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Abstract—Belief propagation decoding of binary LDPC codes
combines three independent probability estimates, a-priori, in-
trinsic, and extrinsic information, iterations along the Tanner
graph are estimating the value of the received bits, the likelihood
of the values increasing with each iteration. The a-priori estimate
of the information bits is a measure of the source statistics
for generating bit values 0 and 1 (mapped to ±1), reflecting
bias and redundancy in the information sequence itself. In
this paper, we have modified the a-priori estimate to incorpo-
rate memory properties present in the transmitted information
sequence resulting from a Markov source. We consider two
principle alternatives for decoding. The first option is to use the
Markov dependencies directly as further links between variable
nodes in the Tanner graph of the LDPC code. The second
alternative is to see the Markov source and the LDPC code
as a serial concatenation asking for a Turbo iterative decoding
between the two corresponding decoders. The latter comes with
significant complexity compared to the direct embedding into
the LDPC Tanner graph. Especially, one modification applying
Jensen’s inequality leads to a very low decoding complexity at
no performance loss. The Turbo scheme’s performance depends
on the scheduling. Superior performance can be achieved with
sufficient iterations in the LDPC decoder itself.

I. INTRODUCTION

Since the mid 90s, LDPC codes have seen a resurgence
after their initial discovery in 1963 by Gallagher. Properties
of LDPC codes such as their capacity approaching behavior
and low complexity decoding, coupled with the computational
complexity scaling linearly with increasing block length, make
them an excellent choice for many applications in different
communications and data storage systems. LDPC codes are
recommended as part of the digital video broadcasting version-
2 (DVB-2) standard, as well as part of the Wi-Fi 802.11
standard, and used for 10GBase-T Ethernet, LTE etc. For this
paper, the belief-propagation decoding of LDPC codes was
modified to incorporate redundancy emanating from memory
properties of the source sequence. Many sources in real life can
be modeled as being generated from a Markov model. Here,
we include the underlying model into the decoding process
via the a-priori information.

Source and channel coding are done in a tandem fashion
for most applications due to Shannon’s separation principle[1].
For practical implementation, joint source-channel (JSC) cod-
ing methods are investigated for obtaining gains in fidelity
and complexity [2], for example, in case of transmission in
the non-asymptotic region where constraints in block length

and decoder complexity exist. In [3], a joint design employing
LDPC codes was presented, and the optimization of the design
investigated. It was shown that the proposed design offered a
significant improvement over existing JSC systems with LDPC
codes. The proposed design combined two LDPC codes, used
for source and channel coding and presented a compound
graph with inter-connections which offered an improvement
over the original design of such serial concatenated joint
source and channel codes done using LDPC codes, presented
in [4], [5].

In this paper, we investigate using the memory of the source
sequence in decoding. For source sequences emanating from
a Markov model, the belief propagation decoding of LDPC
codes are modified to incorporate the Markov dependency.
This modification can be done via a direct left-to-right link
along the variable nodes, representing the dependency as an a-
priori LLR value. An alternative method uses a BCJR decoder
for estimating the Markov sequence, resulting in a turbo-like
decoding scheme where the inner LDPC belief propagation
decoding and the outer BCJR decoder exchange information
iteratively. We provide simulation results confirming the supe-
rior performance of the modified approaches over not taking
the memory into consideration.

The paper is structured as follows: in Section II, we provide
a system description. In sections III and IV, we present
two different methods of incorporating an underlying Markov
model into the LDPC decoding process and also discuss the
computational complexity. We present results in Section V and
conclude by summarizing and outlining future steps in Section
VI.

II. SYSTEM DESCRIPTION

The JSC system proposed in [3], is a modification of a
compound Tanner graph, first introduced in [4] and investi-
gated for a JSC application in [5]. The system consists of
two serially concatenated LDPC codes, the first of which is
used for syndrome-source compression and the second as a
channel code. The decoding was done via message passing
decoding on the two graphs. In order to mitigate the high error
floors exhibited by the system, modifications such as improved
connection profiles between the graphs as well as shortening
were employed, in [3] and [6], which significantly improve
performance.
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Fig. 1: JSC scheme with Markov links

As mentioned previously, we investigate LDPC decoding
to include memory present in the source sequence resulting
from a Markov model. This is done as a first step with an
eventual JSC application in mind, illustrated in Fig. 1 and is a
further modification of the systems described in [3], [6]. The
exact structure shown is not yet followed in this paper. The
design, optimization, and performance analysis for a final JSC
application are ongoing. As a first step, here we consider the
information bit sequence of a systematic LDPC code being
generated by a Markov model; thereby already studying the
situation that only the information variable nodes, i.e., a part of
the codeword, show Markov relations. The goal of the paper
is to investigate the LLR forwarding on a Tanner graph to
incorporate memory properties of an uncompressed source, as
represented in the left side of Fig. 1. A decoding scheme for
such an LDPC - JSC scheme was briefly presented in [7].
Here, we proceed further with the decoding by introducing
a computationally simpler version as well as a turbo-like
decoding scheme. There are two possible approaches for
decoding received analog values emanating from the model
mentioned. In the first approach, as detailed in Section III, as
well as the method mentioned in [7], additional to the received
corrupted analog sequence, we use the Markov property of
the source-sequence. The Markov transition probabilities are
added as further inter-connections to the LDPC Tanner graph.
In Section III, the decoding algorithm for this approach is
presented as well as a further simplification. In Section IV,
a hidden Markov model is investigated and subsequently, a
turbo like scheme is employed to estimate the a-priori values
of the information sequence.

III. DECODING ALGORITHM CONSIDERING MARKOV
SOURCE PROPERTIES

On the transmitter side, the binary information sequence u
is generated by a Markov model shown in Fig. 2, with state
transition matrix,

T =

 +1 −1
+1| P1 1− P1

−1| 1− P2 P2


Since the source is an order-1 Markov state machine, there is
a directed dependency between the variable nodes from left to
right as shown with connection arrows labeled edge-type 5 in
Fig. 1. A Markov sequence is generated by an auto-regressive
state machine, i.e., the output of the previous state becomes
part of next state. For order-1 models, the output becomes the

P1 P2

1-P1

1-P2
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Fig. 2: First-order Markov source

next state directly. From the state transition matrix T, a state-
to-output transition matrix can be calculated, which for this
simple case, is the same.

Decoding of LDPC codes is done using a Belief Propagation
(BP) algorithm known as the Sum-Product algorithm (SPA),
by passing LLR values along the edges of the Tanner graph.
Three independent LLRs are combined to estimate the received
sequence, bit wise, since the LDPC decoder is a MAP decoder.
The following derivations are done using LLR values. An LLR
value for uq ,the qth bit of the length k information sequence
u is computed as L(uq) = lnP (uq=+1)

P (uq=−1) . The signs + and − of
the LLR indicate output values +1 and −1 respectively, while
the magnitude signifies the confidence of the estimate.

We assume transmission over an AWGN channel, the re-
ceived analog values at the decoder are y, the transmitted
codeword, x is of length n. Hence, the rate of the code is
R = k

n .
The decision log-likelihood ratio at a node consists of three

summands,

L = Lintrinsic + La−priori + Lextrinsic

The extrinsic information is computed by message passing on
the Tanner graph by fulfilling the parity check constraints of
the code. Since the Markov property is a characteristic of the
source sequence, it is a-priori information. Hence, we improve
a-priori estimate of the information bits by using the Markov
source properties. Since we assume an order-1 source, the
dependency only extends to the following bit to the right. The
Markov model parameters, steady state distribution and state
transition matrix are assumed to be available at the decoder.

The a-priori information can be viewed as an incoming
contribution from the left node to the right, at the first
k variable nodes, due to the systematic code construction.
We provide two different formulae, where the second is an
approximation with low complexity for estimating Markov a-
priori information. Since we take a Markov sequence view
of the received analog sequence, keeping in mind the order-
1 model, the probability for the bit value of the node to the
right can be computed for all information nodes, using T. This
estimate is used as the a-priori information, the derivation is
provided for a node indexed by q with left node q − 1 and
q 6= 0.



L(uq) = ln

[
P (uq = +1)

P (uq = −1)

]
= ln

[
P (uq = +1|uq−1 = +1) · P (uq−1 = +1) + P (uq = +1|uq−1 = −1) · P (uq−1 = −1)
P (uq = −1|uq−1 = +1) · P (uq−1 = +1) + P (uq = −1|uq−1 = −1) · P (uq−1 = −1)

]
(1)

= ln

P (uq = +1|uq−1 = +1) · P (uq−1=+1)
P (uq−1=−1) + P (uq = +1|uq−1 = −1)

P (uq = −1|uq−1 = +1) · P (uq−1=+1)
P (uq−1=−1 + P (uq = −1|uq−1 = −1)


= ln

[
P1 · exp(L(uq−1)) + (1− P2)

(1− P1) · exp(L(uq−1)) + P2

]
(2)

In (2), the term L(uq−1) refers to the decision LLR of
the previous node, i.e., it is the sum of all messages on all
incoming edges to the previous node, i.e., it is the current
estimate of bit q − 1 in our sequence view. Hence, the outgoing
message on edge i of the variable node q at iteration l is,

L(vq,i→)(l) = L(yq|xq)(l)+∑
j,j 6=i

L(cj)
(l) + ln

(
P1 · exp(L(uq−1)(l−1)) + (1− P2)

(1− P1) · exp(L(uq−1)(l−1)) + P2

)
.

where L(cj) are incoming messages from the check nodes.
After every iteration of the LDPC decoder, the current

estimates for the information sequence are calculated and
stored. For the next iteration, we use the estimate from the
previous iteration, piecewise, to provide an a-priori value for
each bit of the information sequence, from left to right.

We assume blocked transmission of the information se-
quence which is generated continuously. Hence, for the first
bit of every codeword, since there is no left node, the a-
priori probability is taken as the ratio of the steady state
probabilities. Similarly, for the first iteration when no estimate
of the received sequence is available, all nodes are initiated
with a-priori probability as the ratio of the steady states,

La-priori-init = ln

(
P (L(u0) = +1)

P (L(u0) = −1)

)
= ln

(
Ps(+1)

Ps(−1)

)
(3)

In (1), the numerator is computed by summing the prob-
abilities for each state in the model to generate a +1. The
denominator sums the probabilities of all states to generate a
−1. Thus, if the Markov model has m states, the numerator
and denominator both will have m summands. The probabili-
ties for the states to generate a +1 or −1 are weighed by the
probability to be in that state, which can be calculated from
the previous m bits of the received sequence, due to the auto
regressive structure of a Markov state machine. The decoding
easily generalizes for arbitrary order-m Markov models. In the
simulation results provided in Section V, a performance curve
for an order-2 model is provided.

A. Simplified Computation

Equation (2) uses the outgoing probabilities from a state to
compute the probability of the next state. This is a ‘predictive’
approach. We present an additional method for computing the
a-priori values. From Fig. 2 we calculate LLRs at the states

for generating outputs; where st = +1 and st = −1 denote
the states.

L(st=+1) = ln
(+1|st = +1)

(−1|st = +1)
= ln

[
P1

1− P1

]
, (4)

L(st=−1) = ln
(+1|st = −1)
(−1|st = −1)

= ln

[
1− P2

P2

]
. (5)

The current estimates at node q − 1, P (uq−1) = +1 and
P (uq−1) = −1, are respectively represented by, P (+) and
P (−). We scale the estimates with (4) and (5) and obtain the
LLR for the next bit.

L(uq) = P (+) · ln
[

P1

1− P1

]
+ P (−) · ln

[
1− P2

P2

]
, (6)

= P (+) ln(P1) + P (−) ln(1− P2)︸ ︷︷ ︸
a

−P (+) ln(1− P1)− P (−) ln(P2)︸ ︷︷ ︸
b

. (7)

The derivation presented in Section III and in (6) are related
by Jensen’s inequality, which states that, if f is a concave
function and X is a random variable where

∑
pi = 1, then

p1 · f(x1) + p2 · f(x2) ≤ f(p1 · x1 + p2 · x2) (8)

From (1),

L(uq) = ln [P (+)P1 + P (−)(1− P2)]︸ ︷︷ ︸
c

− ln [P (+)(1− P1) + P (−)P2]︸ ︷︷ ︸
d

(9)

Since ln is a concave function, using (8),

a ≤ c; b ≥ d

Since, the two summands of (7) are bounded respectively
lower and higher, with respect to the two summands of (9),
the overall effect of the approximation compensates. We will
observe this from the simulation results, too.

ln [P (+)P1 + P (−)(1− P2)]− ln [P (+)(1− P1) + P (−)P2]

≈ P (+) · ln
[

P1

1− P1

]
+ P (−) · ln

[
1− P2

P2

]
.

(10)



This method is computationally simpler, as ln[ P1

1−P1
] and

ln[ 1−P2

P2
] are fixed values. Hence, the expression is linear in

P (+) or P (−) and as shown in the simulation results, provides
similar performance.

IV. HIDDEN MARKOV MODEL VIEW

A hidden Markov model is characterized by a state tran-
sition matrix and an emission matrix. In HMM literature,
a classic problem is to determine the state sequence of the
encoder, given the observed output sequence. Both Viterbi
and BCJR decoders are used for this task. In this section,
we reformulate our system as an HMM.

On the decoder side, the received analog values are the
output of the Markov state machine corrupted by additive i.i.d.
Gaussian noise with zero mean and standard deviation σ. We
consider this observed sequence to be the continuous output
of an HMM model, as shown in Fig. 3. The channel statistics
are viewed as continuous emission probability densities.

Since the decoder only observes the continuous outputs, and
has knowledge of the channel statistics as well as T, it can
be viewed as a classical problem of finding the sequence of
states of the system.

Fig. 3: Hidden Markov model

To this end, we construct a decoder architecture similar to a
serial concatenated Turbo decoding scheme. Our goal is to use
the BCJR algorithm to deduce the probable state sequence and
use this a-priori information in the LDPC decoder. The LDPC
code performs parity-checks and provides a-priori information
for the BCJR decoder. The system is described in Fig. 4.
The outer Markov state machine block produces a continuous
stream of outputs which is blocked, k − bits at a time
for transmission. The LDPC encoder generates codewords
x of length n. After transmission, on the decoder side, the
intrinsic information of the received bits is fed into the LDPC
decoder, along with the a-priori estimate, computed by the
BCJR decoder. One iteration of the decoder is counted as
serial decoding performed by the LDPC decoder first and
subsequently, by the BCJR decoder. In the first iteration, there
is no incoming information from the BCJR decoder, hence
Lap(ik) = 0. The output of the LDPC decoder, provides a-
priori information for the BCJR decoder, after subtracting the
input the BCJR decoder provided in that iteration, to avoid
information looping, and vice-versa for the LDPC decoder.

The information exchange on the concatenated graph is
shown in Fig. 5. In this serial concatenation scheme, each
decoder provides a-priori estimates for the other. The Trellis
provided here is of a 2-state system, i.e., order-1. For order-1,
the outputs of the Markov model become the states for the next

Fig. 4: Concatenated encoder and decoder structure

Fig. 5: Information exchange between the LDPC and BCJR decoders

time instant. We start our iterations in the inner LDPC decoder
which estimates the value of the information sequence at the
variable nodes. These estimates map onto the state transitions
in the Trellis. Solid lines represent an output +1 and dashed
lines represent an output -1. The probabilities of being +1
and -1 are computed from the outgoing Lext(xk|rk) of the
LDPC decoder and placed on the corresponding Trellis paths
as shown by the dashed arrow from the variable nodes to the
state transitions. The BCJR decoder computes three probability
estimates, α and β values are the probabilities to be in the
states considering all paths converging to and stemming from
the states, respectively. γ is computed as a product of the
state transitions on the Trellis given by T and Lext(xk|rk)
values provided by the LDPC decoder. The BCJR computes
a MAP estimate for every output bit as a product of these
independent estimates, which provides a-priori values for the
LDPC decoder, as shown by the solid curved lines from the
BCJR to the variable nodes.

V. PERFORMANCE COMPARISON

In this section we provide some simulation results. An irreg-
ular rate-1/2 LDPC code was constructed using the following
variable- and check-node degree distribution polynomials,

λ(x) = 0.28286x+ 0.39943x2 + 0.31771x7,

ρ(x) = 0.6x5 + 0.4x6.



The PEG algorithm was used to construct a systematic trian-
gular H matrix. BER results were compiled after atleast 100
independent errorred words were received. The BER curves
are presented in Fig. 6. For ease of reference, the decoding al-
gorithms presented in Section III, III-A, and IV will be referred
to as, Dec-1, Dec-2, and Dec-Ser. As reference, performance
curves of an LDPC decoder using the sum-product algorithm
are provided, shown in blue and green, labeled Ref T1 and Ref
T2. These curves are generated for T matrices, respectively,

T1 =

(
0.9 0.1
0.1 0.9

)
, T2 =

(
0.5 0.5
0.5 0.5

)
.

As expected, the curves lie on top of each other since
LDPC codes guarantee performance independent of the in-
dividual codewords. We then plot the results for Dec-1.
The underlying transition matrices were T1 and additionally,

T3 =

(
0.6 0.4
0.4 0.6

)
, T4 =

(
0.7 0.3
0.3 0.7

)
.

We observe from the results, incorporating memory into
decoding improves the performance significantly. The higher
the memory within the sequence, the better the performance
since the a-priori estimates for sequences with stronger mem-
ory are more reliable. Results for Dec-2 are plotted for T1.
We observe that the performance curves computed by the two
methods are more or less identical. Results for the order-2
(O:2) Markov model are also provided, for T5 and Dec-1.

T5 =


(+1,+1) (1,−1) (−1, 1) (−1,−1)

(+1 + 1)| 0.9 0 0.1 0
(+1− 1)| 0.5 0 0.5 0
(−1 + 1)| 0 0.5 0 0.5
(−1− 1)| 0 0.1 0 0.9


For the order-2 model, we compare the results obtained with
decoding the sequence by only taking into account order-1
memory. The order-1 equivalent matrix of T5 is T4, obtained
by marginalizing over the right-most bit of the states, in
both rows and columns. We again observe that there is a
performance loss when the full memory of the sequence is
not taken into account.

For the turbo-like decoding scheme, scheduling is an impor-
tant issue. For our case, from preliminary results, we observe
that a one-pass serial decoding schedule does not provide any
gain over the other two methods described. This is due to the
fact that, with each call of the LDPC decoder, only one cycle
of message passing is performed in the Tanner graph. LDPC-
like belief propagation decoding methods provide improved
estimates due to their iterative procedure, the benefits of which
cannot be exploited in this serial decoder structure. To make
use of the iterative message passing within the Tanner graph,
the one-pass serial decoding was performed 10 times. The
resultant estimate of the a-priori LLR from the BCJR decoder,
Lap(ik) was then used in a regular LDPC decoder; which does
not consider the memory of the sequence; and the BER was
computed. The total number of iterations in this scheme is
20. In order to have a fair comparison, Dec-1 was called
with 20 iterations for the same Markov model T1, labeled
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Fig. 6: Simulation results for Dec-1, Dec-2, and Dec-Ser for different
T matrices

T1, Dec − 1, it : 20. We observe that the serial architecture
performs better.

VI. CONCLUSION

Modifying message passing decoding to include memory
properties of the source sequence improve the performance
of LDPC codes. The design of LDPC codes for these mod-
ified decoding methods is a future step for this work. The
scheduling for the concatenated decoder will provide further
insight into the applicability of the computationally complex
concatenated model over the other two methods with very low
complexity.
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