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Abstract—For physical-layer security, key reconciliation
procedures are needed to correct key differences that can
arise as a consequence of independent noise at the two ends
of a reciprocal link. We assume either a random link in a
mobile environment or use reconfigurable antenna elements
to randomize the channel, such that it allows for frequent key
generation. We apply LDPC codes to reconcile the keys on
both sides. In here, we derive the LLRs taking into account
the underlying quantization.

I. INTRODUCTION AND MOTIVATION

Secrecy can be attained at the physical layer in a time
division duplex (TDD) wireless environment by exploiting
the mutual channel-state-information (CSI) in order to
generate shared keys between legitimate users [1]–[6].
Nevertheless, quantization errors and independent noise
might eventually lead to key mismatches. For this reason,
a mechanism that ensures key reconciliation is needed.
Further effects, such as differences in amplifier non-
linearities and quantization boundaries or synchronization
effects are ignored for the treatment in here. We focus
on developing two key reconciliation procedures which
employ binary and non-binary LDPC codes.

Due to the randomness of wireless channels, an eaves-
dropper located further away than the minimum coherence
distance1 will likely experience a completely different
channel, being left with the option of brute force attacks.
Paired with a frequent key generation and privacy amplifi-
cation, such an attempt would be rendered infeasible. We
assume a flat fading channel for the sake of simplicity.

In the case of mobile terminals, the changing channel
will allow for frequent generation of new keys. In the case
of a stationary line-of-sight channel, we use reconfigurable
antenna elements to randomize the channel to mimic a
mobile environment. The paper is structured as follows,
the next section gives a brief system description. Section
III introduces the key reconciliation techniques used. In
Section IV, the specific LLR formulation problem is
addressed. Two approaches are compared and analyzed in
Section V. Section VI concludes the paper.

II. SYSTEM DESCRIPTION

For our analysis, a few assumptions have been made.
The wireless channel between Alice and Bob is reciprocal,

� A. Filip is now with DLR, Oberpfaffenhofen, Germany.
1For 802.11 at 2.4 GHz, the coherence distance is λ

2
≈ 6 cm. Further

recent results supporting this assumption can be found in [7].

i.e., channel amplitude and phase are identical in both
directions. Both Alice and Bob obtain channel-state infor-
mation (CSI) by sending pilot signals previously known to
all parties. Since we consider a TDD system, it is further
assumed that Alice and Bob obtain their estimates in
consecutive time slots and that the channel has not changed
during both their measurements, i.e., the coherence time
is larger than the measurement time. In order to emulate
a mobile channel environment (a time-variant channel),
we use reconfigurable aperture antennas (RECAPs). After
the channel measurement data is obtained, we use vector
quantization to discretize the channel for key generation.
We consider a parasitic RECAP at Alice to generate
artificial fading in a line of sight channel to simulate the
mobile environment. Further design specifications can be
found in [8].

In order to obtain channel characteristics, a hybrid
approach which employs full wave simulation is combined
with network analysis to provide fast and accurate channel
statistics. When a 24-RECAP is used for randomization,
the measured channel is found to approximately have a
complex Gaussian shape [9].

III. KEY RECONCILIATION METHODS

The key reconciliation method detailed in this paper
employs Slepian-Wolf coding with Low Density Parity
Check (LDPC) codes. The choice of using LDPC codes is
motivated by their ability to achieve performances close to
the Shannon capacity [10]. Since LDPC codes themselves
have been thoroughly analyzed and discussed in other
reference works, we will limit our description here to the
context of our key-reconciliation scheme.

A. Slepian-Wolf Coding

The CSI measurements of both Alice and Bob lead to
the generation of two correlated keys. Further exchange
of information is thus required between Alice and Bob in
order to ensure that the keys both of them generate are not
only correlated, but identical. This, however, needs to be
performed in such a way that secrecy is not compromised,
implying that neither Alice nor Bob send actual CSI
information to each other. The solution to this problem is
offered by Slepian-Wolf coding which is a type of source
coding with side information.



There are two equivalent approaches to Slepian-Wolf
coding, the parity approach and the syndrome approach2.
As shown in Fig. 1, both legitimate users, Alice and Bob,
measure the same reciprocal physical channel but obtain
slightly different estimates, a = [a1, a2, . . . , aN ]T and
b = [b1, b2, . . . , bN ]T , due to independent noise with
variances σ2

A, and σ2
B , respectively. Alice compresses

her quantized key information a to a syndrome s =
[s1, s2, . . . sM ] and sends it over the physical channel
to Bob. Regardless of the method used to generate the
parities, BPSK signalling can be used for transmission
over the physical channel.

Fig. 1. Syndrome method for Slepian-Wolf decoding

Bob uses both the noisy side information received from
Alice, along with his noisy measurement values in order
to decode the correlated information.

B. Encoding: LDPC Codes

Here, multi-edge type irregular Low-Density Parity-
Check Codes (LDPC) are chosen for the implementation
of Slepian-Wolf coding. The whole system can be seen as
using two concatenated LDPC codes, one to generate the
syndrome, as shown in (1), and one to add redundancy for
sending it over the noisy physical channel. Further details
on the construction of the concatenated LDPC code can
be found in [11]. The syndrome vector to be sent to Bob
over the physical channel is computed according to

s = Ha , (1)

where H is the sparse parity check matrix of the first
LDPC code used to generate the syndrome, of size M×N ,
with M = N −K.

C. Decoding: LDPC Codes

The decoding process is depicted in Fig. 2. For the
soft-value LDPC decoding on Bob’s side, we use an ef-
ficient message passing decoding algorithm called Belief-
Propagation (BP).

The inputs to the LDPC decoder are log-likelihood ra-
tios (LLR) values defined as in (2) for a binary codebook,

L(b) = ln
P (b|a = +1)

P (b|a = −1)
, (2)

where a represents Alice’s quantized value and b is Bob’s
analog measurement, assuming Alice’s key bits as “cor-
rect” reference. P (b|a = +1) stands for the probability of

2The syndrome approach was employed for the current work, although
throughout the paper we also use the term “parity” bits interchangeably
to refer to the syndrome bits sent by Alice to Bob.

+

Fig. 2. Decoding steps

Bob to measure b, given that Alice quantized to a = +1.
Throughout the rest of the paper we will use upper
case P to denote probabilities and lowercase p to denote
probability density functions (pdfs).

For our key reconciliation system, it is imperative to
distinguish between two classes of variable nodes of
the multi-edge LDPC decoder: the set of variable nodes
whose inputs are LLRs corresponding to the information
symbols obtained by Bob from his own measurements of
the channel, and the set of variable nodes whose inputs
deal with the parity (syndrome) symbols received from
Alice. As it will become evident in the following section,
different ways of calculating the LLR values are required,
one for the information bits and one for the parity bits.

There has been some independent experimental work
in [7] that analyzes the secrecy capacity, but, like many
other relevant works found in literature, assumes the side
information is transmitted over a noiseless physical chan-
nel, which is not realistic. The analysis we provide here
takes into account the noise effect on both the independent
measurements of the legitimate users Alice and Bob, as
well as on the transmission of parities (side information)
over the physical channel.

IV. LLR FORMULATION FOR BELIEF PROPAGATION
(BP) DECODING IN THE LDPC DECODER

A. LLR for Parity Bits

The parity bits just experience a standard AWGN phys-
ical channel with variance σ2

B , hence

p(b|a = ±1) =
1√

2πσ2
B

e
−(b∓1)2

2σ2
B .

The corresponding LLR for the parity bits is given by

LLR parity = ln

e
− (b−1)2

2σ2
B

e
− (b+1)2

2σ2
B

 =
2b

σ2
B

. (3)

B. LLR for Information Bits

While the computation of LLRs in the case of the parity
bits is trivial, this is not the case for the information bits.
Furthermore, for the information bits, we will offer a com-
parison between an accurate but more complex method of
computing LLRs, in Section IV-B2, and an approximation
of lower complexity, presented in Section IV-B1.



1) Modeling quantization effects by increased Gaussian
noise in the LLR computation - Approximate LLR Com-
putation: As previously mentioned, due to independent
noise contributions at both ends of our channel, the
resulting quantization regions for a specific symbol might
not coincide for Alice and Bob.

Fig. 3. Decoding scenario for quantized values at Alice assumed to be
correct

A point from the channel distribution is measured by
both Alice and Bob, disturbed by different noise con-
tributions, σ2

A and σ2
B , respectively. For simplicity, we

assume here that σ2
A = σ2

B . The analog value at Alice
is then quantized and assumed to be correct. Due to
this assumption, the total noise in effect perceived by
Bob is marked in Fig. 3. In the LLR computation of
the information bits, to model this increased noise, we
increase the AWGN variance at Bob to at least twice that
of the actual variance, namely σ2 = 2σ2

B . For the LLR
calculation of the information bits, we use p(b|a = c+1)
and p(b|a = c−1), where c+1 and c−1 represent our
codebook vectors. Using the 2D Gaussian pdf we obtain,

p(b|a = c±1) =
1

2πσ2
e
−d(b,c±1)

2σ2 .

Here, d(b, c±1) denotes the squared Euclidean distance
between the received value b and the codebook entries
c±1. Thus, the intrinsic LLR is

LLR intrinsic =
d(b, c−1)− d(b, c+1)

2σ2
. (4)

This method is an approximation and leads to errors.
The Euclidean distance measure is not robust when Bob’s
estimate point is close to the threshold since the distance
is subject to the position of the codebook vectors inside
their respective quantization regions.

2) Exact LLR Computation for Information Bits: Let
us again assume Alice’s key (quantization region) to be
correct and Bob’s to be reconciled.

The undisturbed complex value c = xch + jych from
the channel distribution is disturbed by AWGN to a =
xA + jyA on Alice’s side before quantization and to b =
xB +jyB on Bob’s side, as shown in Fig. 4. The complex
channel distribution is given by (5),

p(c) =
1

2πσchxσchy
e
− 1

2

(
(xch−µchx )2

σ2
chx

+
(ych−µchy )2

σ2
chy

)
. (5)

Assuming that the channel means are zero, µchx = µchy =
0, and the variances σ2

chx
= σ2

chy
= σ2

ch, we can further
simplify Eq. (5) to

p(c) =
1

2πσ2
ch

e
− (x2ch+y2ch)

2σ2
ch . (6)

The disturbance at Bob, p(b|c) is written as

p(b|c) =
1

2πσ2
B

e
− (xB−xch)2+(yB−ych)2

2σ2
B . (7)

Fig. 4. Polar coordinates transformation; Given channel measurement
c, b represents Bob’s noisy measurement of c. In polar coordinates c is
represented by (rch, θch).

Similarly, the disturbance at Alice, p(a|c), given the
ideal channel measurement c, is given by

p(a|c) =
1

2πσ2
A

e
− (xA−xch)2+(yA−ych)2

2σ2
A , (8)

where σ2
A and σ2

B are the variances of the independent
AWGN noise present at Alice and Bob, respectively.
Again, the means (µAx , µAy ) and (µBx , µBy ) of the
independent complex noise, at both Alice and Bob, are
assumed to be zero.
Using Bayes’ rule, we obtain

p(c|b) =
1

2πσ2
B

e
− |c−b|

2

2σ2
B · p(c)

p(b)
,

p(c|a) =
1

2πσ2
A

e
− |c−a|

2

2σ2
A · p(c)

p(a)
,

where p(a) and p(b) are given by (9) and (10) as

p(a) =
1

2π(σ2
ch + σ2

A)
e
− (x2A+y2A)

2(σ2
ch

+σ2
A

) , (9)

p(b) =
1

2π(σ2
ch + σ2

B)
e
− (x2B+y2B)

2(σ2
ch

+σ2
B

) . (10)

We assume N quantization regions Ri, i ∈ [1, N ], N =
2m. Notation R is employed to denote the union of all
quantization regions Ri. On Bob’s side, having received
a value b, we need to determine the probability of what
Alice may have quantized to, i.e., P (a ∈ Ri|b) and P (a /∈
Ri|b).

P (a ∈ Ri|b) =

∫
Ri

∫
R
p(a|c) · p(c|b) dc da ,

P (a /∈ Ri|b) =

∫
R\Ri

∫
R
p(a|c) · p(c|b) dc da .



Note, c and a are, of course, complex and also the
corresponding integrals are complex. Exploiting Bayes’
rule again, we obtain,

p(b|a ∈ Ri) = P (a ∈ Ri|b) ·
p(b)

P (a ∈ Ri)
,

p(b|a /∈ Ri) = P (a /∈ Ri|b) ·
p(b)

P (a /∈ Ri)
.

Thus, we can finally write down the equation for the intrin-
sic LLR that is needed as an input to the LDPC decoder.
Since the LLR is given by the ratio of two quadruple
integrals as in (11), for our simulations we resort to the two
examples in Fig. 5 and the binary case. The LLR for the
intrinsic information might be precomputed replacing the
integrals by sums and doing this over a discrete valued
grid. However, a discrete sum over the entire space is
computationally very extensive and practically unrealistic.
In order to use the expression for real time computations,
we need to simplify. By employing polar coordinates (r, θ),
the limits of the quantization regions are easily computed,
requiring a uniform distribution of the regions. Note that a
good key sequence should have equally distributed values.
Tables I and II present the quantization area limits for
the examples in Fig. 5. Given a quantization region Ri,
we employ the notation (Ri,Θi) to denote the sets of
radii and angles of every point belonging to the region.
For our simulations we use a discretized grid for b with
incremental values of 0.05 between −3.5 and 3.5 for both
real and imaginary axis. For the case of two quantization
regions, +1 and −1, the LLR in (11) reduces to (13). The
LLR in (11) applies to a general case where the quanti-
zation regions are circles and slices, as shown in Fig. 5-
a. For the second case, where the quantization regions
are concentric circles only, given the Gray mapping in
Fig. 5-b, we distinguish at the input of the LDPC decoder
between the first bit (in green) and the second bit (in blue).
Thus, we switch between two sets of LLR values, one
corresponding to each bit. This enables us to simplify the
quadruple integrals to double integrals by using Bessel
functions of the first kind, as in (12). This simplification
is only possible if the quantization regions are concentric
circles, as depicted in Fig. 5-b. Equation (12) gives the
LLR for the first bit (in green). In the numerator, we
integrate over the regions where the first bit has a value of
0, in our example R1 and R2, while in the denominator
we consider the regions where the first bit has a value of
1, R3 and R4. We omit the explicit formula for the second
bit here due to space limitations, nevertheless it follows the
same principle, given the corresponding integration limits.
In the binary case, when presented with two quantization
regions, the LLR in (11) reduces to (13), due to symmetry
properties. Hence, we use Eq. (13) to calculate the LLR
value for the information bits. For the parity bits, Eq. (3)
is used.

V. RESULTS

This section presents the results of a BER comparison
when using the two different LLR options presented in
Sections IV-B1 and IV-B2 for the binary case, along with

Fig. 5. Two examples of quantization regions; LLR for Fig. 5-a is given
by (11), while the LLR for (b) is given by (12), given the shown Gray
mapping.

TABLE I
QUANTIZATION LIMITS FOR EXAMPLE (A)

Region Ri rmini rmaxi θmini θmaxi
R1 0 0.758 σch 0 2π
R2 0.758 σch ∞ 0 2π

3
R3 0.758 σch ∞ 2π

3
4π
3

R4 0.758 σch ∞ 4π
3

2π

the likelihood ratios for the example in Fig. 5-b. Figures 6-
7 show the likelihood ratios for the first and second bit,
respectively, for the quantization regions in Fig. 5-b.

For the binary case, as can be seen from Fig. 8, when us-
ing the approximate approach described in Section IV-B1,
at high SNR, an unexpected drop in performance is
observed. This is because, at high SNR, the points that
still cross the quantization threshold are now quantized
with a higher error value, thus the quantization effect
becomes more dominant. With the correctly derived LLR
(Eq. (13)), this error effect is eliminated. In Fig. 9, we
show the LLR curves for different SNR values. For high
SNRs, the absolute value of the LLR increases, reflecting
the expected increase in reliability.

Fig. 6. Likelihood ratio (not logarithmic!) for the first bit

TABLE II
QUANTIZATION LIMITS FOR EXAMPLE (B)

Region Ri rmini rmaxi
R1 0 0.758 σch
R2 0.758 σch 1.177 σch
R3 1.177 σch 1.665 σch
R4 1.665 σch ∞



LLR = ln
p(b|a ∈ Ri)
p(b|a /∈ Ri)

= ln
P (rB , θB |a ∈ (Ri,Θi))

P (rB , θB |a /∈ (Ri,Θi))
= ln

(N − 1)P (a ∈ (Ri,Θi)|rB , θB)

P (a /∈ (Ri,Θi)|rB , θB)

= ln

(N − 1)
∞∫
0

2π∫
0

rmaxi∫
rmini

θmaxi∫
θmini

p(a ∈ (Ri,Θi)|rB , θB)dθAdrAdθchdrch

∑
Rk,k 6=i

∞∫
0

2π∫
0

rmaxk∫
rmink

θmaxk∫
θmink

p(a ∈ (Rk,Θk)|rB , θB)dθAdrAdθchdrch

= ln

(N − 1)
∞∫
0

2π∫
0

rmaxi∫
rmini

θmaxi∫
θmini

rArche
− r

2
ch+r2A−2rchrA cos(θch−θA)

2σ2
A

− r
2
ch+r2B−2rchrB cos(θch−θB)

2σ2
B

− r2ch
2σ2
ch dθAdrAdθchdrch

∑
Rk,k 6=i

∞∫
0

2π∫
0

rmaxk∫
rmink

θmaxk∫
θmink

rArche
−
r2
ch

+r2
A
−2rchrA cos(θch−θA)

2σ2
A

−
r2
ch

+r2
B
−2rchrB cos(θch−θB)

2σ2
B

−
r2
ch

2σ2
ch dθAdrAdθchdrch

(11)

LLR first bit = ln

∞∫
0

rmax2∫
rmin1

rArche
− r

2
ch+r2A
2σ2
A

− r
2
ch+r2B
2σ2
B

− r2ch
2σ2
ch · J0(− rchrA

σ2
A

) · J0(− rchrB
σ2
B

)drAdrch

∞∫
0

rmax4∫
rmin3

rArche
−
r2
ch

+r2
A

2σ2
A

−
r2
ch

+r2
B

2σ2
B

−
r2
ch

2σ2
ch · J0(− rchrA

σ2
A

) · J0(− rchrB
σ2
B

)drAdrch

(12)

LLR binary = ln

∫ 0

−∞
∫ +∞
−∞ e

− (xA−xch)2

2σ2
A · e

− (xch−xB)2

2σ2
B · e

− x2ch
2σ2
ch dxch dxA∫ +∞

0

∫ +∞
−∞ e

− (xA−xch)2

2σ2
A · e

− (xch−xB)2

2σ2
B · e

−
x2
ch

2σ2
ch dxch dxA

(13)

Fig. 7. Likelihood ratio (not logarithmic!) for the second bit
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VI. CONCLUSION

In an Alice-Bob wireless scenario, where both sides
measure the reciprocal channel with independent noise in
order to obtain a shared key, it is of paramount importance
to ensure proper key reconciliation. We presented such a
method in which we make use of Slepian-Wolf coding
and Low Density Parity Check (LDPC) codes. Hence, we
derived the LLRs for Slepian-Wolf encoded key recon-
ciliation, found that expressions simplify for concentric
quantization regions in the Gaussian case, allowing for
reducing the computations to half the number of numerical
integrations.
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