycle or the girth of a code
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is an important parameter for assessing its decoding performance. The girth and cycles are

addressed when discussing the decoding and H-matrix design in later sub-sections.

Multi-edge type (MET) code

MET codes refer to codes which have multiple types of edges belonging to multiple classes

of nodes. If, for example, a transmission system consists of di↵erent constituent channels,

i.e., di↵erent bits of the same codeword are sent over di↵erent channels, the resulting code

should have di↵erent parity-check properties to reflect the di↵erent channels. This gives rise

to multi-edge type codes.

We take the following description for multi-edge type codes from [12], the degree polynomials

associated with variable and check nodes, respectively for MET codes are:

⌫(r, a) =
X

⌫b,dr
bad , (2.26)

µ(a) =
X

µda
d. (2.27)

We define the parameters b,d, r, and a as follows. Let there be me edge types. The

factor ad =
Q

me
i=1 a

di
i

is associated with every node in the graph and denotes the num-

ber of edge types, a = (a1, . . . , ame), that are connected to it and the associated degrees,

d = (d1, . . . , dme). Let, there be mr channels of di↵ering parameters in the system. The

factor rb =
Q

mr
i=0 r

bi
i

is also associated to every variable node and pertains to the received

information over the channel, with r = (r0, . . . , rmr) denoting the di↵erent received distribu-

tions, and the b = (b0, . . . , bmr) denoting the number of connections to the di↵erent received

distributions. We assume that each variable node is associated to only one channel, and thus,

only one entry in b is set to 1 and the rest to 0.

2.2.2 Decoding of LDPC Codes

Due to the sparse nature of the H-matrix in an LDPC code, iterative decoding methods

perform extremely well. The sparse nature of the code means that a few variable nodes, or

codeword symbols, participate in a single parity check. In iterative decoding, the check equa-

tions of the code are fulfilled at di↵erent iteration cycles, made possible due to the distributed

and sparse parity check structure of the code. This overall leads to low probabilities of error,

allowing LDPC codes to provide near capacity performance.

We introduce the notation now of transmitted and received vectors over a channel, used

throughout the thesis. Let the transmitted sequence be x with individual elements of the
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sequence denoted by xi. Let the received sequence be y with the individual elements being

denoted by yi. The goal is to find a decoded sequence, x̂ such that decoding error is mini-

mized. In this context, the Maximum-Likelihood (ML) estimate and the Maximum A-posteriori

Probability (MAP) estimate are both used as decoding principles. These are methods used in

Bayesian inference1 to estimate parameters of probability distributions. A few related terms

in this context are provided below.

The likelihood function of a stochastic process is defined as the probability function describ-

ing the likelihood of observed data, y for a given value of x. A posterior distribution is the

distribution of the random variable x based on observed data. The prior distribution of the

variable x is termed the a-priori distribution.

Using Bayes’ theorem, the MAP estimate is then

x̂ = arg max
x

P (x|y) = arg max
x

P(y|x)P(x)

P(y)
. (2.28)

Since the maximization is over x, x̂ is independent of P (y). When all transmit sequences are

equally likely, the MAP estimate Eq (2.28) reduces to

x̂ = arg max
x

P (y|x) . (2.29)

Generally, for decoding, the goal is to estimate the ML or the maximum a-posterior proba-

bility (APP) solution. MAP decoding of LDPC codes is computationally prohibitive, instead

iterative algorithms are used which are described in the next sub-section. Both hard- and soft-

value implementations of iterative decoding are possible. Hard value algorithms such as the

bit-flipping algorithm are of limited interest since the performance of soft-value decoders far

outperform hard-value decoders, theoretically by 3 dB. As a soft value measure, log-likelihood

values are used.

We will now derive the distance metrics used for the AWGN and BSC channel using the ML

criterion.

1
Bayesian inference or Bayesian statistics refers to estimating the probability distribution of random variables

via Bayes formula by utilizing observed data
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For the BSC channel with crossover probability ✏, the ML criterion yields

x̂ = arg max
x

logP (y|x)

= arg max
x

log
Y

k

P (yk|xk)

= arg max
x

X

k

logP (yk|xk) (2.30)

= arg max
x

[dH(y,x) log(✏) + (N � dH(y,x) log(1� ✏))]

= arg max
x


dH(y,x) log

✏

1� ✏
+N log(1� ✏)

�
.

log ✏

1�✏
< 0 and N log(1� ✏) is independent of x, thus

x̂ = arg min
x

dH(y,x) . (2.31)

For the AWGN channel, Eq.(2.30) is decomposed into

x̂ = arg max
x

X

k

log

✓
1

p
2⇡�

exp
⇥
�(yk � xk)

2/(2�2)
⇤◆

= arg min
x

X

i

(yk � xk)
2

= arg min
x

dE(y,x) ,

where dE(y,x) =
pP

k
(yk � xk)2. Since

pP
k
(yk � xk)2 is non-negative and the square-

root function is monotonous for non-negative arguments, d2
E
(·) has been replaced by dE(·)

in the last line. Thus, ML decoding for di↵erent channels leads to the use of the appropriate

distance metric for the channel.

Log-likelihood Ratios

For soft-decoding, probability values or Log-likelihood Ratios (LLRs) are used. In this thesis,

we use antipodal signaling, i.e., the mapping from codeword bit values ck to transmit values

xk is given by

xk = (�1)ck ; ck = {0, 1} . (2.32)

An LLR for a bit xk is then defined as

L(xk) = ln
P (xk = +1)

P (xk = �1)
. (2.33)
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An LLR value of the form shown in Eq. (2.33) signals a higher probability for xk = +1

when L(xk) is positive and for xk = �1 when L(xk) is negative. The magnitude of the

value signifies the reliability. For the BEC, the LLR definition is more straightforward and

intuitive. Since on the BEC there are no errors possible, the LLRs corresponding to {+1,�1}

are respectively, {+1,�1} and for an erasure it is zero. We will use L to denote LLR values

in the following.

2.2.2.1 Belief-propagation Decoding

There have been a few iterative decoding algorithms presented in literature for LDPC codes.

They can be classified according to a discrete message alphabet: Gallager A and B, or a con-

tinuous message alphabet: Belief-propagation [13]. We present the Belief propagation (BP)

algorithm in the following.

BP decoding is a message passing decoder. Message passing decoders are a type of Bayesian

inference decoder which work in a parallel and distributed fashion, on every bit of the code-

word. In Belief-propagation (BP) decoding, ’beliefs’ (probabilities or LLRs) are propagated

through a network (Tanner Graph) to obtain information on certain variables (variable and

check nodes) within the network. A general discussion of BP decoders is given in [14].

At the variable nodes, the algorithm computes the following. We now consider a code vector

x being transmitted and determine the logarithmic APP ratio L(xk|y) for the received word

y.

L(xk|y) = ln
P (xk = +1|y)

P (xk = �1|y)

= ln
P (y|xk = +1)

P (y|xk = �1)
+ ln

P (xk = +1)

P (xk = �1)

= ln
P (yk|xk = +1)

P (yk|xk = �1)| {z }
intrinsic

+ ln
P (y\k|xk = +1)

P (y\k|xk = �1)
| {z }

extrinsic

+ ln
P (xk = +1)

P (xk = �1)| {z }
a priori

. (2.34)

The received vector y can be partitioned into yk and y\k (y without the kth component)

terms due to a memory-less channel assumption (independence). The extrinsic information

is labeled LE(xk|y\k). The a-priori information is labeled LA(xk), and the intrinsic LLR is

labeled Litr(xk).

The three types of information extrinsic, a-priori, and intrinsic are independent measures (when

there are no cycles in the graph), hence the associated probabilities are multiplied, or LLRs
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added.

A-priori Information

Relates to the a-priori distribution of the source data sequence.

LA(xk) = ln
P (xk = +1)

P (xk = �1)
. (2.35)

Intrinsic Information

Relates to the channel properties. For transmission over an AWGN channel, the transmitted

sequence is a↵ected by zero-mean Gaussian noise samples, resulting in analog received values

yk = xk + zk . (2.36)

where zk are independent and identically distributed (i.i.d.) noise samples from the Gaussian

distribution Z(0,�2
n) where �2

n is the variance of the zero-mean noise process. The intrinsic

LLR is then calculated by

Litr(xk) = ln
P (yk|xk = +1)

P (yk|xk = �1)

= ln

1p
2⇡�n

· e�(y�1)2/2�2
n

1p
2⇡�n

· e�(y+1)2/2�2
n

=
2y

�2
n

. (2.37)

Extrinsic Information

Relates to the code constraints, i.e., the parity checks. The extrinsic and intrinsic information

together constitute the ML estimate.

The message update equations during BP decoding are presented below. Each bit of each

codeword can be decoded simultaneously, since belief propagation is a fully parallelizable

method. The LLR messages are passed along the edges of the Tanner graph, the outgoing

message at the lth iteration from variable node v to check node w is given by

L(l)
v!w = LA(v) + Litr(v) +

X

w0

L(l�1)
w0!v

, w0
2 {{Nv}� {w}}, (2.38)

where {Nv} is the set of neighbors of VN v.
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The outgoing message from check node w to variable node v at the lth iteration is given by

tanh
L(l)
w!v

2
=
Y

v0

tanh
L(l)
v0!w

2
, v0 2 {{Nw}� {v}}, (2.39)

where {Nw} is the set of neighbors of CN w.

In the update equations provided in eqs. (2.38) and (2.39), the LLRs on an outgoing edge were

computed by excluding the LLR incoming on that edge. This is reflective of the formulation

LE(xk|y\k). In order to continue to iteratively pass messages successfully, it is imperative to

not ’recycle messages’, otherwise the MAP structure of Eq. (2.34) would be violated. The

updates are illustrated in figures 2.6a and Fig 2.6b.

(a) Update of variable nodes.
(b) Update of check nodes.

Figure 2.6: Node operations of the message-passing algorithm

The BP decoding algorithm is almost optimal. The algorithm delivers a-posteriori probabil-

ity estimates, but is not a MAP decoder since there are cycles present in the graph. The

girth of a code influences information recycling inside the graph and hence degrades the code

performance. Specifically, for a graph with girth g, the messages start to be recycled after

g/2 iterations. The BP algorithm is also commonly referred to as the sum-product algorithm

(SPA), the algorithm is provided in Alg. 2.

In MAP or ML decoding, the minimum distance of the code determines the error floor of the

code. For iterative message passing decoders, certain subsets of the Tanner graph induce sub-

graphs which lead to error floors. To this end, we now define trapping-sets. In the high SNR

region, BP decoder performance can su↵er from an error floor, which is due to trapping-sets.

Conceptually related to trapping sets are stopping sets, pseudocodewords, near-codewords,

absorbing sets etc.



2.2. CHANNEL CODES 25

Algorithm 2: The Sum-Product Algorithm

1 Variables :

2 LA(v): a-priori information for VN v
3 Litr(v): intrinsic information for VN v
4 V = {v1, ..., vN}: set of VNs
5 W = {w1, ..., wM}: set of CNs
6 Ev = {e : H(e, v) = 1}: set of CNs connected to VN v
7 Ew = {e : H(w, e) = 1}: set of VNs connected to CN w
8 Lv�we : message from VN v to CN we

9 Lw�ve : message from CN w to VN ve
10 V̂ = {v̂1, ..., v̂N}: decoded codeword ;

11 Initialize : 8v 2 V

12 LA(v): according to Eq. (2.35)
13 Litr(v): according to Eq. (2.37) ;

14 for l = 1 to L: do

15 VN Update:

16 L(l)
v�we

= LA(v) + Litr(v) +
P

e0:Ev�{e} L
(l�1)
we0�v

, 8e 2 Ev , 8v 2 V

17 CN Update:

18 tanh
L
(l)
w�ve
2 =

Q
e0:Ew�{e} tanh

L
(l)

v0e�w

2 , 8e 2 Ew , 8w 2 W

19 Intermediate decoding result at iteration l:

20 L(l)
v = LA(v) + Litr(v) +

P
EV

L(l�1)
we�v , , 8v 2 V

21 v̂ :=

(
0 : Ll

v > 0

1 : Ll
v < 0

, 8v 2 V

22 if HV̂ T = 0 then
23 break for loop
24 end
25 end

Result: Output V̂
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In [15], ’near-codewords’ are introduced to explain the error-floor region. In [16], the termi-

nology trapping sets is introduced instead of ’near-codewords’, since such sets are a function

of the decoding algorithm and give rise to vectors which have a non-zero syndrome. We define

near-codewords or trapping-sets analogous to [17]. Let there be a non-empty set of variable

nodes, T(y), which are not ’eventually correct’, i.e., these bits of the codeword cannot be

corrected regardless of the number of iterations. Then T(y) is an (a, b) trapping set where

a = |T(y)| and b is the number of odd-degree check nodes in the induced sub-graph of T(y).

’Near-codewords’ having small values of a and relatively small b lead to errors that the SPA

decoder cannot correct. This can be explained by considering the all-zero codeword to be

transmitted [15]. Low values of a imply a low weight error pattern, which are more probable

on average than higher weight error patterns. Additionally, low values of b imply that only a

small number of check equations are a↵ected. Since only a few of the parity-check nodes are

a↵ected, the distributed (over the entire graph) correction which lends LDPC decoders their

superior performance fails, the decoder cannot escape these error states.

Iterative decoding of LDPC codes can be explained using computation trees [18] and how the

SPA performs on computation trees [19]. In [20], the same authors of [19] provide an analysis

of the error floor due to pseudo-codewords using a signal space analysis. They show that

unlike MAP or ML decoding where the decoder decodes to a codeword which is closest to the

channel output in Euclidean distance, in BP decoding the decoded codeword is the signal with

the highest correlation to the channel output. Due to the nature of BP on a graph with cycles,

there are codewords on the computation tree (tree code) which have a higher correlation to

the channel output. They are not codewords, but the algorithm decodes to them due to the

higher correlation, these are termed pseudo-codewords. False correction to pseudo-codewords

is a phenomenon of cycles in the Tanner graph. In [21], iterative decoding and error floors

are studied from the perspective of graph-covers, where the computation trees of two graphs

may be topologically equivalent, even if the graphs are not. Since BP decoding is a locally

operating algorithm on the computation tree, it considers all solutions of all finite-length cov-

ers of the Tanner graph and can thus lead to decoding failure. This paper also shows the

equivalence between BP decoding and linear-programming (LP) decoding. Absorbing Sets are

studied in [22].

Stopping sets can be considered a special subclass of trapping sets, for the BEC channel [16].

For a BEC channel, the set of erasures which stops decoding is known as the stopping set

S. A stopping set S is a set of variable nodes where all neighbors of S are connected to S

at least twice. Thus, when these bits are erased, it is not possible to recover the codeword.
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Stopping sets are investigated in [23, 24].

2.2.3 Optimization of LDPC Codes

The design of optimized LDPC codes is an extensively studied subject. Optimized LDPC codes

are codes designed for a specific environment providing optimum performance dependent on

the parameters of the system (such as the SNR or rate requirements) and the characteris-

tics of the code (such as multi-edge-type codes). Code optimization depends on an analysis

technique named Density Evolution (DE), first introduced in [13]. Density evolution is a

technique which provides a method for computing the capacity of LDPC codes. In this section,

we will describe density evolution and code optimization based on density evolution.

We start this subsection by defining a few information theoretic concepts, Entropy, Mutual

Information (MI), and Capacity.

Entropy

Information entropy quantifies the amount of information contained (uncertainty) in a random

variable.

In 1928, Hartley quantified the information contained in a random variable as logbm, where

m is the number of outcomes of a random process. However this definition of entropy does

not include the probability of the individual outcomes. In 1948, Shannon defined [25] entropy

of a random variable X as H(X), which is negatively proportional to the probability of the

outcome.

H(X) = �

nX

i=1

P (xi) log2 P (xi) , (2.40)

measured in bits. We are omitting the base in subsequent formulations.

The conditional entropy of a random variable Y conditioned on the random variable X is

given by,

H(Y |X) =
X

x2X
P (x)H(Y |X = x)

=�

X

x2X
P (x)

X

y2Y
P (y|x) logP (y|x)

=�

X

x2X ,y2Y
P (x, y) logP (y|x) . (2.41)
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The conditional entropy H(Y |X) = 0 if the RV X completely determines the RV Y .

Mutual Information

Mutual information, measured between two random variables, quantifies the reduction in

uncertainty of one random variable conditioned on knowledge of the second one, i.e., in

terms of entropy of the variables. For two discrete random variables X and Y , the mutual

information, denoted by I(X;Y ) is given by,

I(X;Y ) =H(X)�H(X|Y ) = H(Y )�H(Y |X)

=
X

x2X ,y2Y
PX,Y (x, y) log

pX,Y (x, y)

pX(x)pY (y)
. (2.42)

When the mutual information between two random variables is zero, they are statistically

independent.

Capacity

The capacity of a channel is a tight upper bound on the rate of information transmitted over

a channel in the presence of interference.

C = sup
px

I(X;Y ) . (2.43)

The channel input X has average power P = E(X2) and Y = X + Z. The noise power is

given by NZ = E(Z2).

C = sup
px

H(Y )�H(Y |X)

= sup
px

H(Y )�H(Z)

= log2
p
2⇡ exp(P +NZ)� log2

p
2⇡ exp(NZ)

=
1

2
log2

✓
1 +

P

NZ

◆
; (2.44)

where the units are in bits/channel symbol. This formula is known as the Shannon capacity,

it is the upper limit for an AWGN channels capacity. The distribution of X is chosen as

Gaussian, which maximizes H(Y ), which in turn maximizes the capacity for the channel over

all possible signal sets. When the channel symbol rate is Rs symbols/second, the capacity
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becomes

C =
Rs

2
log2

✓
1 +

P

NZ

◆
bits/second. (2.45)

For a channel limited to bandwidth W Hz, the maximum distortion free symbol rate is (sam-

pling theorem) Rs,max = 2W , which yields

C = W log2

✓
1 +

P

NZ

◆
bits/second. (2.46)

2.2.3.1 Density Evolution

BER curves of iteratively decoded LDPC codes exhibit a threshold behavior, above a certain

threshold SNR, the error probability becomes diminishingly small as the block length tends

to infinity. This behavior is observed for many di↵erent channels such as the BEC, BSC,

AWGNC, etc. Thus, the threshold of a code is a parameter which can be used as a measure of

the performance of a code, since it signals the convergence point of a code. The threshold of

a code can be calculated via the technique of density evolution. In this subsection, we present

the important DE results in code design, based on [11–13,26].

We will first develop the concept of density evolution, based on [12, 13, 26]. In order to eval-

uate the performance of a message passing decoder over a channel for a code, the expected

fraction of erroneous messages passed along the edges are tracked. If the fraction of error

messages for a length N code, PN
e (l) goes to zero as the number of iterations l tends to

infinity, then the code is converging.

In order to track the fraction of erroneous messages evolving with iterations, the message

(LLR) densities along the edges are tracked. This evolution of densities allows for the compu-

tation of the code performance. Gallager had proposed a similar analysis in [7] for the BSC for

regular codes, which was then extended to ensembles of codes (not a particular code) in [11]

over the BEC, BSC, and for irregular codes, too. In [13], following [11], density evolution

was generalized for message passing decoders over any binary-input memoryless channel over

discrete or continuous alphabets. The major conclusions of the theory of DE are summarized

as follows:

• Concentration:

For a specific degree distribution pair (�, ⇢) and a chosen codeword length N , there are

many realizations of the code possible depending on the edge connection profile of the

code graph. This family of codes, CN (�, ⇢) is termed an ensemble.
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The fraction of error messages are computed as an expectation over all instances of the

ensemble, choice of message, and realization of noise. It su�ces to analyze the average

performance of the ensemble, and it is not necessary to analyze the performance of

individual realizations of code, channel, or message, since the particular results are con-

centrated around the expected behaviour. The convergence to the expected behaviour

is exponential in N .

• Convergence:

The expected fraction of errors PN
e (l) of an ensemble of length N converges to the

asymptotic case P1
e (l) for large N .

• Threshold:

For the asymptotic case, i.e., cycle-free graphs, the expected fraction of error messages

can explicitly be computed. There is also a threshold �⇤, a channel quality parameter

(like the noise variance or erasure probability) such that for channels with a better

quality liml!1 P1
e (l) goes to zero. For channels with quality parameter worse than

the threshold, the error probability is a strictly positive number, bounded away from

zero, independent of the iteration number or code length.

The DE algorithm is further based on three symmetry conditions, from Definition 1 of [13],

channel symmetry, as well as variable- and check-node symmetry.

In [27], the authors develop a method for easier computation of the densities of messages

over AWGN channels. On the BEC, the evolution of LLR densities are a one-dimensional

problem, however, for the AWGN the problem is computationally more involved. A sim-

plification of the problem can be obtained by considering a symmetry condition which is

preserved under density evolution for all densities, which states, given f(x) as a message

density, f(x) = f(�x) expx. Under the symmetry condition, called ’consistency,’ Gaussian

densities have the special property that the mean of the density µ and the variance �2 are

related via �2 = 2µ. Then it is su�cient to keep track of the mean (or variance) only, during

the iterations, which makes the procedure tractable.

It is also possible to use the Mutual Information between the decoder output and channel input

for evaluating the evolution process of the messages. A function J is defined which computes

the mutual information over a channel for consistent densities, i.e., densities fulfilling the

symmetry condition.

J(m) = 1� Ex(log2(1 + e�x)), x ⇠ N(m, 2m) . (2.47)
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J is continuous and a strictly monotonous function, so the mean (or variance) of the messages

can also be computed from the mutual information.

EXIT charts

Another method for computing code performance is by the use of EXIT (extrinsic-information-

transfer) charts. The technique of EXIT charts can be applied to both LDPC and Turbo codes.

We discuss Exit charts for LDPC codes here. The theory follows from [28–30].

The operations at the variable nodes and check nodes constitute one full iteration of the

LDPC decoder. Every half iteration, i.e., after only the variable or the check node opera-

tion, the decoding performance should improve. As the metric capturing the performance, we

use mutual information. Transfer curves can be plotted for both variable and check nodes,

plotting the average output mutual information against the average input mutual informa-

tion. Additionally, the input MI to the check nodes is the output MI from the variable nodes,

hence both curves can be shown on the same plot. By plotting the curves on the same figure

with the abscissa and ordinate of one of the curves reversed, the convergence behavior of

the iterative decoder can be illustrated. By following the input-output relationship between

them, it can be graphically deduced whether mutual information of 1 will be achieved for a

specific code, which signals convergence. The variable nodes are connected to the channel,

hence for di↵erent channel parameters, di↵erent plots are obtained. The decoding threshold

for di↵erent codes can thus be graphically illustrated via LDPC EXIT charts.

DE Equations for Consistent Densities:

Let x(l)cv and x(l)vc be the mutual information associated with messages coming from check

nodes to variable nodes and from variable nodes to check nodes, respectively. The evolution

of messages is then,

x(l)vc =
dvmaxX

i=2

�iJ(
2

�2
+ (i� 1)J�1(x(l�1)

cv )) (2.48)

and

x(l)cv = 1�
dcmaxX

j=2

⇢jJ((j � 1)J�1(1� x(l)vc )) . (2.49)

Since our interest lies in designing optimized irregular codes, we develop the steps of the

theory of Density Evolution to that end. Based on the evolution equations, an optimization

routine can be used to find the best codes. The details of this are provided in Chapter 4.

In [11], the authors present a linear programming solution to find codes based on code design
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constraints. The preferred method, and one which we also follow in this thesis, is to choose

a check-node degree polynomial and find a variable-node degree polynomial that will satisfy

a given rate requirement, since rate and degree polynomials are related via Eq. (2.25).

2.2.4 Parity-check Matrix Construction Algorithms

After obtaining the degree distribution polynomials �(x) and ⇢(x), the H-matrix has to be

constructed. Of the many di↵erent available construction algorithms, the Progressive Edge

Growth (PEG) algorithm [31, 32] has emerged as a classic choice. The goal of a PEG con-

struction is to add edges to the Tanner graph progressively such that every added edge has a

minimal e↵ect on the girth of a code.

In Alg. 3, the PEG algorithm is provided.

We expand on line 14 of Alg. 3 further. When expanding a tree from VN vi, one of two

possibilities may occur:

• all M CNs have not been reached from vi, even if the depth l is increased, there will

be no new elements in N
l
vi
. In this case, an edge is placed to any node which has not

been reached and thus, no cycles are created.

• all M CNs have been reached at some depth of the graph, as we keep increasing l, at

some point we will encounter the scenario that at depth l not all CNs were reached

N̄
l
vi

6= ;, but at depth (l + 1), all of them have been reached, N̄ l+1
vi

= ;. In this case,

an edge is placed between VN vi and a check node reached at depth l + 1, there by

creating the largest possible cycle.

When connecting edges from VN vi to a CN in the set N̄ l
vi
, there is a choice between CNs

of di↵erent quality (di↵erent degrees) possible. There exist a few possibilities in this case.

Choosing the CN which has lowest degree (if multiple such exist, choosing one randomly from

those) yields graphs with check-regular distributions (⇢(x) is a monomial) or graphs with con-

centrated check-node profile, i.e., check degree polynomials with neighboring degrees. Since

there is evidence that graphs with concentrated check profiles are optimum, this is a good

strategy. However, when there is also a ⇢(x) as well as a �(x), constraints can be placed such

that only those nodes from the N̄
l
vi

are chosen which do not violate the check-node degree

profile. This is the version that has been implemented in this thesis.

One of the drawbacks of LDPC codes is encoding complexity. While decoding complexity

scales linearly with block length, encoding complexity is N2 [16,33]. In order to mitigate this
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Algorithm 3: The PEG Algorithm

1 Variables :-
2 N

l
vi
: set of CNs reached by VN vi at depth l

3 N̄
l
vi
: set of CNs not reached by VN vi at depth l

4 dvi : maximum degree of VN vi;

5 Initialize :- Each VN and CN is initialized with the number of sockets according to
�(x) and ⇢(x).

6 Sort the variable nodes with decreasing degree;

7 for i = N to 1 do
8 for k = 1 : dvi do
9 if k == 1 then
10 Connect the first node to a check node of lowest degree under the
11 current graph setting.
12 end
13 else
14 Expand a tree from the current node vi up to depth l such that
15 the cardinality of N l

vi
stops increasing but

16 is less than m, or N̄ l
vi
6= ;, but N̄ l+1

vi
= ;. Then, connect an edge from

17 VN vi to a CN from N̄
l
vi

which has the lowest degree and adheres to ⇢(x).
18 end
19 end
20 end



34 CHAPTER 2. BASIC CONCEPTS

problem, the classical solution is to construct triangular H-matrices [34].

We have constructed matrices which are upper triangular and systematic. This construction

comes with the advantage that the codewords can be generated from the H-matrix with com-

plexity increasing linearly with the codeword length N . Since the matrix is upper triangular,

the parity positions can be solved for recursively since the information part of the codeword is

known. This modification comes at a very small performance loss, but is more easily scalable.

Modifications to the PEG algorithm from Alg. 3 for constructing upper triangular matrices is

given below, also from [31].

• The information part of the H-matrix is constructed as per Alg. 3.

• For the parity part:

– The first edge for any parity node is placed on the diagonal.

– From the second edge onward, find the CNs that have not been reached at any

depth or have been reached at the largest distance. From this set, find the subset

of CNs that are in the allowed part of the graph, i.e., the part that preserves the

triangular structure and connect to the lowest degree CN from this set.

– A further modification named PEG-zigzag forces degree-2 VNs to be connected in

a zigzag pattern, i.e., the partition of degree -2 VNs of the parity part of H have a

bi-diagonal structure [32]. This modification allows avoiding cycles with degree-2

VNs which can degrade performance.

Another graph construction method of interest is the Approximate Cycle EMD or ACE algo-

rithm which lowers error floors by limiting short cycles that are poorly connected to the rest

of the graph [35]. A joint ACE-PEG approach is given in [36].

2.2.5 Turbo Codes

Turbo codes [37] are a class of iteratively decoded convolutional codes which also have capac-

ity approaching performance. Parallel-concatenated recursive systematic convolutional (RSC)

codes were first presented in 1993 in [37], serially concatenated Turbo codes are also a variant.

We use a Turbo decoding structure in Chapter 3 and explain the operating principle in detail

there. Only a short description is provided here. For the parallel concatenated code, the same

information sequence is encoded by (at least) two encoders, an interleaver is used on the

information sequence for at least one encoder. Thus,the same information sequence gives rise

to (almost) independent redundancy checks. At the receiver side, two decoders corresponding
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to the two encoders work in conjunction to decode the information sequence. Decoding is

performed iteratively, between the two decoders. For soft-value decoding using LLR values,

each decoder has an input (bit-wise) LLR value and an output LLR value, the subtraction

between the two terms yields the measure of information that the decoder has obtained in

that round of iterations. This newly obtained (bit-wise) information is passed to the other

decoder as a-priori information and the process continues till a hard decision on the bit-wise

LLR values decides the final decoded word. De-interleaving is performed on the input to the

decoders from the channel as well as on the information between the two decoders such that

the input information and symbols to the decoders are in the correct order. For decoding, the

trellis based BCJR (Bahl-Cocke-Jelinek-Raviv) algorithm is used. We now give a description

of the BCJR algorithm.

2.2.5.1 BCJR Algorithm

The BCJR algorithm operates on maximizing the APP probability of each individual bit in

a sequence. Like the Viterbi algorithm from Alg. 1, it also operates on trellises, but the

computational complexity of BCJR is higher than the Viterbi algorithm.

The Baum-Welch or the Forward-backward algorithm, both of which are used for HMM train-

ing/learning operate similarly. The BCJR computes probabilities at every time index of the

trellis diagram, based on the entire sequence. Whereas the Viterbi algorithm is a sequence

estimator, i.e., it minimizes sequence error probability, the BCJR determines probabilities at

individual time indices for individual bits.

For a transition on the trellis from time t to t+1 from state s0 to s, BCJR computes the joint

probability, given the observed output o, as

P (St, St+1,o) = P (St = s0, St+1 = s,o) . (2.50)
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Figure 2.7: Trellis diagram for BCJR algorithm APP calculations

For every state at every step, it computes the joint probability given in Eq. (2.50) by computing

three terms,

• Forward Recursion

• Backward recursion,

• Smoothed transition.

The forward recursion term computes the joint probability of the state St and the observa-

tions up to that time, P (St,o
t�1
0 ). This computation is recursive, depending on the value

of P (St�1,o
t�2
0 ), this is derived in the following. Similarly, the backward recursion term is

P (oTt |St) is computed depending on P (oT
t+1|St+1). The smoothed transition term relates the

two states at times t, t+ 1.

We simplify Eq. (2.50),

P (�t,o) = P (St, St+1,o)

= P (St,o
t�1
0 ) · P (St+1, ot|St,o

t�1
0 ) · P (oTt+1|St+1, St,o

t

0)

= P (St,o
t�1
0 ) · P (St+1,ot|St) · P (oTt+1|St+1). (2.51)

The left and right factors of Eq. (2.51) are the forward and backward recursions, given below.

P (St,o
t�1
0 ) =

X

St�1

P (St, St�1,o
t�1
0 )

=
X

St�1

P (St�1,o
t�2
0 ) · P (St, ot�1|St�1,o

t�2
0 )

=
X

St�1

P (St�1,o
t�2
0 ) · P (St, ot�1|St�1) , (2.52)
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and

P (oTt |St) =
X

St+1

P (oTt , St+1|St)

=
X

St+1

P (ot,o
T

t+1, St+1|St)

=
X

St+1

P (oTt+1|St+1, St, ot) · P (St+1, ot|St)

=
X

St+1

P (oTt+1|St+1) · P (St+1, ot|St) . (2.53)

We now derive the smoothed transition term, which is used in both the forward and backward

recursions,

P (St, ot�1|St�1) = P (ot�1|St, St�1) · P (St|St�1) = P (ot�1|St, St+1) · P (St|St�1) . (2.54)

The forward recursion in (2.52) is denoted by ↵t(s0), the backward recursion in (2.53) by

�t+1(s), and the ones in (2.54), by �(s0, s).

The forward and backward transitions have to be initialized in order to perform the recursive

computations. The initialization depends on the system model. For convolutional codes,

the starting state of the encoder is the all zero-state by convention, and the trellis is also

terminated (by appending termination bits, for example) to the zero-state. In such cases,

↵0(s = 0) = �T (s = 0) = 1. (2.55)

A detailed derivation and comments on BCJR algorithm is given in [14].
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Chapter 3

LDPC Decoding for Sources with

Memory

In this chapter, the belief propagation decoding of LDPC codes is modified to include source

memory. We consider a source which is modeled by a Markov chain and use the properties of

the Markov model as additional information in the decoding. There are three decoding algo-

rithm presented, two of which use direct ’left-to-right’ links in the Tanner graph for forwarding

the Markov dependencies in the source sequence in conjunction with a sum-product algorithm

(SPA) decoder. The other method is a Turbo-like decoding scheme in which a BCJR decoder

and an LDPC decoder iteratively exchange information to estimate the source sequence and

use this information for decoding in SPA iterations, respectively. We show the simulation re-

sults for these three decoders for di↵erent transition probability matrices of the Markov model.

Combining a source with memory and a channel encoder leads to a description of a joint

source-channel code. The chapter begins with an introduction to Shannon’s source and

channel coding theorems and current work in this field. We then describe the source model

used, followed by the three decoding techniques and results. The chapter is concluded by

outlining future steps.

39
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3.1 Shannon’s Source and Channel Coding Theorems

The first block in a transmission system is source compression or source coding, as shown in

Fig. 2.1.

Source Coding: Source coding is the compression of source data to remove redundancy.

There are two approaches to source coding,

• lossy : some information is lost via the process of compression and cannot be recon-

structed.

• lossless: the original information can be fully reconstructed.

Various di↵erent approaches can be used for compression. Entropy coding is a loss-less

method which assigns codes to source data symbols proportional to the entropy of the sym-

bols. Since Shannon’s information measure is negatively proportional to the probability of

occurrence of a symbol, the resulting codes assign fewer bits to source data symbols which

occur more frequently. This method results in fixed-to-variable length encoding. Hu↵man

codes [38] and arithmetic codes are examples of entropy coding.

There are also dictionary-based methods, which are able to use the statistics and structure of

the input source to create a dictionary which is built up dynamically such as the Lempel-Ziv

type codes [39–41]. One of the ways to distinguish between di↵erent algorithmic approaches

is by considering source modeling methods. Dynamic models are created/updated during

runtime and fixed models, such as used in entropy coding require statistics of the data source

to be known beforehand. Depending on the output of the algorithm used, source codes can

also be categorized as fixed-to-variable length codes, variable-to-variable length codes, fixed-

to-fixed, and variable-to-fixed length codes.

In [42], Shannon presented theorems on a discrete source communicating over a noisy channel

and derived rate criterion for communications based on the entropy of the source and the

capacity of the channel. Two ’theorems’ have been defined for source and channel coding

based on [42]. The theorem statements are based on assuming a joint source-channel code

which has rate r.

Source-coding Theorem:

Let the entropy of a source U be H(U). Reliable reconstruction of the source message is

possible for r > H(U).
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Noisy Channel-coding Theorem:

Let the capacity of the transmission channel be C in bits/transmission or bits/time. Perfectly

error-free transmission over a channel with capacity C is only possible if r < C.

Both the source-coding theorem and the noisy channel-coding theorem statements hold only

for N ! 1 and additionally, it can be proven from the source, and noisy-channel coding

theorems that reliable transmission is possible by separating source and channel coding. The

implication of [42] is that either reliable transmission is possible for a source U with entropy

H(U) over a channel with capacity C (for codeword length approaching infinity), or it is

not possible at all, regardless of whether source and channel coding is performed jointly or

separately. This decomposition leads to the principle known as the source-channel separation

theorem.

Due to the separation theorem, source coding and channel coding are often carried out in tan-

dem for many practical cases. However, the asymptotic assumption is not practical and the

separation principle was shown to not hold for multi-user channels [43]. The transmissibility

and consequently, the separation principle are also obtained under idealized assumptions of

no delay and infinite computational power. When considering practical systems constrained

by these issues, optimality for the separation theorem also does not hold. In this light, Joint

Source-Channel (JSC) coding is an area of investigation.

Since the focus of this thesis is not directly JSC, in the following, we will use an uncompressed

source sequence directly in the channel encoder-decoder. The goal of the thesis work is to

include and observe the e↵ects of dependencies in di↵erent parts of the communication system

in the LDPC decoder. For applying this principle in the source part, the natural description

leads to a JSC code, hence we provide a brief overview, in the following Section 3.2.

3.2 Joint Source-Channel Coding

The proofs in [42] were obtained by considering a discrete memoryless source (DMS) trans-

mitting over a discrete memoryless channel. Additionally, the source is required to be ergodic

and stationary. In [44], further results were obtained regarding reliable transmission bounds

for general classes of sources and channels. The authors showed that the separation theorem

does not hold for all sources whose entropy is less than the channel capacity, thus showing that

the source-channel separation does not only fail in the finite block-length regime or multi-user

scenarios. The authors further derive the requirements for the separation theorem for a wide

variety of channels for any source, specifically, by relaxing the requirements of memorylessness
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and stationarity of the source. A specific conclusion drawn is that for stationary sources, the

separation-theorem holds for all channels. This result is of particular significance for this thesis

since we consider a stationary stochastic source having memory.

One strategy for joint source-channel coding focuses on the dynamic allocation of bits between

the source and channel encoder to minimize overall errors at the receiver. This strategy is

useful for wireless fading channels, where the channel statistics are not time-invariant and

thus require dynamic methods. In [45] the optimal bit allocation between source and channel

codes are achieved by considering two additional degrees of freedom, the transmit power and

data rate (constrained by an average power requirement). The authors propose an adaptive

coded modulation scheme which minimizes end-to-end distortion and obtain an upper bound

of the distortion for constant channel error rates. Authors in [46] propose machine learning

for finding source and channel codes, given a computational budget and fixed block-length.

LDPC codes have been studied widely for JSCC systems. In [47], a compound Tanner graph

structure for JSCC was proposed, and in [48], it was first used for JSCC. Named a D-LDPC

(double-LDPC) code, the first code of the serial concatenated architecture performs syndrome

source compression and the second one performs forward error correction. Message passing

decoding on such a structure produces error floors. For mitigating the high error floors exhib-

ited by the system, an improved connection profile between the graphs as well as shortening

were employed, in [49] and [50], significantly improving performance.

Protograph-LDPC codes were suggested for JSCC in [51]. The performance of DP-LDPC

(double Protograph-LDPC) for JSCC is analyzed for source statistics in [51–53].

Di↵erent Turbo decoding schemes for JSCC were analyzed in [54–56]. The authors of [54,55]

consider a hidden Markov model as source and consider uncompressed transmission over the

channel. The turbo decoding scheme of [55] is comprised of parallel concatenated convolu-

tional codes. The source statistics are used in the decoding by employing a modified trellis

diagram, which jointly describes the source and channel code in one of the decoders. In order

to reduce complexity, in [54], a separate decoder block for the source is considered which it-

erates information with the other blocks. A procedure for parameter estimation of the hidden

Markov model is also shown. In [57], a similar Turbo structure for JSCC using LDPC codes is

presented which also combines a hidden Markov model parameter estimation along with the

decoder.

In [56], a serial concatenation structure is studied, which constitutes three codes, a Markov
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chain of symbols, a variable length source encoder, and a convolutional channel code. The

three corresponding decoder blocks interact in an iterative fashion.

Additionally, in [58], the general approach of channel coding for an uncompressed source is

studied, the paper focuses on estimating parameters of the source at the decoder. In [59], an

approach for using residual redundancy of the compressed source at the decoder is presented,

modified Viterbi and soft-output Viterbi algorithms (SOVA) are proposed, which are able to

exploit source symbol correlations at the decoder, for codes possessing a binary trellis repre-

sentation.

3.3 Description of the Source Model

Our system model considers a source data stream generated by a discrete-time Markov chain.

Stochastic Markov models are useful to model and generate data sets which have various real

world applications. Usually data generated by higher order models more accurately match real

world data since more dependencies are captured. High order models can generate fragments

of human speech, they can be used to model genes in DNA sequences, as well as user behavior

on the World Wide Web, i.e., webpage sequences. In this context, we chose Markov models

as generating the source data for our system. We start the following by deriving decoding

steps in the decoder for an uncompressed Markov source of order-1 and subsequently move

on to higher order models.

Figure 3.1: First-order Markov source

A Markov sequence can be described as generated by an auto-regressive state machine, mean-

ing the output of the previous state becomes part of next state. For models of order-1, the

output is directly the next state. The considered binary system of order-1 is given by a 2-state

Markov model, shown in Fig. 3.1 and the corresponding transition probability matrix is
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Qs =

"
p1 1� p1

1� p2 p2

#
. (3.1)

A DTMC described by Eq. (3.1) where p1 6= p2 is an asymmetric model. The redundancy

in such a model comes from both the memory and a non-uniform steady state distribution

of source symbols. When, p1 = 1 � p2 for an asymmetric model, the memory component

disappears and the only redundancy is in the unequal distribution of source symbols. For a

symmetric model where p1 = p2 6= 1/2, the redundancy in the source is only due to the

memory. We consider such symmetric sources.

3.4 Incorporating the Source Model into Decoding

At the decoder, the source model can be used in conjunction with intermediate decoding

results to compute ’extra’ information which aids in decoding. In Fig. 3.2, the edges carrying

such information are shown connecting the information variable nodes (in blue). The directed

edges, from left to right, model the generation sequence of the source symbols. The derivation

for the LLR on these edges are provided next.

Figure 3.2: Modified Tanner graph with directed edges left-to-right between information nodes
for a-priori information forwarding.

A source sequence u1:K is generated by a model Qs, where the source bits u 2 {0, 1}. The

codeword c is generated by the systematic triangular parity-check matrix of the channel code.

The transmit vector x is obtained by the anti-podal mapping given in Eq. (2.32). Transmission

is done using BPSK modulation, with the signal power Es normalized to 1.

An a-priori LLR value for xq, the qth bit of the length K information part of the codeword x

is computed as LA(xq) = lnP (xq=+1)
P (xq=�1) , according to Eq. (2.35). The node to the left of node

q is indexed by q � 1 with q 6= 0. This following derivation was given in [60].

Note, the probabilities given by Qs represent transitions between source bits u 2 {0, 1},

however, due to the one-to-one mapping according to Eq. (2.32), p1 = P (uq = 0|uq�1 =
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0) = P (xq = +1|xq�1 = +1) and p2 = P (uq = 1|uq�1 = 1) = P (xq = �1|xq�1 = �1).

LA(xq)

= ln


P (xq = +1)

P (xq = �1)

�

= ln


P (xq = +1|xq�1 = +1) · P (xq�1 = +1) + P (xq = +1|xq�1 = �1) · P (xq�1 = �1)

P (xq = �1|xq�1 = +1) · P (xq�1 = +1) + P (xq = �1|xq�1 = �1) · P (xq�1 = �1)

�

(3.2)

= ln

2

4
P (xq = +1|xq�1 = +1) · P (xq�1=+1)

P (xq�1=�1) + P (xq = +1|xq�1 = �1)

P (xq = �1|xq�1 = +1) · P (xq�1=+1)
P (xq�1=�1 + P (xq = �1|xq�1 = �1)

3

5

= ln


p1 · exp(L(xq�1)) + (1� p2)

(1� p1) · exp(L(xq�1)) + p2

�
(3.3)

Here, L(xq�1) is the combined (decision) LLR at the variable node vq�1 representing trans-

mitted bit xq�1, as per Eq. (2.34). For this intermediate decision, all incoming edges to the

variable node are added to obtain the decision at this iteration. The LLR given by Eq. (2.34)

consists of three terms,

L = Lintrinsic + La�priori + Lextrinsic .

Extrinsic and intrinsic information are respectively associated with the parity-check constraints

of the code and the channel properties, and are obtained by BP iterations on the Tanner graph

of the code and the received analog values, respectively. The a-priori information for a sym-

metric Markov model can be computed by Eq. (3.3). The source Markov model parameters

are assumed to be available at the decoder.

For decoding, at every iteration of the BP algorithm, a-priori information is required at all

information nodes. For this, the current decision LLR at every information node is calculated

and stored. For the next iteration, we use the (intermediate) decision LLR from the previous

iteration to provide an a-priori value for each bit of the information sequence, from left to

right, according to Eq. (3.3). BP decoding is then carried out according to Alg. 2. The parity

bits of the codeword have no a-priori information.

The outgoing message from variable node q to check node w at iteration l for reflecting the
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change in a-priori information at every iteration is

L(l)
(vq!w) = L(yq|xq) +

X

w0

L(l�1)
(w0!vq)

+ ln

 
p1 · exp(L(xq�1)(l�1)) + (1� p2)

(1� p1) · exp(L(xq�1)(l�1)) + p2

!
,

(3.4)

where yq is the received analog value at variable node q. The estimate of the left node does

not necessarily need to be from the previous iteration. We want an updated estimate of the

left node, we could also take it from the decision LLR at the current iteration. This is an

implementation choice, the results compiled here are for estimates from the previous iteration.

Furthermore, blocked transmission is assumed, one codeword is transmitted at a time. Since

there is no node to the left for the first bit of every codeword, the a-priori LLR is taken as the

logarithmic ratio of the steady state probabilities. For the first iteration, when only intrinsic

information is available, all nodes are initiated with a-priori LLR, LA0(xq), by using the ratio

of the steady state probabilities (instead of the right term in Eq. (3.4))

LA0(xq) = ln

✓
P (u = 0)

P (u = 1)

◆
= ln

✓
P (x = +1)

P (x = �1)

◆
. (3.5)

For computing the modified a-priori LLRs, in the numerator of Eq. (3.3), a summation is

performed for all source model state transitions which produce an output u = 0 (xq = +1).

Similarly, for the denominator, the sum is over all state transitions which produce an output

u = 1 (xq = �1). For an order-1 model, only the previous output in the source sequence

influences the current output. We define the ’memory’ of a discrete time Markov chain to be

m. For memorym, for a binary alphabet, there are 2m sequences of lengthm which determines

the output, which are also the states. The transition probability matrix has dimension 2m⇥2m.

Thus for finding a generalized formula for the modified a-priori information for arbitrary m, in

the numerator (denominator), we sum over all the state transitions which produce an output

u = 0 (u = 1) for all 2m states.

LA(uq) = ln

P
s022m Ps0!s(u = 0)P (s0)P
s022m Ps0!s(u = 1)P (s0)

, (3.6)

where, Ps0!s(u = 0) are all state transitions from s0 to s which produce an output u = 0,

and analogous for Ps0!s(u = 1). Thus, the decoding easily generalizes to arbitrary order-m

Markov models. For the simulation results provided in Section 3.5, we restrict ourselves to

order-1 and order-2 Markov chains.
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3.4.1 Simplified Computation for Source Model Inclusion in Decoding using

Jensen’s Inequality

The computation provided in Eq. (3.2) can be simplified using Jensen’s inequality. Jensen’s

inequality states, if �i � 0 and
P

i
�i = 1 and B is a random variable, then for a concave

function � X

i

�i · �(bi)  �(
X

i

�ibi) . (3.7)

Re-writing Eq. (3.2) yields

LA(xq) = ln [P (xq�1 = +1) · p1 + P (xq�1 = �1) · (1� p2)]| {z }
a

� ln [P (xq�1 = +1) · (1� p1) + P (xq�1 = �1) · p2]| {z }
b

(3.8)

We now apply Eq. (3.7) to a and b from Eq. (3.8) and respectively obtain

P (xq�1 = +1) · ln(p1) + P (xq�1 = �1) · ln(1� p2)| {z }
c

and

�[P (xq�1 = +1) · ln(1� p1) + P (xq�1 = �1) · ln(p2)| {z }
d

] .

Thus, LA(xq) can be approximated by

LA,Jensen(xq) = P (xq�1 = +1) · ln(p1) + P (xq�1 = �1) · ln(1� p2)| {z }
c

�P (xq�1 = +1) · ln(1� p1)� P (xq�1 = �1) · ln(p2)| {z }
d

.
(3.9)

The required P (xq�1 = ±1) from Eq. (3.9) are obtained by

P (xq�1 = +1) =
expL(xq�1)

1 + expL(xq�1)
, and (3.10)

P (xq�1 = �1) =
1

1 + expL(xq�1)
= 1� P (xq�1 = +1) ; (3.11)

where, at the (q � 1)th variable node vq�1, the decision LLR for xq�1 is given by L(xq�1).

According to Eq. (3.7), c and d from Eq. (3.9) are lower and upper bounds of a and b from

Eq. (3.8), respectively1. Thus, Eq. (3.9) is an approximation of Eq. (3.8). We rewrite Eq. (3.9)

1
The definitions of b and d include the minus signs.
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by gathering terms

LA,Jensen(xq) = P (xq�1 = +1) · ln


p1

1� p1

�
+ P (xq�1 = �1) · ln


1� p2
p2

�
. (3.12)

Computing a-priori values using Eq. (3.9) is computationally simpler, as ln[ p1
1�p1

] and ln[1�p2
p2

]

are fixed values. Hence, the expression is linear in P (xq�1 = +1) or P (xq�1 = �1). As shown

in the simulation results, both expressions for a-priori information provide similar performance.

3.4.2 Turbo-like Decoding Scheme

2A hidden Markov model, described in Section 2.1.2 is characterized by a state transition

matrix and an emission matrix. In HMM literature, a classic problem is to determine the state

sequence, given the observed output sequence and the HMM model, ⇥. Both Viterbi and

BCJR decoders can be used for this task. In this section, we reformulate our system as a HMM.

On the decoder side, the received analog values are the output of the Markov state machine

corrupted by additive i.i.d. Gaussian noise with zero mean and standard deviation �n. We

consider this observed sequence to be the continuous output of an HMM model. The re-

ceived values are viewed as samples from a continuous emission probability density, given by

a Gaussian density N (±1,�2
n) for states x 2 {±1}. Since the decoder only observes the

analog outputs, and has knowledge of the channel statistics as well as Qs, it can be viewed

as a classical problem of finding the sequence of states of the system. However, it is not

necessary to view this as a HMM problem. We know the information vector u is generated

by a state-machine. Trellis based decoding methods such as Viterbi ( Alg. 1) or BCJR (given

in Section 2.2.5.1) can both be utilized for finding the sequence of states, given that the

transition probabilities between states (Qs) are known and outputs are given.

To this end, we construct a decoder architecture similar to a serial concatenated Turbo decod-

ing scheme. Our goal is to use the BCJR algorithm to deduce the probable state sequence and

use this a-priori information in the LDPC decoder. The LDPC code performs parity-checks

and provides information for the BCJR decoder. The system is described in Fig. 3.3.

The outer Markov state machine block produces a length K information sequence. The

LDPC encoder generates codewords x of length N . After transmission, on the decoder side,

the channel intrinsic information of the received vector y is fed into the LDPC decoder, along

with the a-priori estimate, computed by the BCJR decoder. One iteration of the decoder

2
Portions of Sections 3.4.2 and 3.5 are taken directly from: N. S. Islam and W. Henkel, “Information

Forwarding in LDPC Decoding for Markov Sources,” in 2018 IEEE 10th International Symposium on Turbo
Codes Iterative Information Processing (ISTC), 2018, pp. 1–5 ©2018 IEEE.
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is counted as serial decoding performed by the LDPC decoder first and subsequently, by

the BCJR decoder. In the first iteration, there is no incoming information from the BCJR

decoder, hence LA(xq) = 0. The output of the LDPC decoder provides a-priori information

for the BCJR decoder, after subtracting the input the BCJR decoder provided in the previous

iteration, to avoid information recycling, and vice-versa for the LDPC decoder.

HIDDEN MARKOV MODEL

MARKOV SOURCE

BCJR DECODER

AWGN LDPC ENCODER

LDPC DECODER

OUTER SOURCE ENCODER

OUTER SOURCE DECODER

INNER CHANNEL ENCODER

INNER CHANNEL DECODER ENCODER

Figure 3.3: Concatenated encoder and decoder structure

We start our iterations at the LDPC decoder, with no a-priori information, yet. The Turbo-

scheme is a standard serially concatenated Turbo coding scheme. The BCJR decoder is not

directly connected to the channel and does not have access to the intrinsic information. The

values for ↵1(s) and �K(s) are initialized to the steady-state probabilities. The BCJR com-

putes a MAP LLR value for every segment of the trellis.

The information exchange within the serially concatenated code is shown in Fig. 3.4. For

an order-1 model, the trellis has 2-states and the outputs of the Markov model become the

states for the next time step. As described, iterations start in the inner LDPC decoder which

estimates the values of the information sequence at the variable nodes. These estimates

map onto the state transitions in the trellis. Solid lines represent an output +1 and dashed

lines represent an output �1. The probabilities of being +1 and �1 are computed from the

outgoing LE0(xq|yq) of the LDPC decoder and placed on the corresponding trellis paths as

shown by the arrow from the variable nodes to the state transitions. This extrinsic information

computed by the LDPC decoder, LE0(xq|yq), is obtained after subtracting the information

the BCJR decoder provided, it is extrinsic information to the BCJR decoder itself.

3.5 Performance Comparison

In this section we provide simulation results. Preliminary results were published by us in [61].

An irregular rate-1/2 LDPC code was constructed using the following variable- and check-node



50 CHAPTER 3. LDPC DECODING FOR SOURCES WITH MEMORY

Figure 3.4: Information exchange between the LDPC and BCJR decoders

degree distribution polynomials,

�(x) = 0.28286x+ 0.39943x2 + 0.31771x7 ,

⇢(x) = 0.6x5 + 0.4x6. (3.13)

The PEG algorithm was used to construct a systematic triangular parity-check matrix, H.

BER results were compiled after 100 independent erroneous words were found. The BER

curves are presented in figures 3.5 and 3.6, for maximum number of iterations 10 and 20,

respectively. For ease of reference, the decoding algorithms presented in Section 3.4 and

sub-sections 3.4.1, and 3.4.2 will be referred to as, Dec-1, Dec-2, and Dec-Ser. As reference,

performance curves of an LDPC decoder using the sum-product algorithm are provided (in

which the a-priori information according to the source Markov model is not incorporated),

shown in blue and green, labeled Ref Qs1 and Ref Qs2. These curves are generated for

matrices

Qs1 =

"
0.9 0.1

0.1 0.9

#
, Qs2 =

"
0.5 0.5

0.5 0.5

#
.

The transition probabilities p1 = p2 , p are listed in the legend of the plots. As expected,

since SPA decoding is constructed for sources without redundancy, the performance curves

for p = 0.5 and p = 0.9 are identical.
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The results for Dec-1 are provided for transition matrices Qs1, Qs3 and Qs4, where

Qs3 =

"
0.6 0.4

0.4 0.6

#
, Qs4 =

"
0.7 0.3

0.3 0.7

#
.

We observe from the results that incorporating memory into decoding improves the perfor-

mance significantly. The lower the entropy of the source model, the more benefit there is

in including the a-priori estimates, since the memory between neighboring bits is stronger.

Results for Dec-2 are plotted for Qs1. We observe that the performance curves computed by

the two methods are identical. Results for the order-2 (O:2) Markov model are also provided,

for Qs5, labelled P{0,0}, using Dec-1.

Qs5 =

2

6666664

(00) (10) (01) (11)

(00)| 0.9 0 0.1 0

(10)| 0.5 0 0.5 0

(01)| 0 0.5 0 0.5

(11)| 0 0.1 0 0.9

3

7777775

The states of Qs5 are also output sequences. 00 refers to the output sequence [0, 0] =

[uq�2, uq�1] = [xq�2, xq�1] = [+1,+1]. The state transitions are listed in the format row-to-

column, meaning, the (1, 1) element of Qs5 refers to the state transition from {0, 0} to {0, 0},

the bit marked in red being the output, i.e., the next information bit.

For the Turbo decoding scheme, serial decoding was performed 10 times, by iterating between

the LDPC and BCJR decoders, each only performing one iteration internally. The iterations

are started at the LDPC decoder. After this iterative round, the resultant estimate of the

a-priori LLR from the BCJR decoder, LA(xq) was then used in a regular LDPC decoder;

which does not consider the memory of the sequence; for a maximum of 10 iterations. The

total number of iterations inside the Tanner graph in the Turbo scheme is then 20. In order

to have a fair comparison, Dec-1 was called with 20 iterations for the same Markov model Qs1.

We observe that the serial architecture performs better at low SNRs. However, the curve

is not as steep as the BER curves for Dec-1. In the Turbo-decoding scheme, scheduling is

an important issue. From the simulations, it was observed that iterating between the two

constituent decoders, each only performing one internal iteration, does not provide benefits

to the Turbo scheme. The BP decoder needs to run some iterations internally after the BCJR

decoder.

We conclude that when the correlation between the source bits is high, including the source
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Figure 3.5: Simulation results for Dec-1, Dec-2 for di↵erent Qs matrices for a maximum of
10 iterations
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Figure 3.6: Simulation results for Dec-1, Dec-2, and Dec-Ser for di↵erent Qs matrices for a
maximum of 20 iterations
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5

Figure 3.7: JSC scheme with Markov links ©2018 IEEE

dependency leads to substantial gains in decoding. Since the complexity of the inside-Tanner-

graph decoding algorithms for including source redundancy is not high, these methods are

useful, specifically the method from Section 3.4.1. We also observe that the Turbo-scheme

provides useful gains at low SNR regimes, where the Tanner graph based methods do not yet

start their convergence.

3.6 Summary and Future Steps

Modifying message passing decoding to include source memory improves the performance of

LDPC codes. The source model can be incorporated to provide a-priori information directly

inside the Tanner graph or by using a concatenated scheme. The gains obtained by using

source memory are dependent on the entropy of the source model, lower entropy sources

providing more gains.

We have considered here a direct transmission of an uncompressed source via an error cor-

recting code. Such a scheme is ine�cient when considering overall data throughput. The

D-LDPC codes discussed at the beginning of this chapter address this shortcoming by using

syndrome source compression first and then perform error correction coding. While the vari-

able nodes or source information for such a graph is not transmitted, the goal is to reconstruct

the source symbols by erasure filling. However, as shown in Fig. 3.7, the left-to-right links,

denoted edge-5, can be used to aid in decoding and is considered to be the next step, leading

to a novel JSCC scheme.

Recently, during a discussion with Prof. Volker Kühn, he suggested to incorporate bidirectional

links between the information nodes in the Tanner graph, since there is information to be

gained from both directions regardless of the source generation direction. This would lead to

a BCJR-like forward-backward estimation inside the Tanner graph. We gratefully acknowledge
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his input and would also incorporate this step in the future. Another possible extension lies in

expanding the memory model. For example, natural languages can be modeled by DTMCs.

The non-binary message alphabet would lead to non-binary codes since the memory would be

between symbols instead of bits.



Chapter 4

Optimization of LDPC Codes for

Sources with Memory

We now focus on code optimization for the source model from Chapter 3. A decoder structure

from the previous chapter consists of a modification to the Tanner graph such that the infor-

mation variable nodes have an incoming edge from neighboring variable nodes, reflecting the

source sequence modeled by a Markov chain. For optimizing a code having such a structure,

the density evolution procedure has to be updated.

The chapter begins with discussing decoder and channel symmetry conditions which allows for

assuming the transmission of the all-ones codeword. Under this assumption, the LLR message

densities should move towards +1 as iterations in the decoder are increased. Instead of

densities, the mutual information between the input to the channel and LLR messages in the

decoder can also be tracked. For converging codes the mutual information should increase

after every full iteration in the decoder. Under this convergence constraint, the rate 1/2

code with lowest threshold is found. The required proportion distribution constraints and

stability conditions are also presented. After the optimal code polynomials are found, the

H-matrix design is discussed for this structure. Then simulation results are provided showing

the performance of the designed codes against standard codes.

55
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4.1 Optimizing a Channel Code for a Source with Memory

In Chapter 3, three types of JSCC structures were mentioned, LDPC-code based JSCC, Turbo-

coding based schemes, and methods based on dynamic allocation of source and channel code

rates for fading channels. The compound Tanner graph structure for JSCC was optimized in

both [49,62]. In [49], the code structure is optimized in an iterative fashion, between channel

code and source code, whereas, authors in [62] optimize the source and channel code jointly.

In [63], the authors optimized a Turbo-coding structure for JSCC application, by making use

of source statistics. The dynamic allocation algorithms adjust their rates in-situ.

The above methods do not correspond to the in-Tanner graph structure analyzed in Chapter

3 and therefore, we present an optimization method in here.

4.1.1 Code Design for Irregular LDPC Codes for Sources with Memory

The density evolution procedure for determining the performance of a code (�, ⇢) was briefly

presented in Section, 2.2.3. In this section we will define the required concepts from the

procedure and build codes suitable for our application using density evolution analysis.

In Section 2.2.3, it was mentioned that density evolution is based on some symmetry condi-

tions from [13]. We further elaborate here. The evolution of LLR densities during decoding

are influenced by the decoding algorithm (the operations at variable and check nodes) and

the channel (influences the intrinsic LLR message). The symmetry conditions thus relate to

the decoding algorithm and the channel.

The modified decoding algorithm from Section 3.4 adds an additional directed edge at the

information variable nodes, as shown in Fig. 3.2. The operation at the variable nodes remains

unchanged, an addition of incoming LLRs are performed. For the following analysis, we define

• Message maps (processing performed) at variable, and check nodes, at the lth itera-

tion,  (l)
v and  (l)

c , respectively. The operations are still equations (2.38) and (2.39),

respectively.
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Variable-node Symmetry

The variable-node symmetry condition requires sign-inversion in-variance. If the sign of all

incoming LLRs at a variable node are changed, the outgoing LLR sign also changes. For a

node with degree dv at the lth iteration, incoming LLRs on edges are Li2{1:dv�1}. We have,

 (l)
v (�L0,�L1,�L2,�Ldv�1, ...,�LA) = � (l)

v (L0, L1, L2, Ldv�1, ..., LA) , (4.1)

where L0 and LA refer to the intrinsic and a-priori information, respectively. The intrinsic

information incoming at the variable node also has the same property, and is relevant for the

first iteration,  (0)
v (�L0) = � (0)

v (L0).

Check-node and Channel Symmetry

The check node update remains unchanged hence the check node symmetry holds, from [13].

The symmetry condition for the channel requires output-symmetry, since the channel is a

BI-AWGN channel, p(yt|xt = +1) = p(�yt|xt = �1). Hence, channel output symmetry also

holds.

Under the symmetry conditions, the error probability is independent of the actual transmitted

codeword - which is a key insight and allows for assuming the transmission of any codeword

to analyze the error correction characteristics of the code. This assumption simplifies the

analysis of message evolution. Since it can be assumed without loss of generality that the

all-ones codeword is transmitted; following the definition of LLRs; a converging code must

have densities which move towards +1.

For analysis under density evolution, a key restriction for message passing decoders is that

there must be an exclusion of the incoming message on an edge, when computing the outgoing

message on the same edge. This constraint is related to the extrinsic information evolution

for iterative decoders and allows for code analysis. The uni-directional additional direct-VN-

linking edges do not alter this constraint at the decoder.

A design criterion to consider is that the parity portion of the codeword does not have a-priori

information. This is handled when optimizing the code by allowing two classes of variable

nodes (multi-edge) and will be described in the optimization constraints.

Thus, we can use density evolution as a tool to analyze the performance of our code. There

are two main approaches to density evolution:
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• For a desired fixed rate, find the lowest threshold code.

• For an SNR threshold, find the code which has the best rate.

In here, we have chosen the first criterion, fixing the code rate to be 1/2 and finding the code

with the best (lowest convergence) threshold.

4.2 Code Design Constraints

For finding the best code, di↵erent algorithms can be used to search for the optimum code

under the constraints mentioned in this section. The density of LLR messages evolves during

the iterative decoding process, which represents changes in the mutual information between

the channel input and the decoder output at variable nodes. For successful decoding, the mu-

tual information should increase after every iteration. We discuss this convergence constraint

as well as other requirements in the following.

Proportion distribution constraints:

In our system, there are two kinds of variable nodes on the information side, the K systematic

information nodes have a left-to-right a-priori information link between them as shown in

Fig. 3.2. There is no a-priori information available for the parity nodes. Since there are

two kinds of variable nodes, and the outgoing messages on edges from each class of nodes

are di↵erent - this is classified as a multi-edge-type LDPC code with two classes of variable

nodes, denoted by j = 1 for information nodes and j = 2 for parity nodes. The proportion

distribution constraints governing the relationship between the degree polynomials � and ⇢

are
2X

j=1

dvmaxjX

i=2

�(j)
i

= 1 , (4.2)

dvmax2X

i=2

�(2)
i

i
=

dcmaxX

i=2

⇢i
i
, (4.3)

where dvmaxj and dcmax are the maximum degrees of variable and check nodes, respectively.

The following equation relates M

K
; a parameter related to the rate; and degree distributions

dvmax2X

i�2

�(2)
i

i
=

M

K

dvmax1X

i�2

�(1)
i

i
. (4.4)
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Stability Constraint:

The stability constraint derived in [26] for binary input AWGN channels is

e
� 1

2�n2 <
1

�0(0)⇢0(1)
, (4.5)

where �
0
(x) and ⇢

0
(x) are the derivatives of the degree polynomials and �n2 is the noise

power (variance). �(x) is the joint degree polynomial for both classes. The stability con-

straint ensures that the error probability converges to zero for iterations approaching infinity

for binary input symmetric output memoryless channels. Cycles in the code-graph having

degree-2 nodes have a significant e↵ect on the performance of a code, thus the constraint

relates to the maximum number of degree-2 variable nodes.

Convergence Constraint:

For successful decoding and error probabilities approaching zero for the number of iterations

going to infinity, the mutual information between the transmitted symbols and the correspond-

ing LLRs is required to be increasing after every iteration in the decoder. To compute the

average mutual information evolution of a code, first it is calculated for each outgoing edge

of each variable node and then averaged over the entire graph.

This constraint is implemented in the optimization program by assuming an average outgoing

mutual information at an iteration (l � 1) from the variable nodes, denoted by x(l�1)
vc . The

average mutual information for the next iteration x(l)vc is then computed. A range of values are

chosen for x(l�1)
vc . This mimics the evolution along the EXIT chart curves for LDPC codes.

The mutual information approaching 1 signifies error probability approaching zero. The con-

vergence constraint requires x(l)vc > x(l�1)
vc . The optimum (�(x), ⇢(x)) is then found that would

adhere to all the code constraints.

In order to compute the mutual information x(l)vc , the check-to-variable node mutual infor-

mation x(l�1)
cv is first computed using Eq. (2.49). Now, the combination at variable nodes

is a summation of incoming LLR values representing the a-priori, intrinsic, and extrinsic in-

formation. For binary input AWGN channels, the symmetry condition for densities (Section

2.2.3) [27] holds and hence, the densities of the intrinsic LLR are consistent. It is typically

assumed that the check node combinations preserve the consistency of the outgoing densities.

For the intrinsic and extrinsic information message densities, it is then su�cient to track the

means.
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Figure 4.1: (a) Plot of LA as a function of (L(xq�1)) (b) Consistent Gaussian density of
L(xq�1) (c) Density of L(A)

We now consider the a-priori densities at the variables nodes. We recall the modified a-priori

LLR from Eq. (3.3). The a-priori information is derived from the current estimate of the

left node of information variable nodes, weighted by parameters of the transition matrix Qs.

The weighting of the estimate L(x(q�1)) translates into a density transform on the density of

L(x(q�1)), which no longer preserves the consistency properties of f
�
L(x(q�1))

�
. Summation

of LLR values means convolution of their respective densities. At the variable nodes, we

perform actual convolutions of incoming LLR densities, i.e., the a-priori and the consistent

intrinsic and extrinsic information densities.

The mentioned densities are sketched in Fig. 4.1 for p = 0.7. In Fig. (4.1)(b), the consistent

density of the decision LLR at the variable nodes is shown. The decision LLR at a variable

node is the summation of all edges incoming from check nodes and the intrinsic information.

This is computed by the argument of the function gt of Eq. (4.6) for a node of degree i. In

order to find the density of a-priori values, this density is modified through the function given

by Eq. (3.3), shown in Fig. 4.1 (a). The resultant density of the a-priori LLR is shown in

Fig. (4.1)(c). The convolutions at the variable nodes to compute the outgoing density is then

between a density (of the shape) shown in Fig. (4.1)(c) and a density given by the left term

of Eq. (4.6), having the same shape as Fig. (4.1)(b).

The degree distribution polynomial of the information nodes is �(x)(j=1) and for parity-nodes
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(of variable nodes) it is �(x)(j=2). At the variable nodes, the outgoing density on an edge of

an information-node with degree i is

f

✓
2

�2
n

+ (i� 1)J�1(x(l�1)
cv )

◆
⇤ gt

✓
2

�2
n

+ (i1)J
�1(x(l�1)

cv )

◆

| {z }
fi1 (LA):8 i12 {2:dvmax1}

, (4.6)

where f(·) denotes a density. fi1(LA) is the a-priori density outgoing from a node with

degree i1. gt
⇣

2
�2
n
+ (i1)J�1(x(l�1)

cv )
⌘
refers to the density transform according to Eq. (3.3)

on f
�
L(x(q�1))

�
(shown in Fig. 4.1(c)). The mutual information evolution per edge of variable

node i is

dvmax1X

i1�2

�i1 · gmi

2

6664
f

✓
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�2
n

+ (i� 1)J�1(x(l�1)
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◆
⇤ gt

✓
2

�2
n

+ (i1)J
�1(x(l�1)

cv )

◆

| {z }
f(v)

3

7775
, (4.7)

where gmi(·), given by Eq. (4.9), is a function which computes the mutual information.

Averaged over all information variable nodes of the graph, the mutual information is

dvmax1X

i�2

�i

dvmax1X

i1�2

�i1 ·gmi


f

✓
2

�2
n

+ (i� 1)J�1(x(l�1)
cv )

◆
⇤ gt

✓
2

�2
n

+ (i1)J
�1(x(l�1)

cv )

◆�

| {z }
xvc

. (4.8)

The information-node polynomial is the same, �i = �i1 for 8i 2 {2 : dvmax1} where dvmax1 is

the maximum number of degrees allowed for information nodes.

For the computation of gt(·), the a-priori information is ignored in computing L(xq�1). Includ-

ing this inside the optimization would lead to a recursive function. To compute the mutual

information xvc from Eq. (4.8) between the discrete distribution of the transmitted binary

message PX(x) and the density at output of the variable nodes f(v), shown in Eq. (4.7), we

use

xvc = gmi(f(v))

= H(V )�H(V |X) (4.9)

= �

X

V

" 
X

x=±1

PX(x)fV |X(v|x)

!
log2

 
X

x=±1

PX(x)fV |X(v|x)

!#

+
X

V

X

x=±1

�
PX(x)fV |X(v|x)

�
log2

�
fV |X(v|x)

�
(4.10)
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The parity class (parity part of the variable nodes) of this multi-edge-type code follows the

simplifications proposed in [27], given in Eq. (2.48). The optimization problem has a quadratic

convergence constraint for the information variable nodes, and linear proportion distribution

and stability constraints as well as a linear convergence constraint for parity nodes.

We start our optimization process by fixing ⇢(x) and finding the corresponding �(x) which

adheres to rate-1/2 and finds the best threshold code. The optimization algorithm is provided

in Alg. 4.

For the binary input AWGN channel, the relevant channel quality parameter is the signal to

noise ratio (SNR) which is defined as Es
N0

= 10 log10
1

�n
2 , where N0 is the two-sided noise

power spectral density and Es is the signal energy normalized to 1.

4.3 Constructing the H matrix

To construct the parity-check matrix H, the zigzag-PEG algorithm from Section 2.2.4 is used.

Typically in the construction, length-4 cycles are the shortest possible cycle. In our modified

Tanner graph from Fig. 3.2, due to the left-to-right link between information nodes, if neigh-

boring variable nodes would be connected to the same check-node, a closed path of length-3

connecting the two variable nodes would result.

Although this link does not convey the same quality of information as an edge between vari-

able and check nodes due to the attenuation of the LLR value as per Eq. (3.3), we construct

a parity-check matrix avoiding such links and compare the performance to a matrix when

this restriction is not in place. This restriction only applies to the information-variable nodes,

the parity part of the codeword is not a↵ected and the zigzag-construction at the parity side

enabling easier encoding is still possible.

In Section 2.2.4, it was mentioned that when constructing a check-matrix for both (�, ⇢),

constraints prohibiting connections to check-nodes which violate ⇢(x) have to be included.

Due to the desired lower-triangular structure of the parity-check matrix, connections to check-

nodes in the upper triangular part of the graph are also prohibited. Additionally, in order to

prevent neighboring variable nodes from being connected to the same check-node, adjacent

1s in the same row of H are to be avoided. PEG establishes variable node connections from

the last column of H or lowest degree VNs. While constructing the matrix, when constructing

column vi, vi+1 has been fully connected. Thus when placing edges for the VN vi, we exclude
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Algorithm 4: Finding Optimized Codes

for values of x(l�1)
vc do

x(l�1)
cv = 1�

dcmaxP
j=2

⇢jJ
⇣
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.
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For parity nodes, j = 2 :
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end for
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check-nodes which violate the ⇢(x). We also exclude check-nodes which are connected to

vi+1.

4.4 Simulation Results

We provide the results of optimization and simulations in this section. The matrices used

were Qs1 and Qs4, with p1 = p2 = 0.9 and p1 = p2 = 0.7, respectively. The optimization

was done by fixing

⇢(x) = 0.98x7 + 0.02x8 .

Since the convergence constraint is non-linear, a variant of interior-point constrained opti-

mization named sequential quadratic programming (SQP) is used in Matlab. The following

degree distribution polynomials were obtained, with the maximum allowed degrees in each

class being dvmax1 = dvmax2 = 15.

Table 4.1: Optimized Degree Distribution Polynomials

�(1)
i

�(2)
i

R (EB/N0)⇤dB

Qs1 0.3198x2 + 0.3468x14 0.0816x+ 0.2518x2 0.5098 0.47

Qs4 0.3362x2 + 0.3301x14 0.0810x+ 0.2527x2 0.5181 0.53

We simulated the code for N = 2048 for 10 and 20 iterations using Dec-1. To compare the

results of a optimization, standard optimized codes for AWGN channels for rate 1/2 are used

as a reference from Table II of [26] with degree polynomials

�(x) = 0.23802x+ 0.20997x2 + 0.03492x3 + 0.12015x4

+ 0.01587x6 + 0.00480x13 + 0.37627x14 , (4.11)

⇢(x) = 0.98x7 + 0.02x8 .

When plotting the results, rate loss was incorporated to compensate for the slightly di↵erent

rates from Table 4.1. In Fig. 4.2, we show the BER curves for the optimized codes from

Table 4.1 and the reference code of maximum variable node degree 15 from Eq. (4.11). The

threshold for the degree-15 polynomials from [26] is 0.3347 dB, however this threshold is for

sum-product decoding, not the decoding algorithm (Dec-1) presented in the previous chap-

ter. We cannot directly compare the thresholds. This would require extra numerical studies.

Instead we directly simulated the degree distribution pairs under the same conditions and com-

pared their performances. The reference curves begin to converge at lower SNRs. However,

for both source models, p = 0.9 and p = 0.7, the optimized curves are steeper.
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Figure 4.2: Simulation results for codes with similar degree distribution polynomials

For 10 iterations, there is a crossover at higher SNRs, favoring the optimized curves although

their convergence started at higher SNRs than the reference curves. After a maximum of

20 iterations, the steepness of the optimized codes is still observable for the source model

p = 0.9, for p = 0.7 it is not. This is explained by looking at the results performed for 10

iterations, where the p = 0.7 had a smaller advantage than the optimized curves for p = 0.9.

These curves are presented as ’proof-of-concept’ for the optimization method. Our intention

is to demonstrate that the optimization yields a stronger steepness. The illustrated results

for the optimized curves is not showing a performance gain, this however is expected and the

reasoning is described below.

The optimization performed in this chapter is a direct counterpart to the decoder architecture

described in Chapter 3 with directed edges between information variable nodes. In there, the

low entropy source sequence is not compressed before transmission, the system consists of a

rate-1/2 LDPC code transmitted over an AWGN channel. This is also the code and channel

the reference curves are optimized for, meaning the reference curves are able to correct the

codewords. The benefit provided by optimizing for the specific decoder structure is in the

steepness of the curves, however, for these curves it is not enough to compensate for the

convergence point gap between the two codes. This may be an implementation issue limited

by the programming language. We provide another result, in Fig. 4.3.
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Figure 4.3: Simulation results for codes with similar convergence points

These results for optimized and standard codes for AWGN channels are plotted, for codes which

start their convergence at similar SNRs. The standard code is given by Eq. (3.13). Since the

maximum variable node degree is 8 for the code from Eq. (3.13) in contrast to the optimized

ones which have maximum variable node degree 15, we would expect a flatter performance

for the code given by Eq. (3.13) anyway. However, since they start convergence relatively

at the same SNR, we plotted them on the same figure. Here, we observe the performance

gain also. We conclude from our results that a limitation can arise from the programming

platform used for optimization. In the optimization program, we could only simulate a portion

of the EXIT curve, a full simulation along the curve did not yield results. The optimization

program was able to be completed for a portion of the EXIT chart, otherwise, internally the

total maximum number of iterations of the optimizer was exceeded or some other internal

parameter was violated. Another disadvantage arises from the Gaussian approximation used.

Full density evolution is approximated by the Gaussian assumption to density evolution, which

we used on the check node side. Since, the expected gains are in fractions of dBs, these

limitations are enough to perturb the final performance of the system. In the presence of such

limitations, in practice for the system described above, simulation results should determine the

code of choice. At the end of Chapter 3, a JSCC system was described which would compress

the source and then perform channel coding on it. Code optimization for such a case would

require developments from this chapter.

In Fig. 4.3, the results for the two di↵erent H matrix construction algorithms are also shown.
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H2 is the construction where we restricted neighboring variable nodes being connected to the

same check node. No such restriction was in place for H1. There is almost no di↵erence be-

tween the two construction methods. We conclude it is not necessary to limit the construction

method to avoid edges between neighboring variable nodes and a specific check-node.

4.5 Summary

In this chapter, a code optimization procedure for a modified LDPC decoder which incorpo-

rates source memory is presented. The system we consider has extra edges in the Tanner

graph, linking variable nodes. These edges are directed and use intermediate BP estimates

to provide extra information to neighboring nodes, which mimics the source model. These

links were assumed to be important in designing optimized codes, specifically in the density

evolution procedure. The extra edges provide information as a function of the variable node

estimates. Meaning the information on these edges are distributed with the same degree

polynomial as the information nodes of an LDPC decoder. For optimization this results in

a quadratic convergence constraint, which relates to the requirement that the mutual infor-

mation between decoder and source should increase after every iteration. The results of the

optimization program yield degree polynomials which have steeper performances than standard

optimized polynomials for AWGN channels. However, the results are subject to the optimiza-

tion program used, in this case Matlab, and we cannot always compete with standard codes

due to underlying numerical and stability (of the optimizer) issues. If the performance of the

standard codes are able to overcome the performance gain achieved by optimized ones, then

those are a better choice for applications. We do however show the validity of the method by

providing performance curves which show the acquired steepness is able to ’catch-up’ at high

SNRs, even with codes which start their convergence earlier.

In a planned further development, we will use syndrome source compression on the low entropy

source sequence and subsequently perform parity computations on the compressed sequence.

This would lead to a joint source-channel code, illustrated in Fig. 3.7. Here the source sequence

would not be transmitted, hence, there will be no intrinsic information for the source bits.

The left-to-right link are essential for such a structure and the optimization method in such

a case would also require developments from this chapter.
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Chapter 5

LDPC Codes in Impulse Noise with

Memory

Having covered the treatment of memory in the source sequence using LDPC decoding, we

now turn our attention to mitigating the e↵ects of impulse-noise with memory in LDPC de-

coding. In chapters 3 and 4, we assumed the noise model to be additive white Gaussian. In

many practical situations, there is often an impulsive noise component alongside background

noise. For example, in power lines, impulsive disturbances are always present. In this chapter,

we focus on impulsive noise disturbances and mitigation methods using LDPC decoding.

Impulsive interference can, e.g., be modeled using Middleton’s Class-A (MCA) model. For

the case with memory, a Markov model is used to describe the dependencies between the

noise states. Both states are characterized by white Gaussian noise, with di↵erent variances

characterizing the background and impulsive noise states. The variance of the impulsive state

is then wider than the background state.

For symbol decoding in an impulsive noise environment, it becomes essential to detect which

noise state was active during symbol transmission, based on the received samples. This knowl-

edge is used in the iterative decoder. Centrally, the problem is detecting the state sequence of

the two noise states. In this chapter, we introduce the MCA model and present decoding steps

suitable for an impulsive noise environment. We present three di↵erent decoding scenarios

and the corresponding results.

69
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5.1 Impulse Noise Modeling

Impulsive interference refers to sporadic noise impulses of short duration and high amplitude.

We di↵erentiate here between two kinds of noise, background and impulsive. Background

noise is the interference process always present. This noise is typically modeled as AWGN,

caused by resistive noise or some stationary interference.

In contrast, impulse noise is non-stationary. Impulsive interference a↵ects a wide variety of

systems, including wireless channels, wireless transceivers in laptops, aeronautical communi-

cation systems, etc. The performance of systems a↵ected by impulse noise can be severely

hampered if it is not considered during the design process. In order to e↵ectively treat impul-

sive interference, the first step is to model the noise process e↵ectively. In the next section,

we discuss a few impulse noise models. We denote all noise as z.

5.1.1 A Few Statistical Models of Impulse Noise

Impulse noise models can be broadly categorized under empirical models and statistical-

physical models. Empirical models arise from measurement data which provide tractable

distributions whereas statistical-physical models allow for parametric models where the pa-

rameters are di↵erent physical attributes of the noise process. Statistical-physical models

allow for investigating impulse noise thoroughly by tweaking the parameters. A few of the

most commonly used models are MCA, the symmetric alpha-stable (S↵S) distribution, and

the ✏-mixture model.

5.1.1.1 S↵S Model

The S↵S model is best described via its characteristic function,

�(z) = exp(jvz � �|z|↵) , (5.1)

there is no closed form expression of the noise pdf for this model. Here, ↵ is the characteristic

exponent and � is the dispersion of the distribution around the location parameter v. The

S↵S model reduces to a Cauchy distribution for ↵ = 1 and to a Gaussian distribution for

↵ = 2. However, it is not very practical for use in communication systems since the dispersion

parameter can be infinite, which is analogous to an infinite variance for a Gaussian distribution.
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5.1.1.2 ✏-Mixture Model

The ✏ mixture model is an empirical mixture model, often expressed as a weighted sum of two

Gaussian distributions.

pz(z) =
1� ✏p
2⇡�2

0

exp(
�z2

2�2
0

) +
✏p
2⇡�2

1

exp(
�z2

2�2
1

) . (5.2)

The second term is assumed to describe the impulse noise. The impulsive term can be replaced

by any symmetric pdf, i.e., the Laplacian or the Cauchy pdf. ✏ is the probability for impulses

to occur.

5.1.1.3 Middleton Class-A Model

One of the most widely used statistical models for impulse noise was introduced by Middleton

in [64]. In his 1972 paper, Middleton di↵erentiated between three classes of noise models,

class A referring to narrow-band noise [64,65]. The class-B model is for cases when the noise

bandwidth is broader than the receiver bandwidth, and the class-C variant is a mixture of

class-A and class-B models.

Middleton di↵erentiated between noise of two origins - man-made disturbances such as elec-

trical transients due to electrical components being plugged into the power line, and environ-

mental noise due to weather phenomena, for example. We have chosen MCA as the impulse

noise model we consider for the following. In this section, we present a basic introduction to

the Middleton Class - A model.

We begin by re-introducing the received signal samples,

yn = xn + zn . (5.3)

Here, yn is the nth received value for a bit of the codeword of length N . zn is the noise

sample added to the nth transmitted bit of the codeword x. zn consists of two components,

the background Gaussian noise zG and the impulsive interference denoted as zI .

According to the MCA model, impulsive sources are assumed to be independently distributed

in time and space according to a Poisson distribution [64]. The other wave parameters, i.e.,

envelopes, frequencies, and phases of the noise source emissions are randomly distributed.
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The PDF of the amplitude of a noise sample zn is given by

p(zn) =
1X

m=0

P (m) · N (zn; 0,�
2
m)

=
1X

m=0

P (m) ·
1p
2⇡�2

m

exp(
�z2

2�2
m

) ; (5.4)

where zn is a sample from the Gaussian PDF with zero mean and variance �2
m.

We observe that the noise PDF is a Gaussian mixture model with an infinite number of terms

in the summation. m refers to the number of impulsive sources. We now define a parameter

A known as the impulsive index. A is the density of impulsive events in a certain observation

period, it can also be described as the duty cycle of the impulse noise.

A =
TD

TI

, (5.5)

where TD is the duration of impulsive events and TI is an observation period. Hence, A can

be seen as a rate of impulse noise events. Given that di↵erent impulsive sources are active

independent of each other but with an overall activation rate of impulsive disturbance A,

P (m) can now be defined as an independent Poisson point process,

P (m) =
Am

· e�A

m!
. (5.6)

By definition, A  1 since it is defined as a density within an observation period. In Fig. 5.1,

we show the pulsed appearance of the MCA noise model for a noise burst. When the noise

does not occur in bursts, TD = ⌘ · ⌧ , where ⌧ is the width of noise pulse and ⌘ is the total

number of noise emissions in TI . Middleton limits the value of A to the range [10�6, 1].

Equation (5.4) can be approximated by a finite number of terms [65]. For our purposes, it

Figure 5.1: Pulsed appearanace of MCA noise

is su�cient to limit the summation to two terms, distinguishing between two states, m = 0
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signifying the background AWGN state and m = 1 describing an impulsive state.

The variances �2
m are given by

�2
m = �2

G(1 +
mn

A�
) ; m = {0, 1} , (5.7)

where, �2
G
is the variance of the background Gaussian noise and the subscript n in mn refers

to the nth bit. �, known as the Gaussian factor, represents the power ratio between the

background AWGN and impulsive noise,

� =
�2
G

�2
I

. (5.8)

The noise PDF of zn is then given as

P (zn) =
↵0q

2⇡�2
mn=0

exp(
�z2n

2�2
mn=0

) +
↵1q

2⇡�2
mn=1

exp(
�z2n

2�2
mn=1

) (5.9)

with

↵0 =
A0

· exp(A)

0!
and ↵1 =

A1
· exp(A)

1!
. (5.10)

We notice that the MCA model, when approximated by two terms, is identical to the ✏-mixture

model using Gaussian densities, where, ✏ is the probability of impulses.

We have assumed a BPSK modulated transmission scheme. A symbol period is denoted as Te.

If the impulse noise duration, TD is less than or equal to the symbol duration Te, the MCA

noise is considered memoryless, i.e., the noise a↵ecting neighboring pulses of the transmit

signal are independent. Hence, when decoding the received signal, neighboring variable nodes

or symbols do not provide any information about each other beyond the constraints imposed

by the LDPC parity-check matrix H.

If the impulsive duration, TD is greater than the symbol period Te, then

D =


TD

Te

�
(5.11)

symbols (rounded) within the impulsive duration are a↵ected by the same noise state, mn =

... = mn�D�1. Then, the pdf of the MCA density can be written as

p(zn) =
X

mn2{0,1}

p(mn)P (zn|mn). (5.12)



74 CHAPTER 5. LDPC CODES IN IMPULSE NOISE WITH MEMORY

Figure 5.2: 2-state Markov model for MCA noise

This dependency can be reformulated as a Markov model as per [64, 65]. We formulate a

two-state Markov model with the probabilities q1 = P (mn = 1|mn�1 = 0) = P (I|G) and

q2 = P (mn = 0|mn�1 = 1) = P (G|I). The impulse-noise model then becomes similar to the

Gilbert-Elliott channel model with the Gaussian noise state signifying the better channel and

the impulsive state signifying the bad channel. We derive the transition probabilities q1 and

q2 based on previously chosen parameters, D and A.

For a Markov model, the average time to stay in a state can be calculated. The average time

to stay in the impulsive state is

D =
1X

i=0

1 · (1� q2)
i =

1

1� (1� q2)
=

1

q2
. (5.13)

This duration is the average ‘burst length’, viewed as a noise burst with variance higher than

the background noise of the channel. Similarly, the average time spent in the Gaussian state

can be calculated as 1/q1. This can be termed the average ‘gap length’, the gap between

switching to impulsive states, i.e., the number of symbols a↵ected only by Gaussian back-

ground noise, on average.

The number of symbols una↵ected by impulse noise is, according to Fig. 5.1:

1

q1
=

TI � TD

Te

=
TI

TD

·
TD

Te

�
TD

Te

=
D

A
�D . (5.14)

Using eqs. (5.13) and (5.14), we can write the order-1 Markov transition probability matrix,

Q which describes the memory of the process. When, TD = Te, this model describes the

memoryless case.



5.1. IMPULSE NOISE MODELING 75

-15 -10 -5 0 5 10 15
0

0.5

1

1.5

2

2.5

3 10-3

Figure 5.3: MCA noise model using 2-terms

Q =

"
PG!G PI!G

PG!I PI!I

#
=

"
(1� q1) q1

q2 (1� q2)

#
;

where G represents the background Gaussian noise and I represents the impulsive noise state.

In Fig. (5.3), we show the two-term MCA model from Eq. (5.9). The Gaussian density plotted

in red corresponds to the impulse noise pdf, and the density plotted in black corresponds to

the background noise pdf. This figure is plotted for A = 0.5 and � = 0.1. The value of D is

set to 10.

From the figure, we note that there is a crossover point between the two densities where

the probability of a noise sample being generated by either the background Gaussian or the

impulsive Gaussian is equal. This threshold value can be used as a discriminant for deciding

which noise state gives rise to the considered noise sample. Hence, we define a threshold

value at

P (zn|mn = 0) = P (zn|mn = 1) . (5.15)

↵0p
2⇡�2

0

exp(
�z2n
2�2

0

) =
↵1p
2⇡�2

1

exp(
�z2n
2�2

1

) ,

z2n =
2�2

1�
2
0

�2
1 � �2

0

· log(
↵0 · �1
↵1 · �0

) .
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Thus, the threshold value is set to

zo = ±

s
2�2

1�
2
0

�2
1 � �2

0

· log(
↵0 · �1
↵1 · �0

) . (5.16)
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Figure 5.4: Threshold drawn at the noise sample value at which both densities are equi-
probable

In Fig. 5.4, we see that the threshold value is drawn at the noise sample where there is a

crossover between the probabilities of the constituent densities. The figure was generated for

D = 2, A = 0.1, � = 0.2.

In the next section, we describe the di↵erent decoding methods used for mitigating impulse

noise with memory.

5.2 Decoding Methods

We used BP decoding for an LDPC code using LLRs. From Eq. (2.34), we know that LLRs

for LDPC codes can be factored into three summands, intrinsic, a-priori, and extrinsic LLR.

The intrinsic LLR expresses the channel properties, i.e., the noise environment of the system.

Hence, the noise state estimation will a↵ect the intrinsic LLR, Litr, whose computation is

shown subsequently.
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5.2.1 Intrinsic LLR Computation based on Weighted Sums of Di↵erent State

Distributions

A simple way to compute Litr is to compute P (yn|x = ±1) for both noise densities N (0,�G)

and N (0,�I) and sum the values based on the weights of the two distributions. The weighted

sums take into account the average behavior of the noise process.

The resulting intrinsic LLR is given by

Litr(yn) =
(1�A)P (yn|+ 1,mn = 0) + (A)P (yn|+ 1,mn = 1)

(1�A)P (yn|� 1,mn = 0) + (A)P (yn|(�1,mn = 1)
. (5.17)

This computation method does not take into account the memory in the noise process, rather

it reflects the steady-state probabilities of the Markov model since the weighting is based on

those values. For the 2-state model, this method is similar to the computation given in [66].

We take this method as a benchmark for comparisons in our simulations.

5.2.2 Noise State Estimation via Viterbi Algorithm

For estimating the sequence of noise states, we now implement a Turbo-like structure with an

‘outer’ trellis-based Viterbi decoder estimating the noise states and an ‘inner’ LDPC decoder

calculating the BPSK transmitted symbols.

We have described the noise process as an order-1 Markov model. Viterbi decoding can be

used to estimate the state sequence of a Markov model. A detailed description of the Viterbi

decoder is given in [4]. Since the sequence of noise states is governed by the transition prob-

abilities of the Markov model, we incorporate the transition probabilities, given by Q in the

state transitions of the Trellis.

Let us consider the annotated path I ! I on the trellis. The received value yn is generated

by the state on the left of the path. To find the probability of yn being generated by the left

state I, we use the Gaussian pdf to find the emission probability of yn. The probability for

the next state (the state on the right side of the path segment) to be I is then a product

of the Gaussian probability we have calculated and the transition value 1� q1. All the other

Trellis path segments are calculated similarly. The mean of the Gaussian noise processes are

taken to be the hard decision values obtained from the variable nodes in the Tanner graph at

the current iteration, ỹ. The sequence of states estimated by the Viterbi decoder are in turn

used in calculating the intrinsic LLR using 2·y
�2
n
, from Eq. (2.37). This interplay between the

Viterbi decoder and the LDPC Tanner graph is shown in Fig. 5.5.
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trellis
Markov

Figure 5.5: Noise state estimation using a trellis

Unlike the previous method, the memory in the noise process is accounted for by using Viterbi

decoding to calculate the noise state sequences. This is our proposed method for distinguish-

ing between whether impulsive or background Gaussian noise was present during transmission.

In simulations, Viterbi in log-domain was used since it is more numerically stable than using

only probabilities. The accumulated metric in the Viterbi algorithm (Alg. 1) in log domain re-

places the multiplication of Eq. (2.11) with an addition of logarithms. In [67], a similar method

was investigated, however, the contribution described here was arrived at independently.

5.2.3 Threshold Estimation

The third method we use for noise state detection uses the threshold described in Eq. (5.16).

The threshold, shown in Fig. 5.4, provides us with a boundary region around the the mean,

within which the probability of the received value to be transmitted during a time window

when the background noise process was only present is higher than that of the impulsive

process. Outside this region bounded by the threshold, the probability for the impulsive noise

state is higher.
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In order to use Eq. (5.16), we first do a hard decision for the transmitted BPSK symbol by

slicing at zero. A hard decision, x̂n, is obtained as the sign of the received value. After the

hard decision, we apply the thresholding operation shown in Eq. (5.18) and decide the value

of the noise state, mn. We then use Litr = 2 ⇤ yn/�2
mn

, from Eq. (2.37), for calculating the

intrinsic LLR. This method also does not update the intrinsic LLR during LDPC decoding,

and also does not take memory into account.

pZ(yn|Xn = x̂n) ⇡

8
<

:
pZ(yn � x̂n|mn = 0), if |yn � x̂n|  z0 ,

pZ(yn � x̂n|mn = 1), otherwise ,
(5.18)

where, the threshold value z0 was given in Eq. (5.16).

The threshold can be used to simplify the intrinsic LLR computation given by Eq. (5.17),

pZ(yn|Xn = ±1) ⇡

8
<

:
p(mn = 0)pZ(yn � xn|mn = 0), if |yn � xn|  z0 ,

p(mn = 1)pZ(yn � xn|mn = 1), otherwise ,
(5.19)

When Eq. (5.19) is used, it allows for di↵erent noise states in the numerator and the denom-

inator. Thus, only two exponents need to be computed instead of four, in Eq. (5.17).

5.3 Results and Discussion

In this section, we provide BER simulation results comparing the performance of the three

detection methods described in the previous section.

We have simulated a rate-1/2 length 2048 LDPC code with degree distribution polynomials

�(x) = 0.28286x+ 0.39943x2 + 0.31771x7,

⇢(x) = 0.6x5 + 0.4x6.

The LDPC decoder is run for a maximum of 20 iterations for all three alternatives. We have

computed BERs for three di↵erent Gaussian factors (Eq. (5.8)) � = 0.1, 0.01, and 0.001. For

each value of � and three di↵erent values of D = 2, 6, and 10 (Eq. (5.11)) we obtain di↵erent

transition matrices, Q. The impulsive index A (Eq. (5.5)) was set to 0.1 for all simulations.

Equations (5.13) and (5.14) illustrate how to obtain the Markov transition matrix Q from the

parameters A and D.
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QD=2 =

"
0.9444 0.5

0.0566 0.5

#
(5.20)

QD=6 =

"
0.9815 0.1667

0.0185 0.8333

#
(5.21)

QD=10 =

"
0.9889 0.1

0.0111 0.9

#
(5.22)

We notice that for D = 2, the second column of the matrix has a value of 0.5 for both rows,

meaning there is no memory in the noise process, the system switches to the impulsive state

from both the Gaussian or impulse noise state with equal probability. For D = 6 and D = 10,

there is memory in the process.

In Fig. 5.6, the BER curves for D = 2 are plotted. We used Eq. (5.18) for the threshold

method. We observe that when there is no memory in the impulse noise process the ‘weighted

sums’ method from Section 5.2.1 performs the best, followed by the Trellis and the threshold

estimation methods from sections 5.2.2 and 5.2.3, respectively. We also notice that the

lower the value of �, the better the performance. For lower values of �, the impulse noise

variance is significantly higher than the background Gaussian, the noise states become easier

to distinguish for all three methods, which accounts for the progressive improvement shown

in Fig. 5.6. However, with increases in �, the variances of the background and impulsive

states become similar, as given by Eq. (5.7). For � = 100, �2
0 and �2

1 are almost identical,

hence � = 100 should emulate the impulse noise free case. From the blue curve in Fig. 5.6,

this is confirmed. In figs. 5.7 and 5.8, the BER curves for D = 6 and D = 10 are plotted,

respectively. For higher values of D, i.e., when the average burst length is longer, as expected,

the trellis estimation method provides the best performance since it estimates the noise state

sequence. The other two methods cannot estimate the memory, their performance su↵ers.

We observe from our results that the BERs are in the order of [10�3, 10�4]. When impulse

noise is present in a transmission scheme, the observed flooring e↵ect is expected. This is due

to the fact that Es/N0 relates to the Gaussian background noise, only. The impulse noise is

constant in its strength and presence. A further reduction in BER can, e.g., be obtained by

an outer Reed-Solomon code.

In Fig. 5.9, BER curves are plotted showing the trellis method for the three values of the

impulsive length D for � = 0.001. We note that degradation of performance with increasing
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Figure 5.6: BER curves for D = 2
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Figure 5.7: BER curves for D = 6
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Figure 5.8: BER curves for D = 10
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Figure 5.10: BER curves for approximating the Weighted Sums approach using the computed
threshold for values of D = 2, 6, and 10

memory of the impulsive process. In Fig. 5.10, the approximation to the weighted sums method

of Eq. (5.17) by Eq. (5.19) is given. The approximation yields almost identical performance

curves, which means that the approximation can be used in place of the weighted sums

method.

5.3.1 Discussion on Simplifying the Trellis-based Method

We now turn our attention to simplifying the trellis-based decoder for impulse noise with mem-

ory. In Chapter 3, we simplified the trellis based Turbo coding structure by using a one-step

approximation of the trellis inside the Tanner graph. Similarly here, in the Tanner graph, we

were also investigating if the left node of a variable node could likewise provide information

to the right node, and avoid the Turbo like inner and outer decoder structure.

The goal is to iteratively compute the intrinsic LLR, using intermediate Tanner graph results.

The iterations of the LDPC decoder provide probabilities of the BPSK transmitted symbols.

In order to use the calculated BPSK symbol probabilities to update the noise state estimation,

there are a few steps involved. Our goal would be to estimate P (mn = 0|yn) and P (mn =
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1|yn). Let us further simplify.

P (mn|yn) = P (yn|mn) · P (mn) ·
1

P (yn)

= P (yn|mn)
X

mn�1

(P (mn|mn�1)P (mn�1)) ·
1

P (yn)

= P (yn|mn) · P (mn|mn�1) ·
1

P (yn)
, mn 2 {0, 1}. (5.23)

The value for P (mn|yn) is dependent on the noise state at the left node indexed by n � 1,

to incorporate the memory from only the previous node. In essence, we are simplifying the

complete trellis decoding to a two path computation per segment of the trellis. For such an

estimation of the noise state at variable node n, there are two components to consider, as

shown in Eq. (5.23). The first component uses the received value at the nth node while the

second component accounts for the dependency or memory from the left node. 1
P (yn)

is a

constant factor for the computation for both mn 2 {0, 1}. In order to compute P (yn|mn) we

use the intermediate LDPC decision ỹn, similar to the trellis based method. Also for deciding

the state at node n� 1 using the threshold method according to Eq. (5.18), x̂n�1 = ỹn�1 is

used. As we have seen from our plotted results, using the threshold method does not provide

good estimates of the noise states when there is memory present, hence this simplified method

does not yield promising results.

Without deciding the noise state mn�1, as shown in Eq. (5.23), if we had computed path

probabilities for both noise states at node n-1, the number of path computations per segment

of the trellis would be equal to the trellis-based method. This would not be a simplification

computationally as well as leading to inferior solutions since we would ignore the sequence

memory. When we decide the state at node n�1 as shown in Eq. (5.23), we obtain probabilities

for P (mn = 0|yn) and P (mn = 1|yn), we decide the noise state at node n to be the one which

has higher probability. This is another hard decision, this combined series of hard decisions

leads to inferior performance. We conclude that simplifying the complete trellis estimation

does not work for impulse noise. Thus, updates to the Litr directly during BP iterations in

the Tanner graph are not possible.

5.4 Summary

In this chapter, we have investigated the MCA impulse noise model with memory. In practical

systems, depending on the parameters, impulse noise may a↵ect consecutive symbols. This

noise corruption can be expressed as a Markov model since the impulse noise a↵ecting adja-
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cent symbols has memory, i.e., dependency between the symbols. Here, we have described

this memory as a first-order Markov model.

We then investigated a Turbo-like scheme in which a Viterbi decoder estimates the noise state

sequences of the Markov model and an LDPC decoder uses the state information provided for

symbol decoding. This is our proposed approach, and we see from the results provided that

the method performs well at detecting impulse noise states. We also investigated a threshold

detection scheme and a weighted sums approach for detecting the noise states based on the

average behavior. Since neither of these two methods can make use of the memory, the

trellis-based approach has a clear advantage. For the trellis-based approach, a Turbo-like

decoding scheme is required to pass information iteratively between the LDPC decoder and

the Viterbi decoder. We looked into possibilities of simplifying this Turbo structure to obtain

direct forwarding in the Tanner graph from left-to-right variable nodes for making use of the

noise memory. However, this problem cannot be solved successfully, since in order to forward

from left to right nodes, we would need to estimate the noise state on the left node and hence,

we are left with a recursive problem. Thus, the trellis-based decoding approach is finally the

best method for detecting impulse noise with memory.



86 CHAPTER 5. LDPC CODES IN IMPULSE NOISE WITH MEMORY



Chapter 6

LDPC based Decision-Feedback

Equalization

In this chapter, we turn our focus to incorporating equalization into LDPC decoding. Equal-

ization at the receiver is a ‘pre-processing’ step required to cancel inter-symbol interference

that arises from transmit pulses being spread in time during channel transmission. Due to this,

adjacent transmit symbols result in received pulses which are a combination of several sym-

bols. Equalization techniques are therefore required to treat the received pulses such that this

spreading can be canceled, and decoding is then performed. There are many types of equaliza-

tion techniques, Turbo equalization being one of them in which equalization and decoding are

performed iteratively with the results of one process acting as a-priori information for the other.

In this chapter we have performed equalization using intermediate values from the message

passing decoding inside the Tanner graph. We use the variable node LLRs, which yield

estimates of the transmitted BPSK symbols, for equalization, leading to an iterative procedure

which uses intermediate decoding results to cancel interference from the adjacent symbols.

Our results show that our integrated method performs better than sequential equalization and

decoding and thus is a competitor for sequential methods, while having lower complexity than

Turbo equalization.

87
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6.1 Basics of Equalization

Equalization is the process of canceling inter-symbol interference (ISI) caused by a trans-

mission channel to the transmitted signal. The transmitted message, a sequence of numbers

from a finite filed, GF(m) is mapped to a waveform according to a chosen modulation scheme.

Mostly, transmission channels are assumed to be linear time invariant (LTI) systems. During

transmission over the channel, this signal pulse is spread in time and distorted by noise such

that at the receiver, the corresponding received pulse is a linear combination of a few trans-

mitted symbols, i.e., results in ISI. For accurate reconstruction of the transmitted waveform

at the receiver, the ISI must be canceled.

For equalization, the channel transfer function must be known. Channel coe�cients can

be obtained prior to transmission via the transmission of training sequences. The channel

transfer function can be adaptively estimated during information transmission, too. Both

approaches are used in practice. The latter being necessary for channels which vary over

time. Adaptive equalization can also be combined with the initial measurement phase in some

instances. Regardless of how the channel transfer function coe�cients or equalizer coe�cients

are obtained, there are di↵erent equalizer structures. We provide brief descriptions below.

Linear Filter

Slicer
Figure 6.1: Linear equalizer

A linear equalizer, shown in Fig. 6.1, consisting of a linear filter and a slicer, was the first

equalizer structure to be extensively studied. The two principle methods used for optimizing

the coe�cients of the linear filter were the zero-forcing (ZF) criterion, and minimizing the

mean squared error (MMSE) between the equalizer output and the channel input. Zero-

forcing forces the overall impulse response to be a delta function, with zero neighboring values.

Nyquist, in 1928, delivered su�cient conditions for zero-forcing in a noise-free environment.

Later developments generalized these conditions for di↵erent channel models and waveforms.

While ZF aims at eliminating ISI at the sampling instant, this comes with a trade-o↵ that

noise may be amplified, since the ZF criterion does not consider the noise at all. In contrast

to this method, optimizing the received linear filter coe�cients using an MMSE criterion aims

at minimizing the total power of the ISI and noise, i.e., maximizing the SNR on average, at

the sampling instant.
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Linear Filter

Slicer

Feedback Filter

+

Figure 6.2: Decision-feedback equalizer

The next equalizer structure we discuss is the Decision Feedback Equalizer (DFE) shown

in Fig. 6.2. DFE uses a recursive algorithm to cancel the interference of previous symbols,

assumed correctly decided. The structure consists of a linear feed-forward (FFF) filter and a

feedback filter (FBF). The minimum-phase property to avoid pre-cursors required for DFEs is

obtained by using a whitened matched filter as the feed-forward filter, the impulse response

of which consists of the cascade of the transmitter, the channel, and itself. The output after

the feed-forward filter then only consists of post-cursor components. Assuming that previous

symbols have been correctly decided, a feedback filter subtracts the post-cursor components

from previous symbols, and a slicer makes the decision on the current symbol. Incorrect

estimation of symbols can lead to error propagation when using a DFE structure. In order to

avoid this problem, the feedback filter can be moved to the transmission side - this method

is called pre-coding. The principle of pre-coding uses channel state information (CSI) on the

transmit side to mitigate ISI on the receiver side. Tomlinson-Harshima precoding, shown in

Fig. 6.3, is a frequently used solution for equalization when a duplex channel is available.

Channel

Feedback Filter

+ Modulo + Detector

Figure 6.3: Tomlinson-Harashima precoding

We observe from Fig. 2.1 that encoding for forward error correction and the convolution with

the channel matrix during transmission are performed serially. Hence, on the receiver side,

equalization and decoding are also performed serially. This serial concatenation has led to

turbo-like equalization techniques as a possible solutions.

We have discussed Turbo-like solutions in both the previous chapters. Iterations between the
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’inner’ and ’outer’ decoders leads to the two disjoint processes of equalization and decoding

iteratively exchanging information in order to decode the transmitted symbols. We show an

illustration of a possible serial turbo-equalization process in Fig. 6.4, following [68]. Here, on

the receiver side, we start with the equalization process first, since it is the ‘outer’ process.

LC(Cn) is the LLR value for the received channel output, only the MAP equalizer has access to

channel outputs. L(Xn) is the a-priori value obtained by interleaving the extrinsic information

obtained from the MAP decoder. In the first iteration, L(Xn) is zero since the MAP decoder

has not performed any iterations yet. The extrinsic information output from the equalizer is

used as ’intrinsic + a-priori’ information for the MAP decoder. In this realization, the MAP

decoder has no access to the channel and thus only uses the equalizer output.

    MAP 
 Equalizer

    MAP 
 Decoder

+

+

Decoded data

Figure 6.4: Turbo equalizer

6.2 Incorporating Equalization into the Tanner graph

The Tanner graph, as shown in Fig. 2.5, illustrates the LDPC code structure. When there

is no interleaver between LDPC encoding and transmission, neighboring variable nodes of

the Tanner graph represent serially transmitted symbols. Then ISI also distorts neighboring

variable nodes. Recalling our description of a minimum-phase channel impulse response, we

deduce that the ISI on a variable node vq is due to its post-cursors only, i.e., nodes vq�1, ..., v0.

Canceling the ISI on a node vq then requires symbol estimates provided by the nodes to the

left of it. We have already published some results in this direction in [69].

6.2.1 Joint LDPC-decoding and Equalization

The intrinsic LLR from Eq. (2.37) reflects the channel information. Using intermediate symbol

estimates from variable nodes of the LDPC decoder, equalization is performed on the received

analog values, and then subsequently the intrinsic LLR computation is updated. This proposed

iterative equalization scheme updates the intrinsic LLR after every iteration in the Tanner

graph. This method is similar to a decision feedback equalizer, the ’decision’ being the

intermediate results of the SPA, thus making the process iterative as well. In Fig. 6.5, we

show our proposed method.
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Figure 6.5: Tanner graph for joint LDPC decoding and equalization

Let us assume a minimum phase channel impulse response in z-domain having only two taps

F (z) = f0 + f1z�1 = 1+0.5z�1. Let us denote intermediate results at the variable nodes as

v̂q 2 {+1,�1} , where q is the node index. Then, the equalization step is given as

yq � f1 · v̂q�1 . (6.1)

This equalized value is used to recompute the intrinsic LLR at every iteration according to

Eq. (2.37). For a channel having Mt taps, the generalized form of the equalized value is

yq �
Mt�1X

i=1

fi · v̂q�i . (6.2)

The decoding block shown in Fig.6.5 replaces the serial operations of equalizer and LDPC

decoder. For this joint method, two di↵erent scheduling methods can be considered.

In the first iteration, the decoding process starts at the LDPC decoder. The received analog

values are used directly in the variable to check node iterations, without yet having done an

equalization step. In the first iteration in LDPC decoding, the intrinsic LLR values are di-

rectly forwarded from the variable nodes to the check nodes, and the check nodes process the

information and send it back to the variable nodes. The first equalization step is performed

using the values from the variable nodes, after this first iteration. Then similarly, after every

iteration in the Tanner graph, equalization is performed.
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For the second alternative, we start the decoding process by first equalizing the received

values. This first equalization step is similar to a DFE, except it is performed according to

the structure in Fig. 6.5. This means that, each value is equalized by using only the previous

received value, the recursive processing e↵ect of a DFE, as shown in Fig. 6.2, is lost. The

first sum-product algorithm iteration is performed using these equalized values. Thereafter,

the iterative process continues according to Eq. (6.1). We compare the two methods with a

serial scheme in which equalization is performed according to Fig. 6.2 and a subsequent LDPC

decoder uses the equalized values, without any iterative equalization.

6.2.2 Simulation Results

A rate-1/2 irregular LDPC code of length N = 2048 with the following degree distribution

polynomials was simulated:

�(x) = 0.28286x+ 0.39943x2 + 0.31771x7,

⇢(x) = 0.6x5 + 0.4x6.

Similar to the previous chapters, the H-matrix was constructed using the triangular zigzag-

PEG algorithm described in Chapter 2. All the BER performance curves were obtained after

a maximum of 20 iterations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Eb/N0

10-6

10-5

10-4

10-3

10-2

10-1

BE
R

Sequential

No ISI
Iterative: Equalization First

Iterative: LDPC Decoding First

Figure 6.6: Comparing di↵erent equalization methods
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The results for all three methods are shown in Fig. 6.6. A reference curve is also provided

which shows the performance of the code without ISI as a lower bound for the BER. The

sequential method, as expected, has the worst performance, since the equalized values are

not updated. Of the two variants of the iterative approach discussed previously, we note that

there is a slight advantage provided by the method which uses equalized values as a starting

point for LDPC decoding. This result is expected due to the fact that when iterations are

started inside the LDPC decoder itself, without having performed any equalizing step, the

initial intrinsic LLR values are less reliable.

6.2.3 Summary

In this chapter, we have discussed how to perform iterative equalization inside the Tanner

graph. We showed a simple approach which uses intermediate LDPC decoding results for

iterative equalization. The proposed method is computationally simpler than Turbo equaliza-

tion. From the results, we see that the proposed methods work as expected, by improving the

BER performance with very minor adjustments at the decoder. The methods shown here are

proposed as an alternative to serial equalization and decoding, since it delivers gains at very

little computational cost.
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Chapter 7

Conclusion

In this thesis, we investigated the statistical bindings present in three parts of a transmis-

sion system, the source, the channel, and the noise model. The statistical bindings can be

characterized via Markov models, for the source and the noise, and channel memory presents

itself as ISI. Considering such bindings can lead to modified LDPC decoding algorithms. For

each of the three cases, we investigate methods for including the dependencies in the LDPC

decoder, in order to use the relations present within a transmission scheme in an e�cient

manner. A code optimization method is also investigated, with the purpose of determining

how dependancies within the Tanner graph are to be handled during the density evolution

procedure.

When an information source is modeled by a Markov chain, the resulting decoder should in-

clude the dependencies which are present in the low-entropy source. Considering the source

model to be known at the receiver, this information can be incorporated via additional edges

inside the Tanner graph between neighboring variable nodes, a structure which follows the

model at the source. Using intermediate results of the belief-propagation iterations, the

variable-node symbol estimates can yield information about the subsequent source symbols.

We see this computed information as providing an a-priori estimate of the information, al-

though computed at the decoder iteratively. The resulting performance curves show that there

is an advantage to be gained by including such information. The computation for using the

source model dependency is simplified here by using Jensen’s inequality on the LLR expression

which computes the dependency. In simulations, we observe that the simplified computation

provides a similar error performance. A Turbo-like scheme is also used in which a BCJR

decoder and an LDPC decoder iteratively exchange extrinsic information in order to decode

the source. The BCJR decoder estimates the source sequence using the Markov model, using

the extrinsic information provided by the LDPC code constraints and vice versa. The Turbo

scheme achieves a better performance at low SNRs when compared to the in-Tanner-graph

95
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methods, albeit at higher computational complexity.

Subsequent to the presented decoding methods, we then looked into code structure optimiza-

tion for the in-Tanner-graph method. While the left-to-right links carry a-priori information,

the information is computed as a function of the variable node estimates at every iteration,

which is computed by adding all the edges that are incoming to an information variable node.

Hence, the (a-priori) information carried on such edges is a function of the edge degree poly-

nomials of the information nodes. The information evolution on these links are incorporated

into the average mutual information computation equations, which are required for calculat-

ing the performance of a code. The optimization procedure requires density evolution as an

’inner’ algorithm for determining code performance, with an ’outer’ algorithm searches for

the code which is the most suitable, based on an appropriate objective function. Here, the

rate-1/2 code which has the best convergence threshold was chosen as the objective. The

density evolution procedure is a mixture of full density evolution; i.e., operations on densities,

as well as an approximation to the procedure known as the Gaussian approximation to density

evolution. From the simulation results, we observe that the BER curves of the optimized

codes are steeper than non-optimized codes.

For impulse noise, the Middleton Class-A model was considered. The memory in the process

was described by a Markov model. The MCA model approximates the noise amplitude by

a Gaussian mixture model. Here we considered two terms for the noise mixture, with one

representing the background Gaussian noise state and the other representing an impulsive

state. A Markov model is used to map the transitions between impulsive and Gaussian states,

which leads to a model describing the inter-arrival time of noise impulses. For decoding, a

Turbo-like scheme is proposed, with a Viterbi algorithm decoding the sequence of noise-states

and an LDPC decoder decoding the information symbols. We also looked at possibilities for

estimating the noise states inside the Tanner graph directly. The additive noise process is not

directly related to the code structure and cannot be e↵ectively estimated inside the Tanner

graph. In the case of source memory, the source symbols directly map onto the information

variable nodes, hence, iterative improvements in the variable node processing can be used to

estimate the original symbols inside the Tanner graph, via a function that models the Markov

chain dependancies. This analogous treatment is not possible for impulse-noise-with-memory

cancellation. A dedicated decoder, like the Viterbi algorithm, is required for noise-state esti-

mation, leading to a Turbo-like scheme as the solution.

The last step consisted of cancelling inter-symbol interference due to channel memory. An

iterative scheme is employed where intermediate symbol estimates of the LDPC decoder are
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used to equalize the received analog values. Subsequently, the improved received analog val-

ues lead to updated values for the intrinsic information available at the LDPC decoder, the

two processes iteratively improving the overall correction of the received word.

Both the source and channel memory processes create dependencies between neighboring

variable nodes. The distinguishing factor being the order in which memory representation

functions appear. For the source, the additional memory is present before LDPC encoding

while the ISI channel establishes the memory after encoding. Also, the source memory model

is stochastic, while the channel memory model is deterministic. The resulting modification at

the decoder for the channel leads to a deterministic correction of the received analog values,

which is a modification in the intrinsic information, in an iterative fashion. The source model

on the other hand influences the a-priori information following the stochastic Markov source

model.

The theoretical exploration of how to handle memory in di↵erent parts of the transmission

chain are concluded with the steps detailed above. Based on the insights gained from this

work, we outline some future areas of investigation. For impulse noise, the considered Mid-

dleton Class-A model addresses the inter-arrival time of noise impulses and within a state the

active noise model is considered Gaussian. This Gaussian density of the impulse noise can be

updated to incorporate practical impulse noise densities which have certain time-dependent

behavior. This would lead to additional dependencies between noise samples within the active

impulse-noise window, requiring a more detailed treatment of handling impulse-noise-with-

memory. For the source model with memory, the low entropy source was not compressed

before transmission. A joint source-channel coding scheme which includes syndrome com-

pression of the source, thus leading to a more e�cient overall joint code would be the next

step for investigation.
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[47] G. Caire, S. Shamai, and S. Verdú, “Almost-noiseless joint source-channel coding-

decoding of sources with memory,” in Proc. 5th International ITG Conference on Source

and Channel Coding, Jan. 2004, pp. 295–304.
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