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Abstract—The Middleton Class-A (MCA) model represents
one of the most widely applied models for narrow-band im-
pulsive interference superimposed to additive white Gaussian
noise (AWGN). The MCA noise process has an infinite state
of Gaussian densities, which lead to an irreducible optimum
detector. Here, our analysis is based on a two-state model for
noise, where we further approximate it to a one state of noise.
Therefore, a log function reduces the likelihood ratio test (LRT)
to a closed-form expression. Since the low-pass equivalent of the
noise process can be expressed by in-phase and quadrature (IQ)
components. We derive the nonlinear decision rules when the IQ
components of noise are independent and identically distributed
(i.i.d.). Furthermore, we show that, for jointly distributed IQ
noise components, the conventional coherent detector over a
fading channel with Gaussian noise is still optimum for impulse
noise.

Index Terms—Rayleigh fading, Impulse interference, Class-A
density, Nonlinear detector.

I. INTRODUCTION

Non-Gaussian distributions are widely used to model im-
pulsive interference in a variety of some practical wireless
systems. The interference exists in many channels such as
radio frequency interference (RFI) in indoor and outdoor
channels [1], [2], RFI generated by computers in embedded
wireless data transceivers [3], and co-channel interference in
a Poisson field of interferers [4]. The source of interference
can be either natural or man-made such as atmospheric noise,
power lines, ignition, and closely located wireless systems.
There are many distributions for impulse noise such as an
MCA density, symmetric-alpha stable distributions, and a
generlized Gaussian density. The MCA model [2] appears
to be more physically accurate in modeling narrow-band
interference. This model has two basic parameters that can be
adapted to fitting a wide variety of impulse noise phenomena
occurring in practice.

The complex baseband representation of noise has two
processes modeling IQ components. Regarding the underlying
physical mechanisms that generate interference, there are two
assumptions for the IQ components. The assumption of i.i.d.
noise components has been considered in [5], which is accu-
rate when the IQ processes of noise are subject to independent
fading channels such as co-channel interference [4]. The
assumption of spherically symmetric interference [2] is more

accurate than the i.i.d. assumption for near-field interference
sources such as power lines and ignition. In [6], [7], the
design of an optimum detector over a fading channel with
impulse noise is considered, where the noise distribution is
assumed to be a spherically invariant random process. The
authors show that the conventional coherent and incoherent
detectors have an optimum performance for impulse noise.
In [8], we show a wide area of nonlinear boundaries for the
case of independent MCA noise samples, which results from
the impulsive character of noise distribution. So far, there has
been no investigation how the optimum IQ combiner should
look like for i.i.d. IQ components. Moreover, there are no
clear justifications why the conventional detector performs like
the optimum detector in a spherically symmetric interference
channel. The basic objectives of this paper can be summarized
by two contributions. The primarily contribution is to derive
a simple non-linear combiner in the case of i.i.d. noise
components. The second contribution is to prove and justify
why the conventional detector has an optimum performance
when the interference is modeled by a spherically symmetric
process.

This paper is organized as follows. Section II briefly de-
scribes the system model, and it provides a full picture of
the noise process at the receiver. In Section III, we derive
the nonlinear decision rules in the presence of i.i.d. and
spherically symmetric interference. Finally, simulation results
and concluding remarks are presented in sections IV and V,
respectively.

II. SYSTEM MODEL

We consider a wireless communication channel of binary
signal transmission corrupted by MCA interference. For sim-
plicity, we restrict our analysis to binary phase-shift keying
(BPSK). However, the generalization to an arbitrary M -ary
signal sets is straightforward. We assume that the transmitted
signals sk(t), k = 0, 1 use a rectangular pulse over 0 ≤ t ≤ Tb.
The BPSK signal is transmitted over a Rayleigh flat fading
channel. Therefore, the equivalent low-pass received signal in
one signaling interval is

r(t) =

√
Eb

N0
hsk(t) + z(t) , k = 0, 1 (1)



where h is a complex channel gain with Rayleigh distributed
envelope and uniformly distributed phase. Eb is the transmitted
energy per bit and N0 is the noise variance. The transmitted
signals s1(t) and s0(t) correspond to symbols +1 and −1,
respectively and z(t) = zI(t) + jzQ(t) denotes a complex
noise process of zero mean and unit variance. The noise
process as seen by the receiver includes two noise components:
a Gaussian component n(t), which represents the AWGN and
impulsive component i(t) due to the presence of interference
from various sources. Hence, the received noise at the receiver
is given by

z(t) = n(t) + i(t) , (2)

where n(t) and i(t) are assumed to be statistically indepen-
dent. Similar to [2], we make the following assumptions: 1) the
interference waveforms comprising i(t) have the same form.
However, their envelopes, duration, frequencies, and phases
are randomly distributed. 2) the locations of interfering sources
and their emission times are randomly distributed in space
and time according to a homogeneous Poisson point process
of rate λ. Refereing to the Fig. 1, after matched-filtering

Fig. 1. A baseband model of binary signal transmission over a Rayleigh
fading channel

and sampling, the samples of the IQ noise processes can be
expressed as

zI,Q =
1√
Tb

∫ Tb

0

zI,Q(t)dt . (3)

When the pulse duration of the interference waveforms com-
prising i(t) is comparable to the bit duration Tb, the samples
of zI and zQ can be modeled by an MCA density [2]

p(zI,Q) =

∞∑
m=0

αm√
πσ2

m

e
−

z2I,Q

σ2
m , (4)

where

αm =
e−AAm

m!
(5)

and σ2
m = m/A+Γ

1+Γ . From (4), we can show that E[z2I ] =

E[z2Q] =
1
2 . This model is well defined by two parameters A

and Γ. The impulsive index, A = λTb, describes the average
number of impulses during the bit interval Tb. The Gaussian
factor, Γ, represents the power ratio of a Gaussian to impulsive

part of noise. In (4), m can be seen as a state of noise,
i.e., m = 0 and m ≥ 1 show that there is no impulse and
the impulses are present, respectively. The noise state m is a
Poisson distributed random variable such that the probability
of being in a given state is equal to αm.

Under the assumption of i.i.d. noise components, the noise
vector [zI zQ] has the following distribution

p(zI , zQ) = p(zI)p(zQ) . (6)

When the receiver is influenced by the same physical pro-
cess creating the impulse, the i.i.d. assumption of the IQ
components may not hold true. Therefore, a more accurate
assumption is to assume that the IQ components are statisti-
cally dependent. Therefore, the IQ components are spherically
symmetric random variables with the following bivariate MCA
density

p(zI , zQ) =

∞∑
m=0

αm

πσ2
m

e
−

z2I+z2Q

σ2
m . (7)

Throughout this paper, we consider both cases in deriving the
proposed combiners of binary signals in the presence of MCA
noise.

III. OPTIMUM DETECTOR

In the following analysis, we assume that the receiver has
a priori knowledge of the exact impulse noise parameters.
This is a reasonable assumption, since it has been shown that
reliable estimates can be extracted from noisy samples [3]. We
further assume that the channel h is known at the receiver. The
IQ components of the received signal r = rI + jrQ can be
expressed as

rI = hIs+ zI ,

rQ = hQs+ zQ ,
(8)

where hI and hQ represent the real and imaginary parts of
h, respectively. s ∈ ±

√
Eb

N0
corresponds to the transmitted

antipodal signal. assuming equiprobable transmitted symbols,
the optimum detector computes the following likelihood ratio
test (LRT):

Λ =
p(rI , rQ|s1)
p(rI , rQ|s0)

s1
≥
<
s0

1 , (9)

where p(rI , rQ|s1,0) are the conditional probability density
functions (pdfs) of the observed samples given s1,0. The
hypotheses s1 and s0 correspond to +1 and −1, respectively.
Since (6) and (7) contain a sum of exponential functions, the
log function cannot be used to simplify (9). As a suboptimal
solution, a linear receiver can be used, which is optimum when
the interference is Gaussian. In this case, the following single
decision variable is computed:

ℜ(h∗r) = hIrI + hQrQ . (10)

This combiner is equivalent to a channel phase compensation
(coherent detection) for BPSK over a Rayleigh fading channel.



A. Statistically independent noise observations

Under this assumption, the LRT (9) can be expressed as

Λ =
p(rI |s1)p(rQ|s1)
p(rI |s0)p(rQ|s0)

s1
≥
<
s0

1 . (11)

From (5), we can show that the noise state probability αm

tends to zero as m approaches infinity. Therefore, the infinite
sum may be truncated to a finite sum. It was shown in [9]
that the MCA density can be well approximated by a two-
term model

p(zI,Q) ≈
α0√
πσ2

0

e
−

z2I,Q

σ2
0 +

α1√
πσ2

1

e
−

z2I,Q

σ2
1 . (12)

In this model, we have two noise states only, i.e., m = 0 and
m = 1 correspond to a Gaussian and impulsive state of noise,
respectively. The terms α0 = e−A and α1 = 1−e−A represent
the noise state probabilities. From (12), we note that when the
receiver knows the state of noise, the noise density reduces
to a one scaled Gaussian distribution. This assumption can be
realized by determining the threshold when the densities of
noise states are equal, the MCA model can be approximated
as

p(zI,Q) ≈


α0√
πσ2

0

e
−

z2I,Q

σ2
0 if − k0 ≤ zI,Q ≤ k0

α1√
πσ2

1

e
−

z2I,Q

σ2
1 otherwise

, (13)

where k0 =
√

σ2
0σ

2
1

σ2
1−σ2

0
ln(σ1α0

σ0α1
). Therefore, the likelihood

functions p(rI,Q|s1,0) can be approximated to either Gaussian
or impulsive state as

p(rI,Q|s1,0) ≈

p(rI,Q|s1,0,m=0)︷ ︸︸ ︷
α0√
πσ2

0

e
− (rI,Q−shI,Q)

2

σ2
0 if − k0 ≤ rI,Q − shI,Q ≤ k0

p(rI,Q|s1,0,m=1)︷ ︸︸ ︷
α1√
πσ2

1

e
− (rI,Q−shI,Q)

2

σ2
1 otherwise

,

(14)

where s =
√

Eb

N0
corresponds to s1 and s = −

√
Eb

N0
corre-

sponds to s0. As we can see in (14), the likelihood functions
p(rI,Q|s1,0) contain only one exponential function, then the
log function simplifies the optimum detector. To derive a
closed-form expression for a proposed detector, we start with
a decision boundary analysis to determine the decision rules
given the received observations [rI rQ]. Figure 2 depicts the
regions of likelihood functions according to a state of noise.
We note that the likelihood functions p(rI,Q|s1,0) are centered
at (shI , shQ). According to the values of fading coefficients,
the detector will have one of 16 overlap regions. In the
region R0, the impulsive states are the dominant terms of the

Fig. 2. Overlap regions of binary signals over Rayleigh fading with MCA
noise

likelihood functions for the received samples rI and rQ. Then
the decision rule can be calculated as

ΛR0 =
p(rI |s1,m = 1)p(rQ|s1,m = 1)

p(rI |s0,m = 1)p(rQ|s0,m = 1)

s1
≥
<
s0

1 . (15)

By taking the natural logarithm of both sides, we have

hIrI + hQrQ
s1
≥
<
s0

0 . (16)

In the region R1, the impulsive states are the dominant terms
of p(rI |s1) and p(rQ|s1). The Gaussian and impulsive terms
are the states of p(rI |s0) and p(rQ|s0), respectively. Therefore,
the decision rule is

ΛR1 =
p(rI |s1,m = 1)p(rQ|s1,m = 1)

p(rI |s0,m = 0)p(rQ|s0,m = 1)

s1
≥
<
s0

1 , (17)

which leads to

r2I +
Eb

N0
h2
I + a0hQrQ + b0hIrI − k20

s1
≥
<
s0

0 , (18)

where a0 = 4
√

Eb

N0

σ2
0

σ2
1−σ2

0
and b0 = 2

√
Eb

N0

σ2
1+σ2

0

σ2
1−σ2

0
. Using the

same analytical steps, the decision rules for the remaining
regions can be solved as follows:

r2Q +
Eb

N0
h2
Q − b0hQrQ − a0hIrI − k20 , ∀r ∈ R2 (19)

r2I +
Eb

N0
h2
I−r2Q− Eb

N0
h2
Q+b0(hIrI+hQrQ) , ∀r ∈ R3 (20)

hIrI
σ2
1

+
hQrQ
σ2
0

, ∀r ∈ R4 (21)

r2I +
Eb

N0
h2
I + a1hQrQ + b0hIrI − k20 , ∀r ∈ R5 (22)



where a1 = 4
√

Eb

N0

σ2
1

σ2
1−σ2

0
.

r2Q +
Eb

N0
h2
Q − a1hIrI − b0hQrQ − k20 , ∀r ∈ R6 (23)

hIrI + hQrQ , ∀r ∈ R7 (24)

r2Q +
Eb

N0
h2
Q + a1hIrI + b0hQrQ − k20 , ∀r ∈ R8 (25)

hIrI
σ2
0

+
hQrQ
σ2
1

, ∀r ∈ R9 (26)

r2I +
Eb

N0
h2
I − a1hQrQ − b0hIrI − k20 , ∀r ∈ R10 (27)

r2I+
Eb

N0
h2
I−r2Q− Eb

N0
h2
Q−b0(hIrI+hQrQ) , ∀r ∈ R11 (28)

r2I +
Eb

N0
h2
I − a0hQrQ − b0hIrI − k20 , ∀r ∈ R12 (29)

r2Q +
Eb

N0
h2
Q + a0hIrI + b0hQrQ − k20 . ∀r ∈ R13 (30)

The regions R14 and R15 are assigned to s0 and s1, respec-
tively. As we can see in the above analysis, the proposed
detector has nonlinear decision rules. That is, it differs from
the conventional detector, which has only one linear decision
boundary. Moreover, the proposed combiner approximates the
optimum LRT (9) in different overlap regions with a closed-
form solution.

B. Spherically symmetric noise observations

In this case, the IQ components of noise obesrvations can
be modeled by a bivariate MCA distribution. The two-term
model of (7) can be expressed as [5]

p(zI , zQ) =
α0

πσ2
0

e
−

z2I+z2Q

σ2
0 +

α1

πσ2
1

e
−

z2I+z2Q

σ2
1 . (31)

The proposed approximation in (13) can be applied directly
on (31) as follows:

p(zI , zQ) ≈


α0

πσ2
0
e
−

z2I+z2Q

σ2
0 if z2I + z2Q ≤ k20

α1

πσ2
1
e
−

z2I+z2Q

σ2
1 otherwise

, (32)

where k0 represents the radius of a circle, which depicts the
boundary of equal state densities. The likelihood functions
p(rI , rQ|s1,0) reduce to

p(rI , rQ|s1,0) ≈

p(rI ,rQ|s1,0,m=0)︷ ︸︸ ︷
α0

πσ2
0

e
−

(rI−shI )2+(rQ−shQ)2

σ2
0 if f(rI , rQ) ≤ k20

p(rI ,rQ|s1,0,m=1)︷ ︸︸ ︷
α1

πσ2
1

e
−

(rI−shI )2+(rQ−shQ)2

σ2
1 otherwise

, (33)

where

f(rI , rQ) = (rI − shI)
2 + (rQ − shQ)

2 . (34)

Figure 3 depicts the overlap regions for jointly distributed
received observations. From this figure, each likelihood func-

Fig. 3. The overlap regions for jointly distributed IQ components

tion p(rI , rQ|s1) and p(rI , rQ|s0) consists of two regions
separated by a circle centered at

(√
Eb

N0
hI ,

√
Eb

N0
hQ

)
and(

−
√

Eb

N0
hI ,−

√
Eb

N0
hQ

)
, respectively. There are two overlap

regions, R0 and R1, in the region R0 the decision boundary
can be calculated as

p(rI , rQ|s1,m = 0) = p(rI , rQ|s0,m = 0) , (35)

and it can be solved as

hIrI + hQrQ . (36)

In the region R1, we have the following solution

hIrI + hQrQ . (37)

From (36) and (37), the proposed detector has only one linear
decision boundary. Therefore, the optimum detector for spher-
ically distributed IQ observations can be well approximated by
a conventional detector. This confirms why both detectors have
a similar performance for such a noise distribution.

IV. SIMULATION RESULTS

To validate our analysis, we simulate the bit-error ratio
(BER) of BPSK over a Rayleigh fading channel with MCA
interference. Our simulation is verified in different impulsive
channels: a near Gaussian channel of (A,Γ) = (1,≫ 1), a
moderate impulsive channel with (A,Γ) = (0.1, 0.01), and
strong impulse noise with (A,Γ) = (0.01, 10−4), which are
within the practical range of A ∈ [10−2, 1] and Γ ∈ [10−6, 1]
as specified in [10]. In simulating an MCA density, we truncate
our model to the first 10 terms, which closely approximates
the full MCA density.
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Fig. 4. Performance comparison over Rayleigh fading for i.i.d. noise
observations

Figure 4 shows the BER performance of the proposed
nonlinear detector, the optimum detector, and the conventional
coherent detector for i.i.d. IQ components of impulse noise. As
we can see in this figure, when the noise is almost Gaussian, all
detectors have the same performance. As the channel impul-
siveness increases, the performance of the optimum detector
and the proposed nonlinear one improve significantly. This
improvement exposes an important property of the optimum
detection in impulse noise. The optimum detector extracts
useful information of received impulses by considering non-
linear decision boundaries, even if the impulses are strong and
have an opposite sign to the transmitted signal. Although the
proposed detector is designed for a two-term noise model (13),
it shows an almost optimum performance.

In Fig. 5, we compare the BER performance of the optimum
and conventional coherent detectors when the IQ noise compo-
nents are spherically distributed. We note that both detectors
have the same performance, which confirms our analysis in
Section III-B.

V. CONCLUSION

In this paper, we considered the detection of binary signals
over Rayleigh fading channel in the presence of Middle-
ton Class-A (MCA) interference. To reduce the analysis of
optimum detector, we proposed a further approximation of
the MCA density by estimating the states of noise at the
receiver. Using this model, we derived the nonlinear decision
rules when the noise observation has independent identically
distributed (i.i.d.) IQ components. In the case of spherically
distributed IQ components, we approved that the conventional
coherent detector is still optimum. Our analysis evaluation is
confirmed by simulation and we showed that the proposed
detectors provide an almost optimum performance in different
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Fig. 5. Performance comparison over Rayleigh fading for spherically
distributed noise observations

impulse noise environments.
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