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Abstract—Being related to so-called TEMPEST activities, we
show some possibilities to classify standard signal emissions from
a PC environment, such as Ethernet, USB, or HDMI. Hereto, we
make use of time-frequency analysis followed by deep learning
or alternatively, by looking into individual signal properties, such
as symbol rates, special fixed patterns, common-mode presence,
or amplitude histograms.

We will see that the distinction of such standard signals can
be very efficient, even in the case of 100Base-T and 1000Base-T
Ethernet that are designed to use the same frequency range and
hence have a very similarly looking time-frequency representa-
tion. Under noise-free conditions, 100 % correct classification is
achieved.

Index Terms—TEMPEST, field probe, signal classification,
neural network, deep learning

I. INTRODUCTION

Our works belong to the so-called “TEMPEST” [1] ac-
tivities. This is a United States government term related
to limiting electric or electromagnetic radiation emanations
from electronic equipment. The acronym stands for Transient
Electromagnetic Pulse Emanation Standard. We are interested,
how well near-field probing of circuitry would unveil the
signal format and how easy it might be to synchronize and
finally obtain data. Such kind of eavesdropping cannot easily
be recognized, since one does not directly connect to on-board
conductors or cables. Furthermore, signal components might
be emitted before they are protected by encryption.

For our results in here, we simulated the corresponding
signals and the probing and investigate some options, how
to determine the corresponding signal format and its special
characteristics. We focus on some very standard baseband
signals that are used in PC environments, such as USB 2.0
[2], Ethernet 100Base-T and 1000Base-T [3], and HDMI [4].

Signal classification is, of course, since long a topic for
armed forces, trying to eavesdrop communications without
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knowing the modulation format. Publications from such works
are typically limited. Nevertheless, there is public literature
covering the classification of modulation methods, less so
based on near-field RF radiation measurements and also
usually not covering baseband broadband signals, but rather
narrowband modulated signals. Nevertheless, we give a short
overview of some of the literature. Cyclostationary signal
properties and cumulants are used in [5], [6]. The spectral
correlation function is investigated in [7]. In [8], [9], Wavelets
(Haar) and the Wigner-Ville distribution are applied.

For the final classification, typical machine-learning meth-
ods can be applied, such as SVN (support vector machine)
[10]–[12], Random Forest [13] (seemingly not yet applied to
modulation classification), or Neural Networks [9], [11], [14],
[15].

Dimension reduction algorithms may support classification
such as Independent Component Analysis [10], Principle
Component Analysis, or Classical Multidimensional Scaling.
For clustering, possibilities are k-means (vector quantization,
Lloyd-Max quantizer, Linde-Buzo-Gray alg.) or so-called Hi-
erarchical Agglomerative Cluster Analysis [16].

When sparse representations can be utilized, then Compres-
sive Sensing methods come into play, such as in [9], [17], [18].

Our classification choices were two-fold. On the one hand,
we went for a neural network-based one that can easily
be extended to new signal formats and is based on time-
frequency picture pattern recognition. After having selected
a suitable time-frequency representation, the network choice
is not specific for our application. On the other hand, we try
to synchronize to the symbol clock of all signals and detect
specific signal properties. All signals use twisted pairs, usually
in a balanced fashion. To already mention some examples for
specific signal properties, USB does not only have special
headers after idle periods, it ends a block with a common mode
component, which is very visible, since egress is, of course,
bigger for common mode signals. HDMI has, of course, a



frame structure with vertical and horizontal blanking intervals,
control periods, and data islands protected with a BCH code.
Ethernet 100Base-T and 1000Base-T not only use 2 or 4
twisted pairs, respectively, they are also using different signal
values, namely 3 or 5, respectively, with different underlying
line coding. Otherwise, the two are designed to use the same
spectral width.

The following sections are devoted to the two approaches.
Beforehand, however, the signal properties are handled in
some more detail in Section II-C. H-field probing is discussed
in Section III. To prepare for the neural-network-based ap-
proach, Section V introduces a few time-frequency methods,
followed by the neural network treatment in Section VI. The
approach based on specific signal properties is described in
Section VII, and we conclude with Section VIII.

II. SOME PC-TYPICAL SIGNALS AND ITS SPECIFIC
PROPERTIES

A. Universal Serial Bus

USB signals were generated according to the Universal
Serial Bus Specification Revision 2.0 [2]. Within this standard,
two types of USB 2.0 were defined with different data rates.
The full-speed USB signaling bit rate is 12 Mb/s, whereas the
high-speed USB rate is 480 Mb/s.

Bits are transmitted over a twisted pair using D+ and D−,
simultaneously, employing NRZI encoding. Consequently, a
“0” is represented as a change in voltage level, while for
transmission of a “1” the voltage level will remain constant.
In order to transmit a long string of ones without losing clock
synchronization, bit stuffing is implemented. The voltage level
of the D+ and D− lines are categorized into three states for
full-speed and high-speed USB.: J, K, and idle. The J state is
defined as high voltage on D+ and low voltage on D- and K
as the opposite.

Both signal types contain a start-of-packet followed by a
synchronization sequence preceding every data packet, there-
fore allowing for clock synchronization at the receiver side.
The start-of-packet is hereby defined as a switch from the
idle state to the K state, which is also the first symbol of
the synchronization pattern for both signal types. However,
full-speed and high-speed USB synchronization patterns are of
different lengths. The full-speed pattern is eight symbols long
and made up of 3 KJ pairs followed by 2 Ks, whereas the high-
speed pattern has a length of 32 symbols and contains 15 KJ
pairs followed by 2 Ks . Furthermore, each packet contains
an end-of-packet (EOP) sequence to allow the receiver to
recognize the end. For full-speed, the EOP is differentiated
from other signal parts by its common-mode part, as both lines
are set to low voltage for two symbol periods before going to
the J state. The high-speed EOP is recognizable by a state
transition followed by 7 symbol periods of constant voltage.
Consequently, these special signal characteristics allow for
USB to be easily distinguishable.

B. High-Definition Multimedia Interface

For HDMI, according to the standard [4] there are a few
interesting signal properties that can be used for classification.
In HDMI there are two main types of encoding used depending
on if audio or video data is being sent. The video data is
encoded in a transition minimized way while the audio data is
not. Preceding every data island or video data period a control
period is sent containing a preamble indicating the type of data
following. This preamble consists of eight identical control
characters. Furthermore, the preamble is sent simultaneously
on channels 1 and 2, where the repeating control character
is different for the two channels. HDMI also has guard band
areas that are also known patterns and could be used likewise.
Lastly, in the HDMI cable there is also a clock signal being
sent over its own wire pair. For our case, however, we assume
not to have access to the clock signal wires.

C. Ethernet

100Base-T and 1000Base-T as defined in the IEEE standard
[3] were used in this project. Although both systems operate
at a symbol rate of 125 MBaud, their data transmission rates
differ. 100Base-T transmits over two twisted pairs of type
CAT-5 with a data transmission rate of 100 Mb/s in full-
duplex. 1000Base-T, however, transmits over four twisted pairs
of type CAT-5, where each pair is able to provide a data trans-
mission rate of 250 Mb/s in each direction, simultaneously.
A scrambler is used for both types of Ethernet. Furthermore,
different encoding schemes are applied. 100Base-T is encoded
using the 4B/5B code followed by MLT-3 encoding. This line
code uses 3 voltage levels: -1,0,1. A ”1” in the data is encoded
as a transition to the next state, whereas a ”0” causes the
voltage level to stay constant. In 1000Base-T, the data bits are
encoded using 8B1Q4 and 4D-PAM5 line coding, resulting
in five voltage levels to be sent over four channels (twisted
pairs), simultaneously.

100Base-T and 1000Base-T contain a start-of-stream delim-
iter and an end-of-stream delimiter. Additionally, 100Base-T
sends a preamble prior to a data stream. Nevertheless, these
are only used to mark the beginning and end of a stream for
the receiver as the clock is transmitted on a separate line.

III. H-FIELD PROBING AND PROPERTIES

For picking up emissions from a system or circuit board,
E- or H-field probes can be used. We mostly went for H-
field probes which one can essentially see as a coil with just
one turn. H-field probes are certainly preferred for low-ohmic
connections like with our investigated signal types and are
sensitive to current directions in contrast to E-field probes.
Usually, they are the first choice to scan for egress from circuit
boards or cables, possibly followed by also an E-field inspec-
tion. H-field probes are available in different diameters, where
they are becoming more sensitive with growing diameter, but
spatial resolution is becoming worse [19]–[21]. Hence, there is
a trade-off between sensitivity and spatial resolution. Figure 1
shows a simple H-field probe close to the end of a terminated
USB cable.



Fig. 1. H-field probe close to a USB-cable with termination

One can see the H-field probe as the secondary side of a
transformer and the impedance-matrix entry of a transformer
is just jωM , where M is the mutual induction. This means
the phase would just be ±π/2 (sign changes when the probe
is turned around; an additional linear phase accounts for some
additional delay) and the amplitude response grows linearly
with ω. Practically, however, there are visible resonance effects
at higher frequencies and the frequency response there depends
a lot on the type of probe, and even worse, varies with the
slightest position change.

106 107 108 109
Frequency / Hz

10-4

10-3

10-2

10-1
|H(f)|

Fig. 2. Simple H-field probe close to a USB-cable with termination

In Fig. 2, one recognizes the almost ideal behavior for lower
frequencies and the resonance effects at higher frequencies.
One may idealize the transfer characteristic by the given piece-
wise linear shape. For our studies, we also tried zero-forcing
equalization with that given idealization, since it was clear that
adjusting to the probe type and the varying properties depen-
dent on the position of the probe is not feasible. Equalization
with the idealized characteristic, however, was not showing a
good performance. Hence, we kept the high-pass characteristic
of the probe for our studies, despite of its variations.

IV. TIME-FREQUENCY ANALYSIS METHODS

For analyzing the signals, we looked at some different time-
frequency analysis tools that are available. This allows us to
not only be able to do some pre-processing on our data using
these tools but also allows us to convert our data from time-
series into pictorial representations. This is helpful for our

neural network approach in particular as neural networks are
remarkably good at image classification and this would make
the problem into an image classification problem [22]. Let us
briefly mention some of the time-frequency analysis tools that
we considered.

A. Short Time Fourier Transform

One of the time-frequency analysis tools we considered
is the Short-Time Fourier Transform. The short-time Fourier
transform (STFT), is used to find the sinusoidal frequency
and phase content of different local sections of the data as it
changes in time [23]. Practically, this means that the longer
signal is divided into different equal short sections. Then,
the Fourier transform of these short sections is computed
separately. This gives us the Fourier spectrum on each of the
short sections. One then usually plots the so called waterfall
plot in which this changing spectrum is plotted as a function of
time. The formula for the continuous time STFT is a shown
below where w(τ) is the window function used to cut the
longer signal into sections.

STFT{x(t)}(τ, ω) ≡ X(τ, ω) =

∫ ∞
−∞

x(t)w(t− τ)e−jωt dt
(1)

B. Wavelet Transform

Similar to how in Fourier analysis, one decomposes a
signal into sinusoidal waves of specific frequencies, in wavelet
analysis, one decomposes a signal into shifted and scaled
versions of a wavelet [24]. The continuous wavelet transform
(CWT) of a function x(t) at a scale (a > 0) a ∈ R+∗ and
translational value b ∈ R is expressed by the integral

Xw(a, b) =
1

|a|1/2

∫ ∞
−∞

x(t)ψ

(
t− b
a

)
dt (2)

C. Wigner-Ville Distribution

The Wigner-Ville Distribution also know as the Wigner-
Ville Spectrum is functionally similar to a spectrogram. It
gives better frequency and temporal resolution but this comes
at the cost of introducing new artifacts [25]. For a signal
s(t) with analytic associate x(t), the Wigner-Ville Distribution
Wx(t, ω) is defined as

Wx(t, ω) =

∫ ∞
−∞

x(t+ τ/2)x∗(t− τ/2)e−jωτ dτ (3)

V. SOME TIME-FREQUENCY ANALYSIS SIGNAL
REPRESENTATIONS

Let us look at some time-frequency analysis signal repre-
sentations of our chosen PC-typical signals. We show here the
STFTs of some of the wave forms chosen.

We picked STFT as our pre-processing tool for the neural
network approach as the pictures from the STFT seemed the
most distinct between each other. Moreover, they also can be
simplified into small, low-resolution pictures for simplification
while still remaining easily distinguishable. We went for one-
sided, two-dimensional, gray-scale versions of the STFTs. One
of these is shown in Fig. 8.



Fig. 3. STFT HDMI

Fig. 4. STFT USB

VI. NEURAL NETWORK CLASSIFICATION

We selected a Deep Convolution Neural Network (CNN).
They are typically used for image recognition and classifi-
cation. The neural network was trained on STFT pictures
of the stimulated signals. Our network has around 50 layers
which has a total of 7,164,349 different parameters. Out
of these 7,155,549 are trainable, leaving 8,800 non-trainable
parameters.
Our Neural Network is able to achieve 100 % accuracy for

simulated noise free data, even for newly simulated data which
the network has not seen beforehand. When we consider data
with added noise we get some loss in accuracy. A plot of
the accuracy percentage vs. the SNR is shown in Fig. 9. The
procedure is still able to work well at very high noise levels.
It needs an SNR of worse than -7 dB to get down to an
accuracy lower than 65%. We have not yet compared to simple
waveform training, but expect superior performance with our
preprocessing.

VII. SIGNAL-SPECIFIC ANALYSIS

In this section, we describe the individual characteristics of
the investigated signals. As these characteristics are unique to
a signal, they allow for identification of the signal type based
on the rates, synchronization patterns, or encoding scheme.

Fig. 5. STFT Eth100

Fig. 6. STFT Eth1000

A. Universal Serial Bus Synchronization Pattern

Preceding every data packet, a synchronization sequence
is sent, as described in Section II-A. In a case of direct
access to the wires, a signal can be identified as USB by
comparing the results of a correlation with the synchronization
sequences. Due to the significant difference in the length of
the synchronization sequences, it is possible to distinguish
between full-speed and high-speed USB.

The sync pattern does not contain a common-mode com-
ponent, which can also be used for distinction. Nevertheless,
although altered by the transfer characteristic of the probe,
the synchronization pattern is visible in the measurements,
and hence, USB is also identifiable by its synchronization
sequence. The predominant characteristic of both synchro-
nization patterns is the switch from idle to K state followed
by a period of alternating states, thus voltage levels. These
predominant factors allow to determine the position of the
synchronization sequence. The start of the sequence is located
by finding the position of the switch from idle to the K
state. Afterwards, the maxima and minima of the signal are
determined for each symbol period following the start of
the sequence, according to the length of the synchronization
pattern. By comparing the positions of positive and negative
peaks of the synchronization pattern, one can determine the
approximate rate of the signal, which allows for the identifi-
cation of the signal.

Using the synchronization pattern to approximate the rate



Fig. 7. STFT USB Full

Fig. 8. STFT USB High

makes this approach quite robust, as the synchronization
sequence is quite unique to the USB signals and the difference
in the length of the sequence for the two types of USB, as well
as the difference in the rate and hence symbol period are quite
significant.

B. High-Definition Multimedia Interface Preamble

As explained in Section II-B, depending on the succeeding
period, different preambles are sent. If there is direct access
to the wires, the correlation method used for USB is also
applicable to HDMI. Due to the relatively short length of
the preamble, the pattern can also occur in the data resulting
in correlation peaks at wrong locations. Consequently, it is
necessary to compare the correlation results of channels 1 and
2 as the preamble is sent simultaneously on both channels.
This is only possible for direct access to the separate channels.

Considering measurements done by the probe, the start of
a preamble is not as easily located as for USB because there
is no significant change like the switch from idle to a voltage
state. This is due to the fact that the preamble is solely used
to indicate the type and start of a data island or video data
period as there is no requirement for clock synchronization
at the receiver side because the clock is transmitted over a
separate wire. Consequently, the approach of determining the
rate as used for USB is not possible. Nevertheless, one can
approximate the rate of the signal by identifying a rising edge
and the succeeding minimum and maximum and computing
the differences in time between them. If the measurement
of the signal contains enough samples, this allows for an
estimation of the rate which can thus identify the signal to
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Fig. 9. Performance of neural network over different SNRs

be HDMI. However, this method is not as accurate as using a
synchronization pattern to compute the rate.

C. Ethernet Amplitude Histograms

For 100Base-T it is technically possible to locate the start-
of-stream delimiter (SSD) followed by the preamble if there
is direct access to the signal. Synchronization is done by
identifying the rising edges of the signal and matching the
clock to those. This is followed by MLT-3 decoding and
descrambling. Using the same approach as for USB, when
there is direct access, a correlator is used to identify the
SSD followed by the preamble, thus identifying the signal as
100Base-T Ethernet.

This approach to detect those sequences in 100Base-T is
not successful for measurements done by the probe due to
the influence of the probe and other factors resulting in noise
causing the decoding and descrambling to become inaccurate.
Furthermore, the line code of the 1000Base-T as described in
Section II-C requires direct access to all four wire pairs for
decoding. Consequently, it is not feasible to identify Ethernet
100Base-T and 1000Base-T by locating the SSD. Neverthe-
less, the approximation of the rate by identifying rising edges
and the minima and maxima in the following two symbol peri-
ods and computing the differences between them, similarly to
the USB approach, is possible. However, this is not as accurate
as for USB because there is no synchronization pattern used to
determine the rate. Due to the significant difference of the rates
of the signals, this is, however, enough to identify the signal to
be one of the two Ethernet types. This allows for synchronizing
by locating the rising edges and matching a reference clock
to them. While the rate of 100Base-T and 1000Base-T is the
same, their encoding differs in the number of voltage levels
used. To compute their amplitude histograms, for the detection
instant, synchronization is essential, which also means the
differentiation (HP characteristic) and additional delay caused
by the probe and connection have to be taken into account.
One can differentiate the amplitude histograms of the two

types of Ethernet by determining Gaussian mixture models
using the Aike and Bayesian Information Criteria which can
be seen in figures 10 and 11. While the three levels of the
encoding scheme for 100Base-T are more common, the five
levels of the 1000Base-T encoding make it distinguishable
from other signals.
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Fig. 10. 100Base-T amplitude histogram including Gaussian mixture models
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Fig. 11. 1000Base-T amplitude histogram including Gaussian mixture models

VIII. CONCLUSIONS

We found that typical baseband PC signal emissions mea-
sured by an H-field probe can easily be classified and ma-
jor blocks can be localized using time-frequency prepro-
cessing and a standard convolutional neural network applied
to resolution-reduced pictures. Likewise, characteristic signal
properties can be used to recognize them and synchronize to
them.
For many signals this does not appear too surprising. However,
it actually is when looking at spectra and time-frequency
representations of Ethernet 100Base-T and 1000Base-T. For
a human eye, they are looking essentially the same, but the
neural network does not lead to any false detection. We are
currently working on measured data and will soon present
results in a further publication. Accuracy looks very promising
there, as well.
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[23] L. S. E. Sejdić, I. Djurović, “Fractional Fourier transform as a signal
processing tool: an overview of recent developments,” Digital Signal
Processing: A Review Journal, vol. 19, no. 2, pp. 153–183, 2009.

[24] L. Debnath and J.-P. Antoine, “Wavelet transforms and their applica-
tions,” Physics Today - PHYS TODAY, vol. 56, pp. 68–68, 04 2003.

[25] C. Chioncel, P. Chioncel, N. Gillich, and O. Tirian, “Wigner Ville
distribution in signal processing, using Scilab environment,” Analele
Universitatii ’Eftimie Murgu’ Resita, vol. XVIII, pp. 101–106, 01 2011.


