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Abstract—We first present a simplified full ABCD or S-
matrix model for a 3-wire powerline grid connection to support
our simulations of physical-layer security to finally be able to
obtain statically significant results. Typical in-house power-line
cables consist of three wires labeled L (Line), N (Neutral), and
PE (Protective Earth). 4 x 4 ABCD or S-parameter matrices
are derived from the well-known 2 x 2 ABCD matrix known
for 2-conductor transmission lines including a FEXT (Far-End
CrossTalk) model for 8 of the 16 ABCD matrix elements. For
a point-to-point ABCD matrix, bridge taps with loads over L
and N are represented by their corresponding A circuit and its
ABCD matrix to finally allow for simple matrix multiplication of
the cascade of such line and bridge taps elements between two
end points.

As a first application that promises secret key generation we
study transfer functions when introducing randomly changing
reactive loads at the legitimate terminals. We observe that the
phase response at a certain frequency is very suitable to be
mapped to key elements. The resulting key distribution is close
to uniform and the key disagreement rates for legitimate and
eavesdropping channels are almost ideal, i.e., close to zero for
the first and close to 0.5 for the latter.

I. INTRODUCTION

The computation of the transfer function between two
terminals in a multi-pair arrangement has nicely been ad-
dressed by Gruber and Lampe [1], [2] in 2013. However, the
corresponding Matlab package relies on field computations,
making it relatively complex and time-consuming. Moreover,
it is based on the assumption of homogeneity, and it is
necessary to adjust the relative permittivity to account for the
fact that plastic materials like PVC are not rigid but foamed.
Additionally, there are air-filled gaps between wires that need
to be considered. This adjustment is essential to align the
characteristic impedance of the actual cable with that in the
simulation.

Our physical layer key generation requires fast simulations
to analyze performances of different scenarios and obtain a
statistically meaningful amount of data.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) — HE 3654/27-1.

In power-line communications with multicarrier modulation,
the transfer function is inherently determined, primarily for
equalization. In contrast to the mentioned Matlab package,
we require the overall four-port matrix, not only the transfer
function, between two terminals, e.g., two sockets. This means
transferring branching components to the direct connection be-
tween the two points, which one may see as the backbone. This
entails the product of ABCD matrices, be it from backbone
elements or bridge taps. Based on the Gruber/Lampe package,
we have already done some of such works described in [3]
by simply using the transfer function replacing the scattering
parameters S12 = Ss1, since they would be ideally the same
for perfect termination.

Both approaches cannot fully replace measurements, such
as in [4], since practically, FEXT functions show statistical
variations that are due to the production process and the cable
layout. Those can only be modeled by the mean (or 90 %
worst-case) FEXT function.

The remainder of this paper is organized as follows. Section
IT introduces 4 x 4 four-port matrices that are needed for a 3-
wire power-line cable, which we selected as the most common
installation cable in our country. Section III compares ABCD
matrices derived from full two-sided scattering parameters
or one-sided open/short impedance (or S;1) measurements.
A FEXT response model is proposed for inclusion into the
parameters relating two different wire pairs. This leads to
a simplified model consisting of secondary line parameters
and the FEXT model. A bridge tap with a load (e.g., and
appliance) is handled in Section IV. Section V discusses our
actual application for physical layer key generation. Here we
show, how common randomness is obtained and which results
for legitimate users and an eavesdropper can be achieved
quantizing phase responses. We conclude with Section VL.

II. MATRIX DESCRIPTIONS OF A
3-WIRE TRANSMISSION LINE

A 3-wire four-port, as illustrated in Fig. 1, involves four
voltages and four currents, likewise four incident and four
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Fig. 1. Power line four-port
reflected wave components a; and b;, ¢ = 1,...,4, respec-

tively. Note that for the current directions and ABCD matrix
equation, we have selected the non-symmetric option in line
with Matlab routines.

Accordingly, we obtain the matrices

Wi Ar Ay By B V3
Vol _ | A3 Ay Bs By Vi 1)
I Ci Cy D1 Do I |7
I Cs Cy D3 Dy mn
by Sii Sz Sz Sua ai
bo _ Sa1 Saa Saz S az )
b3 S31 S3a S3zz Ss as | -
by Sa1 Siz Saz Su ay

Figure 2 shows all measurement combinations required to
determine the complete set of S-parameters, resulting in a total
of 4.6 = 24 parameters
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S31 Ss3|’ |Sa1 Saa|’ [S32 Sasz|’
Sog Soa| |S11 Si2| [S33 Sz
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while only 16 are required. Some are determined repeatedly

and one may take the mean of such measurements.

By employing the transformation relations outlined in [5], one

can move from S to ABCD representation. They are also

readily available in Matlab as “s2abcd” and “abcd2s”.

A usual 2-conductor transmission line is described by the well-

known ABCD formulation

Z sinh vl
cosh vyl

S 3)
7 sinhy

The secondary line parameters, consisting of the characteristic
(wave) impedance Z,, and the propagation constant v =
« + jfB, can be measured by open and short terminations,
despite some virtual length extension for open termination.
This extension may result in small length deficiencies, causing
inaccuracies at higher frequencies.

III. MODEL FOR THE 4 x 4 ABCD MATRIX

In the first and fourth arrangements in Fig. 2, it is evident
that they represent standard 2-wire pairs with some termina-
tions at the other pairs added. The resulting parameters are
easily described by (3), hence obtaining 8 parameters of the
4 x 4 ABCD matrix directly. This results in a checkerboard
arrangement at positions 11, 13, 22, 24, 31, 33, 42, and 44,
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Fig. 2. S-parameter measurements for a DUT (VNA: vector network analyzer,
balun for balanced matching of the 50 Ohm VNA connectors to wire pairs
with a characteristic impedance of roughly 75 Ohm)

using row and column indices. The remaining parameters
represent FEXT (Far-End CrossTalk) terms such as the one
at position 12 referring to V4 /Vy, or position 41 referring to
I /V3. From DSL standards [6], [7], we know a model for



FEXT in the form of
Hygxt = Hre -1/~ f-k 4

with the transfer function Hrg, length [, reference length [,
frequency f, and a constant k'. For that constant, we simply
used the mean of the fraction of the absolute values of the
measured FEXT and the model function. In the DSL case,
there is an additional factor attributed to the larger arrangement
with, for instance, 50 pairs.

Dividing HrgxT in (4) by Hrg is shown in Fig. 3 compared
to a FEXT measurement with the same normalization to
the transfer function. Additionally, we show a dependency
proportional to +/f, which we found more suitable for our
4x4 ABCD matrix design. One should note that in contrast
to the DSL case, the two loops are not independent, but one
conductor is common to the two loops, e.g., L-N and N-PE,
having N in common. Regarding the ordinate scale in dB, note
that for the comparison, we just determine the constant %k to
make the model functions fit, but we did not exactly normalize
to the length of the cable, since this is just another factor, not
changing the frequency behavior.
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Fig. 3. Sample FEXT response and model options

When adopting such dependencies, we can, e.g., formulate
the two mentioned components using

Vi I
1~ \/1/10 VFk and 2 ~é\/1/zo.\/f-k. (5)

The constant k is determined comparing the component ob-
tained from the full scattering matrix and the one through
this model, i.e., again as the mean of the fractions of the two
components. The intuitive reasoning for the FEXT model is
that independent of the coupling location, the overall transfer
function has to be part of it, assuming identical transfer func-
tions on both pairs. In power terms, the coupling should grow
with the length, explaining +/{/ly. The original DSL-FEXT
model with a linear frequency dependency results from seeing
two independent loops as a “transformer” and there the mutual
inductance comes with jw. One should note that all these
models are, of course, a rough estimate of the FEXT behavior.
In reality, it is a very randomly oscillating function that cannot
be described analytically. However, the subsequently described
steps allow the simulation of indoor power-line arrangements
much quicker than field-oriented programs such as the one by

INote, in this formulation, & carries a unit [s=1/Hz].

Gruber and Lampe [1], [2]. The actual FEXT function depends
significantly on the wire layout inside the cable and the layout
of the overall cable, which again depends on the manufacturing
process and the installation, as well as on materials around
the cable. This is practically impossibly to model. Although
twisted pairs in telephone cables are much more homogeneous
than power-line cables, also there, a trend model was found
to be the only possibility.

In the following equations (6) to (9), we are listing all
the relations for the 16 ABCD parameters. We abbreviate

k\/l/lof as Hmod-
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For clarification, we mark the direct insertion of single-pair
ABCD parameters in color for the two pairs in Eq. (10).

Vi Ay Bs V3
Vs _ A3 Ay Bs; By Vy (10)
I Cy Dy | | I
I cs C, Ds D, || I,

Entries expected to be identical due to an assumed symmetry
of the cable are highlighted with color markings in Eq. (11).
They could be averaged to enforce the symmetry if there are
small deviations due to measurement errors and inhomoge-
neous cable layout. It may be argued that practical scenarios
might not exhibit the exact symmetry. Nevertheless, our goal
was to create a model for fast simulations, acknowledging that
not all properties of a practical situation can be fully captured.

One may note that the FEXT model introduction within
(7) and (8) would destroy reciprocity, which is, of course,



a key property of every passive M -port network. We recover
this symmetry by moving to S-parameters, mirroring the lower
triangular part to the upper one and then returning to ABCD
parameters. In this way, the amplitudes shown in Fig. 8 were
almost identical to results without S-mirroring, which we
cannot show due to space limitations.

Wi Ay By V3
Vo | | Az~A, BBy Va
I - (0 D, I3
I Cy Ty Ds 1D, n

Y

In Fig. 8, we present results obtained from measuring a
3 x 1.5 mm? cable with a length of 28 m. Blue curves are
ABCD entries derived from full S-parameter measurements
through [5]. The red curves in green frames are the 2 x 2
ABCD matrices from wire pairs derived from secondary line
parameters. The counterpart with blue frames were obtained
from modifications using Eq. (5). Some deviations are at-
tributed to the frequency range of the baluns, despite full 2-port
calibration.

IV. BRIDGE-TAP 4x4 ABCD MATRIX

To be able to obtain overall ABCD and S matrices of a
point-to-point connection, we first represent a bridge tap by its
input admittances in the form of a A arrangement, where we
assume admittances Y; between L and N, Y5 between PE and
N, and Y3 between L and PE. The load we assume between
L and N. Load appliances have, e.g., been modeled in [8].
For our load at L and N, only, we can assume I to be zero,
leading to

Vi=A1Vs+ AVy— BiYL V3
I = C1Va 4+ CoVy — DY Vs
Vo = A3Vs + AyVy — BaY Vs
Iy =C3V3+ CyVy — D3YL V3

12)

To obtain Y;_3, we additionally set Vo = 0, leading to
Y1]|Ys = Y7 + Y5, Likewise, choosing V; = 0 leads to
Yo||Ys = Y + Y3, and finally, V3 = V2 means Yi||Ys =
Y1 + Y5, Together with the ABCD matrix in (12), one can
then obtain with some trivial but lengthy math,

Vi = (V1 +Y3) — (Ya+Y3) + (Y1 +Y2)] /2
= [A1Cy — AyCy — 24305 + 2A,C — A3Cy + AsCy
+ Ay DYy, — B1CYYr — 2A4D1 Yy + 2B3C5Y7,
— A4D3Yy + BgC4YL] / [2(A1A4 — Ao As
+ A9 BsYy, — AyB1Y1))

(13)
Yo = [—(Y1 +Y3) + (Yo + Y3) + (Y1 + Y32)] /2
= [A1Cy +2A,Cy — A3Cy — 2A3C5 + A2 DY
+2A45D3Y;, — A3Cy + AsCs — AsD3Yy, (14)

~ BiCaYy, — 2B1CyY5 + BsCyYi) | [2(A1 A
— AgAs + Ao BsYy, — AyB1Y1))

Y= [(Y1+Y3) + (Ya+Ys) — (Y1 +Y2)]/2
= [-A1Cy+ AsCy — Ay D Yy + A3Cy — AyCs

5)
+ A4D3YL + B1CQYL — BgC4YL] / [2(A1A4
— Ay A3 + A3BsYy — AyB1Y1)]
The Z-matrix for the A admittance 4-port is given by
%1
Val _ 1 _
Val MY +YoYs4Y1Y3
Vi
Yo+ Y3 Y3 Yo+Y3 Y3 I
Y3 Y1+Y;3 Y3 Yi+Ys| |2
Yo+ Y3 Y3 Yo+ Y3 Y3 I3’
Y3 Yi+Ys Y3 Yi+Ys| |14
(16)

which can be turned into an ABCD matrix by the correspond-
ing Matlab command “z2abcd” or consulting [5].

V. PHYSICAL-LAYER KEY GENERATION FROM TRANSFER
FACTORS FOR ALICE-BOB AND ALICE-EVE CONNECTIONS

From practical measurements and also simulations with
the Gruber/Lampe package, we know that having Eve close
to either Alice or Bob is critical, just as in the wireless
case. Likewise, we found that for obtaining the desired com-
mon randomness for physical-layer key generation, variable
reactive loads should be placed not too far from Alice or
Bob to lead to sufficient changes in the transfer function.
The most convenient and implementation-wise most practical
solution appears to equip the legitimate end with a varying
reactive load, which we chose to be capacitive or inductive,
i.e., lossless. Additionally, we are still assuming the (almost)
ideal ohmic termination (75 Ohm) everywhere, in parallel to
the reactive loads at the legitimate ends. The capacitive and
inductive loads were selected in the ranges 1 pF to 1 nF and
1 nH to 1 pH (in log steps), respectively.

Figure 4 shows a simple situation with 9 wire segments
(1.83, 0.47, 2.33, 2.20, 2.10, 2.03, 3.10, 1.13, 0.97 m) and
arbitrary appliances, where we had coffee maker, PC, vacuum
cleaner, and fridge to randomly choose. During the simula-
tions, the segments lengths were chosen randomly up to 3.3
m. The terminations at Bob’s end shows the parallel 75 Ohm
and random reactive loads. Alice and Eve’s loads were chosen
to be 75 Ohm. In a practical setup, one would, of course, also
equip Alice with random reactive loads, since Eve could be
close to her, too.

Results for Sy3 = S31 for the Alice-Bob link are shown in
Fig. 5. Note that the reciprocity holds for every passive 4-port
(M -port in general; also for arbitrary passive termination in the
fuse box) and one can show [9] that these transfer factors are
identical to the transfer functions under ideal termination with
the characteristic impedance. Practically, one will, of course,
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not use a vector network analyzer (VNA) to determine S-
parameters, but will measure the transfer function as, e.g.,
every multicarrier (OFDM/DMT) modem does.

The transfer function changes nicely with the different
reactive loads, as also already observed from measurements.
This provides the required common randomness. Similar mod-
ifications can also in practice be achieved by connecting the
reactive loads to unused pairs at the sides of Alice or Bob.
However, this cannot be simulated when assuming homoge-
neous wire pairs.

Implementing the random reactive loads into the end units
conveniently allows to change them triggered by Alice and/or
Bob.

In our earlier publications [3], [4], [10], [11], we concen-
trated on using the amplitude response for key generation,
since maxima and minima are modified in amplitude and
location with varying reactive terminations. However, using
the phase seems more suitable, since one can just quantize the
phase in equal steps and map phases to a bit pattern using
a Gray code labeling. We show such a mapping in Fig. 6
for M = 16 quantization steps. We picked the frequency
bin (here 1801 from a total of 2001), which had the biggest
variance for a short run with random length configuration
and terminations to make use of the full [—m,7) range. For
the variance computation, one has to, of course, take the 27
periodicity into account. The data used for localizing a suitable
frequency was later not included in the actual statistics. This
means, we do not match to the actual scenario, which would
then be done in a practical implementation, which could even
further improve the results. Another selection criterion may be
to look for the maximum SNR location.

In both figures, solid lines show the Alice-Bob link, where
dashed ones are for Alice-Eve. They are better visible in the
zoom-in plot Fig. 6.

As analog key reconciliation step, we have chosen a simple
procedure, which publicly announces a shift of data (or equiva-
lently the quantization grid) to the middle of the corresponding
quantization interval (say, at Alice), which ensures that the
measurement at the other side (Bob) will also likely be in
the same interval. This will work, as long as the difference
between the two measurements is less than half of the quan-
tization interval width apart. This shift procedure is, e.g., also
described in [9]. Let us assume Alice to communicate the
shift for the measured phases. The quantization value Q(¢4)
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Fig. 5. S13 = S31 in amplitude and phase for the Alice-Bob (solid lines)
and Alice-Eve (dashed lines) links and varying reactive load (red: capacitive,
blue: inductive, )
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Fig. 6. Zoom-in of the phase of S13 = S31 for the Alice-Bob solid lines)
and Alice-Eve (dashed lines) and mapping to quantization intervals with Gray
labeling

is given by
Q(oa) = Qa
if mod (¢a,27) € 2ﬂ(%§[ ON 27;5‘*) . a7

mod(...) stands for moving the phase into a [0, 27) interval.



The shift is then determined by

m(204 — 1
Sa=¢a— % (18)
Subsequently, the data is updated according to
Gai=¢a —Sa, PB =B — Sa . 19)

Likewise, the procedure can also initiated by Bob. Further key
reconciliation can be based on Slepian-Wolf coding, just as in
[12], [13].

In the noise-free situation shown in figures 5 and 6 the
resulting bit-wise key disagreement rate (KDR) was zero for
the legitimate link and 0.503 for the link to the eavesdropper
(for 12.000 random segments, appliances, and reactive loads),
which is almost ideal. With some uncorrelated noise, naturally,
the KDR of the legitimate link will also increase, but it
just naturally depends on the noise variance relative to the
quantization interval width. One may adjust the number of
quantization intervals as appropriate.

Figure 7 shows a histogram over the quantization intervals
for the legitimate and eavesdropping links. The probabilities
are not yet completely uniform. Arithmetic coding may be
used to further flatten the distribution. We are working on
another option to ensure the distribution to be perfectly flat.
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Fig. 7. Histogram for legitimate and eavesdropping key segments

VI. CONCLUSIONS

For extensive and statistically reliable simulations of phys-
ical layer secret key generation on power lines, we have
presented a possibility for designing a simplified 4 x 4
ABCD-matrix formulation for a 3-wire power-line cable. This
formulation is based on standard single-pair secondary line
parameters along with a modified FEXT model utilized to
design the ABCD entries at positions, where the sums of row
and column indices are odd, representing functions relating to
two different pairs. Our findings indicate that a decent match is
achieved for lengths suitable for in-room cable arrangements.
Such a model assumes some symmetry and cannot represent
all the variations of a real far-end crosstalk function, nor the

effects of arbitrary cable layouts, since in practice, the way
wires are laid out and how the interconnections are realized,
has quite some influence on the transfer characteristics. We
showed an exemplary network layout with Alice, Bob, and
Eve, some home appliances and varying reactive loads at one
of the legitimate ends. We could show that especially the phase
of the transfer factor (or transfer function) can nicely serve as
a basis for physical layer key generation. Almost perfect KDR
results are obtained for the legitimate and eavesdropping links,
indicating almost ideal secrecy.

In further works, we will investigate different network
topologies and and add noise to show the KDR dependent on
the noise and the number of quantization intervals (number of
bits of key segments). This will again show the capabilities
of our key reconciliation schemes, already outlined in our
publications for wireless key generation. Estimates of secret
key rate and NIST tests will also follow.
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Fig. 8. Absolute values of 4 x 4 ABCD parameters from scattering parameters and modeled ones, having incorporated FEXT and S-matrix mirroring
Green frames: direct wire pairs; blue frames: pairings involving FEXT coupling; blue curves: ABCD parameters derived from full S-parameter measurements
according to Fig. 2 using [5]; red curves: ABCD parameters determined by Eq. (3) including FEXT as in Eq. (5) in blue-framed figures



