An Extension of the Levinson-Durbin Algorithm
for the Inversion of Toeplitz Matrices

An extension of the well-known Levinson-Durbin al-
sgorithm for the inversion of Toeplitz matrices is given. The
structure is tree-like, included in and making usc of the con-
ventional recursions of the method. ts use is restricted to the
case of nonsingular leading principal submatrices.

Eine Erweiterung des Levinson-Durbin-Algorithmus
zor loversion von Toeplitz-Matrizen

Es wird cine Erweiterung des bekannten Levinson-Durbin-
Algorithmus vorgestellt, welche die Inversion von Toeplitz-
Matrizen ermiglicht. Hierbei dirfen keine Bingularititen in
den betrachteten Untermatrizen auftreten. Das Verfahren
weist eine Baumstruktur auf und verwendet lediglich die
iiblichen Operationen des herkdmmlichen Algorithmus.

1. Introduction

Levinson’s Algorithm has been introduced in 1947
[1], shor#ly after the work of Wiener [2], a8 a method
for the solution of discrete least-squares estimation
problems. In 1960 it was rediscovered and refined by
Durbin {3].

The algoerithm solves Toeplitz systems fnot only
symmietric or Hermitian ones as stated ih [4]) that
appear in several disciplines like inverse scattering,
estimation, linear prediction and the decoding of
Reed-Solomon codes. But its use is restricted to cases,
where all leading principal submatrices are known to
be nonsingular (not taking works of Pombra, Lev-Ari
and Kailath {7] into consideration).

Here an cxtension of the algorithm is given, that
ot only allows to solve Toeplitz systems but invert
Toeplitz matrices (under the condition mentioned).

2. The Original Levinson-Durbin Algorithm

! As an example for a Toeplitz system of equations
the so-called ‘Yule-Walker equations’ are considered.
These are given by

R, R, - - R,
R, Ry -
(o Ap g Al - =
R,
R_, R_,R,
R

=(Rl,.0,....00 (1)

! This relies partly on [6].

where R. labels the mean-square error and R, is the
{m+1) x (m+ 1)-autocorrelation-matrix.

The recursions of the algorithm start with the short-
est possible length of the vector 4, with the system

(1) (Rp) = (Ro) = (R}), @

bearing in mind that the shortest predictor with ac-
ceptable mean-square error has to be determined.

This means, the method starts at the upper left or
even at the lower right corner of the coefficient matrix.
{Remark: The Berlekamp-Massey algorithm, on the
contrary, begins with the lower left or upper right
corner.)

The quite reasonable procedure to incregse the
length of the vector and the gize of the matrix is to
append a zero to the right of the vector 4 (no length
change of the predictor). Considering the system in (1),
an enlargement in this way yields

(1, Ay gsoees Ao (R s ) = (RS, 0,...,0,2,).  (3)

In the case of o, =R,y + ZA,“R,MH#O a sec-

ond solution vector that is determmed in parallel by
leftsided adding of zeros, is used to eliminate thie com-
ponent. The second solution vector, labelled B, having
a reverse structure, leads to

(0: Bm.n: LEEY] Bm,lsl)(Rm+1)=(ﬁM’ 0’

for leftsided supplement by zero.
Elimination of the component a,, is now achieved
by combining both vectors:

S0.R) 4

(17Am+1.1"_‘"Am+1.ni+l)= )
=(L, Ap1s-or Am,m: O+ K50, B,y s ooy By 15 14

where the factor K%, has to be chosen as
K:l= _am(.R:u)-l' (6)

Correspondingly, f,, is forced to zero by
(Bm+1.m+1""!Bm+1,1’ 1)= (7)
=(0,B,, pe... By DHKE (1L Ay o oes Ay s O,

if K¥ equals

Ki=—Bn(Ry)"". 8)

Hence, recursions for RY, and R, are obtained as fol-
lows:
RI" =R}, — %, B (R},) 77, 9

m 1" — XAy ﬁm(Rl) 1 “O)
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Regarding that the initialisation yields
o=Ro=R,, (11)

the equality of RY, and R’ follows from (9) and (10).
Now, after explaining the original LDA, the ncw
extension for the inversion of Toeplitz matrices is de-
scribed.
3. The Extended LDA

Before proceding to the extension itself, an impor-
tant property of Toeplitz matrices should be men-
tioned. Toeplitz matrices belong to the so-called *per-
symmeiric’ matrices {see e.g. [4] or {5]) with a
symmetry about its antidiagonal. It can be shown,
that their itrverse matrices are persymmetric, too. (The
proof vees the fact that a matrix 4 is persymmetric if
and only if J4J= A" with an exchange matrix J hav-
ing all ones along the cross-diagonal and zeros else-
where.)

To come to the extended LA, the main openations
of the usual LDA are pointed sut more clearly. These
are:

Enlargement by adding a zero to the right:

The right side of the system of equations remains
unchanged and a new component is appended
righthand. Represented graphicalty:

{+~ previous right side —, new component).

Enlargement by adding a zero to the left:

The right side of the system of equations remains
unchanged and a new component is appended left-
hand. Represented graphically:

(new component, « previous right side —).
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This means that the previous right side either appears
flushed left or flushed right. By combining with the
vectors A or B of the conventional LDA, it is possible
to obtain a right side that only has one component not
equal to zero. By normalizing to that component one
achieves one row of the inverse Toeplitz matrix. A
possible procedure to obtain the whole inverse is given
in form of a block diagram in Fig. 1.

Rﬁ

1 («,0,0,01 I I i0,+ 000 ]I
2

Y

L(*.D.U,O‘U') anﬂ,ﬂ,ﬂ] IE (0.0,+,0,0} H {0,0,0,+0) H (0,000,

(0,0,4,0)

L

Fig. 1. Schematic diagram of the extended Levinson-Durbin-
Algorithm.

The conventional LDA is to be found on the left and
right of the diagram (vertical arrows). Arrows oriented
to the right mark lefthand zero extension (%) and
those onsated e the loft mark righthand zero exien-
sion {#). The new components aze eliminated by usmg
the solutions of the conventional LDA on the same
level.

For illustration, an example for the inversion of a
4 x 4-matrix over GF (11) is given. Pay also attention
to the fact that the resulting inverse is persymmetric
but not Toeplitz.

Example
10 0 4 ©
=15 % 0 o
S 9 2 10
(1) (10) = (10)
(1,0)(12 1g)=(10.0) (0,1)(12 18):(2,10)

.

(1.0) = & (0. 1)=(1,0)

0. 1) ~ 1'2'6 (LLO)=(2. 1)

10
2

0
10

(1.0)( )=(10.0) (2,1)(

.

10 )=(O, 10)

5

0
10
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10 0 4 10 0 4 10 0 4
0.0l 2 10 ol=gooslorol2 10 of=c10.0] ©.20]2 10 0]=010)
9 2 10 9 2 10 9 2 10
(1.0.0) — 5(0.2.1) =(1.8.4) | (0.1.0) ~3(1.8,4) =(6.5.2) 0.2.1)— £ (1.0,0)=(2,2, 1)
0 0 4 10 0 4 10 0 4
asal2 10 ofl=m00 652|210 oj=0100] 220|210 0/=0.07
9 2 10 9 2 10 9 2 10
(1.8.4,0) 4 =(7.0.0,10) 6.5.2.004=(0,10,0.9
(1.8,4.0)~12(0.2,2, 1)=(1.2.9.8) | (6.5.2,0)-3(@4. 1.7.1)=(5.2.3.8)

(1,2.9.8) 4=(3.0,0.0)

(5.2,3.8)4=1(0,10,0.0)

0,6,5.2) A=(1,0,10.0)
0.6,52)-1(1.2.9,.8)=(7.9.2.3)

(0.2,2,1)4=(5,0,0.7)
0.2,2,1)-2(1,8,400=(4. 1.7. 1)

(7.9,2.31 4=(0.0,10,0)

4.1.7.1) 4=(0.0.0,3)

13 23 93 83 4 8 310

. 1510 210 310 g0} o 9 8 3
=4 =740 910 210 310)7V4 2 9 8
43 13 73 13 54 6 4
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