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22.1.4 Ungerböck’s trellis-coded modulation (TCM) . . . . . . . . . . . . . . . . . 315

22.1.5 Trellis Shaping, Shell Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 315

22.1.6 Basics of finite fields (Galois fields) . . . . . . . . . . . . . . . . . . . . . . 315

22.1.7 Reed-Solomon codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

22.1.8 Constructing long codes from short ones . . . . . . . . . . . . . . . . . . . 319

22.1.9 Trellis structures of block codes . . . . . . . . . . . . . . . . . . . . . . . . 323

22.1.10Multilevel Coded Modulation . . . . . . . . . . . . . . . . . . . . . . . . . 324

22.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

VII



Literature

Lecture notes

Dorsch, B.: Codierungstheorie, TH Darmstadt.

Calderbank, A.R.: Bandwidth Efficient Communication, Princeton University, 1993.

Books on channel coding

Johnson, S. J., Iterative Error Correction, Turbo, Low-Density Parity-Check and Repeat-Accumulate

Codes, Cambridge University Press, 2010, ISBN 978-0-521-87148-8.

Declercq, D., Fossorier, M., and Biglieri, E. (ed.), Channel Coding, Theory, Algorithms,

and Applications, Elsevier Academic Press, 2014, ISBN 978-0-12-396499-1.

Lin, S., Ryan, W., Channel Codes: Classical and Modern, Cambridge University Press, 2009,

ISBN 978-0521848688.

Lin, S., Costello, D.J., Error Control Coding, Pearson, 2004, ISBN 978-0130426727.

Richardson, T., Urbanke, R., Modern Coding Theory, Cambridge University Press, 2008,

ISBN 978-0521852296.

Blahut, R.E., Theory and Practice of Error Control Codes, Addison Wesley, Reading, Mas-

sachusetts, 1983, ISBN 0-201-10102-5.

MacWilliams, F.J., Sloane, N.J.A., The Theory of Error-Correcting Codes, North Holland,

Amsterdam, 5. Aufl. 1986, ISBN 0-444-85193-3.

Dholakia, A., Introduction to Convolutional Codes with Applications, Kluwer, Boston, 1994,

ISBN 0-7923-9467-4.

Clark, G.C., Cain, J.B., Error-Correction Coding for Digital Communications, Plenum Press,

New York and London, 3. Aufl. 1988, ISBN 0-306-40615-2.

Peterson, W.W., Weldon, E.J., Error-Correcting Codes, MIT Press, Cambridge, Massachusetts,

London, England, 6. Aufl. 1981, ISBN 0-262-16039-0.

Heise, W., Quattrocchi, P., Informations- und Codierungstheorie, Springer, Berlin, 2. Aufl.

1989, ISBN 0-387-50537-7 und 3-540-50537-7.

Friedrichs, B., Kanalcodierung. Grundlagen und Anwendungen in modernen Kommunikation-

ssystemen, Springer, Berlin, 1995, ISBN 3-540-59353-5.

Bossert, M., Kanalcodierung, Teubner, Stuttgart, 1992.

Michelson, A.M., Levesque, A.H., Error-Control Techniques for Digital Communication, Wi-

ley, New York, 1985, ISBN 0-471-88074-4.

Blahut, R.E., Algebraic Methods for Signal Processing and Communications Coding, Springer,

New York, Berlin, 1991, ISBN 0-387-97673-6 und 3-540-97673-6.

VIII



Mc Eliece, R.J., Finite Fields for Computer Scientists and Engineers, Kluwer, Boston, 1987,

ISBN 0-89838-191-6.

Viterbi, A.J., Omura, J.K., Principles of Digital Communication and Coding, McGraw-Hill,

Tokyo, 1979, ISBN 0-07-067516-3.
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Chapter 1

Channels and channel models, metrics,

linear block codes primer

This first chapter provides an introduction into the topic, starting from a distinction from neigh-

boring fields. Some typical channels will be described, metrics will be defined as distance measures,

and based on simple linear block codes, the basic block-coding definitions will be compiled. Fol-

lowing this chapter, however, block codes will first be put aside and convolutional codes will be

treated, instead. A comprehensive treatment will then follow after an introduction into the nec-

essary algebraic framework in Chapter 7. Convolutional codes can be explained without the tools

of discrete algebra and thus, only for didactic reasons, these codes are treated first.

1.1 Distinction between Channel Coding

and related topics

Very often, the term ‘coding’ is used with a different meaning. A clear definition and distinction

to other topics is therefore put at the beginning of this channel coding text. We distinguish the

following four areas that have either similar names or some other relation:

1. Line coding

2. Source coding

3. Channel coding

4. Cryptology

Line coding has been in practical use for a very long time, almost from the beginning of digital

communications over AC-coupled copper pairs. Line coding provides the required spectral shap-

ing, especially in the form of a spectral null at DC. A manifold of block- and sequence-oriented

procedures have been developed. This will not be the focus of this work. Nevertheless, the cor-

responding metric will be defined in Section 1.4, and in Chapter 6.3, line coding will serve as
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a possible application of Trellis-Shaping. A comprehensive treatment of line codes can, e.g., be

found in [1].

Source coding is a means of reduction of redundancy or irrelevance in a signal or in data. On one

hand, such measures comprise methods that do not modify the contained information, such as the

well-known Huffman algorithm [2] and the variants of the Lempel-Ziv-Algorithms [3–5], which are

widely used under names like ‘compress’, ‘zip’, or ‘gzip’ and are part of almost every computer

software installation.1 On the other hand, there are procedures that take the subjective properties

of the recipient into account. Irrelevant signal components are eliminated, which is not regarded

as disturbance or at least is considered to be tolerable. Audio (speech, music) and video coding

algorithms are widely used in modern transmission systems. [7] provides a collection of audio and

video-coding algorithms. More recent books are [8–10] for audio and [11, 12] for video coding.

For a information-theoretic treatment of source coding, the reader is referred to [13].

Channel coding provides error protection by means of a suitable addition of redundancy to the

signal or data. At first sight, this is conterproductive to Source Coding. Source coding eliminates

less structured redundancy, whereas channel coding adds redundancy in such a structured way

that it allows for error detection and correction. The different algorithms for channel coding will

be treated in this book. We divide into block- and sequence-based methods,i.e. , block and

convolutional codes.

All different kinds of coding need not be seen as separate and independent. Actually, there are

tight relations between them. Often, it proves to be more efficient, to combine source and channel

coding or to provide spectral shaping, i.e., line coding, by means of special channel coding.

Cryptology appears to be somewhat aside from signal and date transmission. Nevertheless, there

exist strong links between cryptology and channel coding. Both disciplines make use of the same

mathematical bases, the discrete algebra, and, they even use the same algorithms. However, the

aim of cryptology is not related to the reduction or introduction of redundancy. Cryptology is

devoted to the secure transmission of information, avoiding unauthorized access of third parties,

and the authentification. With crypto algorithms in place, there exist additional requirements for

source and channel coding to ensure that signal redundancy does not allow for easier decryption.

An introduction is given by [14–16].

In this book, cryptographic methods will not be treated and will be considered as part of the

source and destination.

1.2 Components of a transmission system

Figure 1.1 shows the succession of source coding, channel coding, and modulation in a transmit

path. This should not lead to the impression of separate and independent components. A common

design of source and channel coding and of channel coding and modulation (coded modulation) is

indeed usually the better approach. These aspects will also be discussed in this book. Especially,

the chapters on convolutional codes and the chapters on block codes will be concluded with the

corresponding coded modulation schemes.

1As more recent work, a paper by Willems et al. [6] may be mentioned.
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Figure 1.1: The transmission path

1.3 Channels and their modelling

Before we proceed to channel coding itself, this section provides some basic knowledge of typical

exemplary channels.

1.3.1 AWGN (Additive White Gaussian Noise)

This is the most commonly used channel idealization. It is assumed that additive noise samples

are the output of a random process that has a Gaussian density and whose samples are statistically

independent.

The Gaussian density is known to be

p(r|v) = 1
√

2πσ2
n

e
− (r−v)2

2σ2
n . (1.1)

σn can be written as σn = 1/
√

2Es/N0 when normalizing the signal energy. For 2-PSK, this would

mean ±1 instead of ±√Es. N0 denotes the one-sided power spectral density. The derivation of

this density and the corresponding standard deviation at the output of a ‘matched’ filter can be

found in almost every standard book on transmission systems and will therefore not be handled

here. Instead we refer to, e.g., Gitlin et al. [17], Blahut [18], and Lee, Messerschmitt [19].

1.3.2 BEC (binary erasure channel)

The binary erasure channel models errors at known positions. It is suitable, e.g., to describe

packet loss in data networks. It is also used a lot in proofs for LDPC codes, since they become

more tractable and often, results appear transferable to other channels. Figure 1.2 shows the

BEC, where ∆ denotes the erasure.
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Figure 1.2: Binary erasure channel

1.3.3 BSC (binary symmetrical channel)

The binary symmetric channel as given in Fig. 1.3 is the typical channel model of binary trans-

mission without any analog information, i.e., at the output of a binary quantizer.

0

1

0

1

1− p

1− p

p

p

Figure 1.3: Binary symmetric channel

In case of an underlying Gaussian channel (AWGN), a source with a binary signal alphabet

{+√Es,−
√
Es} (normalized {+1,−1}), and a hard quantization with a threshold in the middle,

we obtain using the densities

P (r| ± 1) =
1

√

2πσ2
n

e
− (r∓1)2

2σ2
n

the error probability p of the corresponding binary symmetric channel as

p =

∫ ∞

0

p(y| − 1)dy =

∫ ∞

0

1
√

2πσ2
n

e
− (y+1)2

2σ2
n dy =

1√
π

∫ ∞

1√
2σ2

n

e−t
2

dt

=
1

2
erfc

(
1√
2σn

)

= Q

(
1

σn

)

=
1

2
erfc

(√

Es

N0

)

= Q

(√

2Es

N0

)

(1.2)
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with

erf(x) =
2√
π

∫ x

0

e−t
2

dt , (1.3)

erfc(x) = 1− erf(x) =
2√
π

∫ ∞

x

e−t
2

dt , (1.4)

Q(x) =
1√
2π

∫ ∞

x

e−t
2/2dt =

1

2
· erfc(x/

√
2) . (1.5)

When transmitting a word of length N over the binary symmetric channel, the probability of e

erroneous bits at arbitrary positions is

p(e) =

(
N

e

)

pe(1− p)N−e . (1.6)

In case a code would be able to correct t errors, the probability of error-free correction would be

pcorr =
∑

e≤t

(
N

e

)

pe(1− p)N−e . (1.7)

Correspondingly,

pnocorr = 1− pcorr =
∑

e>t

(
N

e

)

pe(1− p)N−e . (1.8)

is the probability of not being able to correct, i.e., the block-error probability .

1.3.4 Gilbert-Elliott model of a channel with memory

The Gilbert-Elliott model shown in Fig. 1.4 is a Markovian model of first order and is specified

by transition probabilities between two states that are usually denoted as ‘good’ or ‘bad’. It is

a suitable simplifying model for a mobile communications channel with shadowing and extreme

changes between very good channel conditions with a low bit error probability pbG and a very bad

channel state with a bit error probability of pbB near 0.5 hat. The states thus represent different

bit error probabilities.

Markovian models are described by means of their transition matrix:

(
pG(t0 + T )

pB(t0 + T )

)

=

(
1− q1 q2
q1 1− q2

)(
pG(t0)

pB(t0)

)

, (1.9)

with the probabilities pG(t) and pB(t) that the channel is in state G and B, respectively, at time

t.

Such n× n-transition matrices fulfil
∑n

i=1 qij = 1, where qij are the transition probabilities.
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Figure 1.4: Gilbert-Elliott model

The average burst length, i.e., the average time to remain in state B is

∞∑

i=0

1 · (1− q2)
i =

1

1− (1− q2)
= 1/q2 . (1.10)

The following averaging provides an alternative derivation.

∞∑

i=0

(i+ 1) · q2 · (1− q2)
i = 1/q2 (1.11)

Correspondingly, the average gap length, i.e., the average burst separation is 1/q1.

The average bit error probability is given by

p =

1
q2
pbB + 1

q1
pbG

1
q2
+ 1

q1

=
q1pbB + q2pbG

q1 + q2
(1.12)

1.3.5 Fading channels

After having described a simplifying model of a channel with memory that may be suited as a

simple model of a fading channel, we will now shortly derive the distribution of so-called small-

scale fading. These are the statistics that result from a manifold of scattered components and

leads to faster variations. Shadowing and changes that depend on larger objects or the landscape

are denoted as large-scale fading. It follows a log-normal density and will not be described in here.

A more detailed treatment of the mobile channel can be found in [20–22].

In case of many scatter paths that are combined at the receiver, we obtain the received signal

r(t) =
∑

i

αi(t) cos(ωct− θi(t))

= aI(t) cos(ωct) + aQ(t) sin(ωct) . (1.13)

with

6



aI(t) =
∑

i

αi(t) cos(θi(t))

aQ(t) =
∑

i

αi(t) sin(θi(t)) θi(t) = ωc · τi(t)

Assuming αi(t) to be iid (independent and identically distributed) and θi(t) to be equally dis-

tributed within the interval [0, 2π], it follows from the central limit theorem that aI(t) and aQ(t)

will be statistically independent zero mean Gaussian random variables with variance σ2
a.

The probability density of the fading amplitude (envelope)

a =
√

a2I + a2Q (1.14)

results in

pF (a) =
a

σ2
a

e
− a2

2σ2
a . (1.15)

In the following, a short proof is provided.

Proof: The proof is based on the transformation rule

p(y = f(x)) =
∑

x:x=f−1(y)

p(x) /

∣
∣
∣
∣

df(x)

dx

∣
∣
∣
∣

(1.16)

and the fact that the sum of two random variables is described by the convolution of their densities.

Squaring of the I and Q components y = f(x) = x2 −→ df/dx = 2x = 2
√
y yields

1
√

2πσ2
a

· 2 · 1

2
√
y
· e−

y

2σ2
a , y ≥ 0 (1.17)

The convolution of the densities results in

∫ y

0

1

2πσ2
a

1√
t
e
− t

2σ2
a · 1√

y − t
e
− y−t

2σ2
a dt =

1

2πσ2
a

e
− y

2σ2
a

∫ y

0

1
√

t(y − t)
dt =

=
1

2πσ2
a

e
− y

2σ2
a [− arcsin(1− 2t/y)]t=y

t=0
︸ ︷︷ ︸

=π

=

=
1

2σa
e
− y

2σ2
a , y ≥ 0 . (1.18)

A further application of the transformation rule with a = f(y) =
√
y −→ df/dy = 1/(2a) yields

the Rayleigh density.
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pF (a) =
a

σ2
a

e
− a2

2σ2
a . (1.19)

The phase of the fading Φ = arctan
aQ
aI

is equally distributed within the interval [0, 2π].

If there should be a strong direct path (line of sight, typical for maritime mobile communication),

the so-called Rice Fading is obtained. The fading amplitude follows to be

a =
√

(A+ aI)2 + a2Q . (1.20)

It can be shown that

pF (a) = 2a(1 +K)e(K+a2(1+K))I0(2a
√

K(K + 1)) with I0(x) =

∞∑

k=0

(
xk

2kk!

)2

. (1.21)

I0 is the modified Bessel function of first kind and order zero and the Rice factor K = A
2σ2

a
describes

the share of the direct path. The phase will not be equally distributed any more.

1.3.6 Some other channels

To mention just a few other channel conditions, there are many non-white noise environments like

the one due to NEXT and FEXT(Near-End Crosstalk and Far-End Crosstalk) between wire pairs

in twisted-pair cables. Due to common clocks, such disturbances may even have cyclostationary

properties.

Impulse noise caused by relays, electrical engines, lightning, etc., are a counterpart to Fading.

In Fading the signal amplitude suddenly drops, whereas with impulse noise, the noise amplitude

suddenly becomes very high. Both disturbances may lead to error bursts.

Jamming denotes an intentional impairment by short-time or narrow-band disturbers.

Furthermore, there are disturbances due to quantization and nonlinearities.

1.4 Metrics

In order to take different channel properties into account, corresponding distance measures have

been defined that are called metrics, which is not meant in a mathematical strict sense. Later,

we will discuss the choice of a suitable metric for special applications. In this section, we will just

present the most important ones and intuitively, their possible application should become evident.

The mathematical metric definition would be

8



Definition 1.1 Elements x, y, z, . . . from a set M , denoted as a metric space, a non-negative

number D[x, y] is associated with that must have the following properties

1. D[x, x] = 0,

2. D[x, y] = D[y, x] 6= 0, if x 6= y (commutativity),

3. D[x, z] ≤ D[x, y] +D[y, z] (triangular inequality).

D[x, y] is denoted as distance.

X
Y

Z

For our purposes, the fulfillment of the triangular inequality is usually not important. We thus

still call a distance measure a metric, even if the triangular inequality is not fulfilled.

1.4.1 Euclidean distance

The Euclidean distance fulfills all the axioms of a metric and is thus a real metric in strict

mathematical sense. The squared Euclidean distance is contained in the Gaussian density. The

probability of a certain received value is then dependent on the (squared) Euclidean distance from

the transmitted symbol.

Definition 1.2 The Euclidean distance dE between two vectors a and b of length n with com-

ponents ai, bi ∈ R is given by

d2E =
i=n∑

i=0

(ai − bi)
2 (1.22)

Complex components ai and bi can be regarded as twice as long vectors with real components.

1.4.2 Hamming distance

In case of bursty noise, where only the number of disturbed symbols is of interest, or if a (binary)

hard quantization is carried out at the receiver, the Hamming distance will be the suitable distance

measure.

Definition 1.3 The Hamming distance dH between two vectors a and b of length n with com-

ponents ai and bi that may be elements of an arbitrary number field, are given as the number of

different components.

(A somewhat more formal description would be the cardinality dH = |M | of the set M = {j|aj 6=
bj}.)

Definition 1.4 The Hamming weight wH of a vector is the number of components different

from zero.

9



(More formal: wH = |M |, with M = {j|aj 6= 0})

1.4.3 Lee distance

To understand the meaning of the Lee distance, one should think of signal points equally spaced

on the unit circle, similar to a PSK. For this signal set, it can be useful to have a measure for the

shortest distance between two points given in segments of the circle.

Definition 1.5 Let a set M with cardinality |M | = q be completely ordered with elements a0 <

a1 < a2 < ... < aq−1. The Lee distance is then given as

d1L(ai, aj) = min{|j − i|, |q + i− j|, |q + j − i|} , ai, aj ∈ M . (1.23)

For vectors w and v of length n with components wk, vk ∈M the Lee metric is then given by

dnL(w,v) =

n∑

k=1

d1L(wk, vk) . (1.24)

For illustration, one may determine the Lee distance of two points in Fig. 1.5.
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e6
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e2

Figure 1.5: Illustration of the Lee distance

1.4.4 Product distance

The so-called product distance shows up in the computation of the pairwise error probability

between two valid code sequences (for Fading channels).

Definition 1.6 Let L be the length of an error event (burst) and let a, b be two valid code se-

quences. The product distance is then defined as
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d2Π =

L∏

k = 1
dk 6= 0

d2k(ak, bk) (1.25)

The product distance thus is the L′th power of the geometric mean of the quadratic Euclidean

distances of L′ different sequence components.

1.4.5 Running Digital Sum (RDS)

This metric is applied in line coding and is thus a little aside from the other metrics listed before.

Since line coding will be handled together with channel coding, it will nevertheless been mentioned

here.

The discrete Fourier transform (DFT) is given by

Fk =
n−1∑

i=0

fie
−j 2π

n
ik (1.26)

The power at DC, i.e., at f = 0 is then given by

P (0) =
1

n2
F 2
0 =

1

n2

[
n−1∑

i=0

fi

]2

(1.27)

Definition 1.7 The Running Digital Sum RDS(n) after n symbols is defined to be

RDS(n) =
n−1∑

i=0

fi (1.28)

Theorem 1.1 A spectral null at DC (f = 0) is obtained if the Running Digital Sum does not

grow without limits.

This follows directly from (1.27) and taking the limit n→∞: if RDS≤ S

lim
n→∞

1

n2

[
n−1∑

i=0

fi

]2

≤ lim
n→∞

1

n2
S2 = 0 (1.29)

The RDS however does not have an important property of a metric. It has a sign, i.e., it is not

non-negative. Therefore, the variance of the RDS may be used as a metric, instead. This will

then be minimized.

Zeros at other positions of the power density spectrum can easily be obtained by applying the

shift properties of the Fourier transform to the metric specification.
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1.5 Basic definitions and some important block codes

Selten habt ihr mich verstanden,

Selten auch verstand ich euch,

Nur wenn wir im “Code” (Kot) uns fanden,

So verstanden wir uns gleich.

Heinrich Heine

Ye could not understand mine ire,

Nor I the tales that ye did tell,

But when we met within the “Code” (mire),

We knew each other very well.

1.5.1 First basic coding facts

Definition 1.8 A codeword of a block code with length N consists of K information symbols

Ij ∈ IF and M parity symbols Pj ∈ IF, where IF is an arbitrary number field. The ratio R = K/N

is the code rate.

(Remark: Codes over groups or rings will not been described.)

I0 I1 I2 · · · IK−1 P0 P1 · · · PM−1
︸ ︷︷ ︸

N

An information block will thus be extended by a redundant part by applying a linear or even

nonlinear operation. This should allow the correction (or just detection) of errors that may have

occurred during transmission. We speak of a systematic code if the information is directly part

of the codeword, without any modification.

The most important code parameter is its minimum Hamming distance.

Definition 1.9 The minimum Hamming distance of a code C is given by

dHm = min
ci, cj ∈ C
i 6= j

dH(ci, cj) . (1.30)

Practically, especially such codes are applied that have a linear relation between information and

redundancy.

Definition 1.10 A linear code C with codewords ci ∈ C, whose components are elements of the

field IF have the property

a · ci + b · cj ∈ C , a, b ∈ IF (1.31)
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The distance properties, i.e., the distances to other codewords are thus independent from the

actual reference codeword. This leads to an important property of linear codes:

Theorem 1.2 The minimum Hamming distance dHm between the codewords of a linear Code C
is equal to its minimum Hamming weight wHm.

dHm = min
c6=0

wH(c) = wHm (1.32)

Proof:

dHm = min
ci, cj ∈ C
i 6= j

dH(ci, cj) = min
ci, cj ∈ C
i 6= j

dH(ci − cj, 0) = min
c ∈ C
c 6= 0

wH(c) (1.33)

Theorem 1.3 A code with the minimum distance dHm allows for the correction of ⌊(dHm−1)/2⌋
errors. For even dHm, (dHm − 2)/2 errors can be corrected. Additionally, dHm/2 errors can be

detected.

For illustration, see Fig. 1.6.

dH = 3

dH = 4

Figure 1.6: Illustration of the correction capabilities dependent on the minimum distances

Theorem 1.4 Singleton bound [23]: The minimum distance and the minimum weight of a

linear (N,K) code is limited by

dHm = wHm ≤ 1 +N −K = 1 +M . (1.34)
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Codes are usually specified by the three parameters (N,K, dHm).

Proof: Let the minimum weight of a codeword be dHm.

We now consider a systematic codeword with just one information symbol different from zero and

N −K parity symbols (see Fig. 1.7). We obtain the maximum weight to be 1+N −K. (qed.)

N −KK
???????0..........010...............0

Figure 1.7: Illustration of the Singleton bound

The binary parity-check code is a simple example, where a mod-2 sum of all information bits is

attached as an even parity bit. At the receiver, a single error (or an odd number of errors) can

easily been detected by just adding up all received bits modulo 2.

1.5.2 Matrix description of the coding and the decoding of linear block

codes

Since the relation between parity and information part of a codeword should be linear, it should

be possible to check if a word belongs to the code by just applying M equations. To this end, a

parity-check matrix H is defined.

Definition 1.11 The parity-check matrix H is an (N −K)×N matrix that fulfills the following

equation for all codewords c from a code C.

H










c0
c1
c2
...

cN−1










= HcT = 0 . (1.35)

The parity-check matrix of the parity code would be H = (1, 1, 1, . . . , 1).

Let us now consider a code that cannot just be used to detect an error, but also is able to correct

a single error – the Hamming code. We are only discussing the Hamming code of length N = 7.

A possible parity-check matrix would be

H =





0001111

0110011

1010101



 . (1.36)

In this formulation, the result of the parity-check equations, denoted as syndrome, has the nice

property that the error position of a single error is obtained in binary notation.

Let, e.g., r = (1, 0, 0, 1, 0, 0, 0) be a received word. We then obtain
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sT = HrT =





0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1


















1

0

0

1

0

0

0














=





1

0

1



 mod 2 . (1.37)

Note that inverting bit 5 = 1012 leads to a zero syndrome. If there is just one error, then the

location is directly specified by the syndrome.

The parity-check equations can also be graphically illustrated, as shown in Fig. 1.8.

r2

r6

r4r5

r3

r0r1

Figure 1.8: A graphical illustration of the parity-check equations of the Hamming code of length

N = 7

Each circle stands for a parity-check equation. The error location can be seen from the overlap of

non-zero parity-check equations.

We have seen that the syndrome follows from a linear combination of the columns of H. The

columns will be selected by the error locations. Superimposed valid codewords will be eliminated

by the parity-check matrix. To be able to correct t errors, i.e., to ensure a minimum Ham-

ming distance of dHm = 2t + 1, a number of dHm − 1 = 2t columns of the H matrix have to be

linearly independent. With less linearly independent columns, it would be possible to move from

one valid codeword to another with a smaller number of errors. This means, in other words, that

a valid codeword with the minimum weight dHm leads to a linear combination of dHm columns of

the parity-check matrix. This linear combination should result in the zero vector. This should,

however, not be the case with a lower weight. Otherwise, this would also be a valid codeword and

would mean that the code would have a lower minimum distance = minimum weight.
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1.5.3 Equivalent representations of the parity-check matrix

It is important to note that the parity-check matrix can appear in a manifold of equivalent rep-

resentations. Since valid codewords always lead to a zero syndrome in (1.35), an equivalent

representation can be obtained by linearly combining the rows of the parity-check matrix. The H

matrix of the Hamming code in (1.36) may, e.g., be modified by the following linear combinations:

I + II −→ I

I + III −→ II

I + II + III −→ III

leading to the systematic form

0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

= (A | I ) (1.38)

A identity matrix I appears on the right-hand side. We obtain a coding rule that allows to derive

the parity positions 4-6 from the information positions 0-3.

Furthermore, the columns of the H matrix may be exchanged. However, this comes with a

permutation of the codeword positions. A cyclic representation can be obtained as follows:

1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1

(1.39)

Definition 1.12 A code C is called cyclic, if for (c0, c1, . . . , cN−1) ∈ C also follows (c1, c2, . . . , cN−1, c0) ∈
C.

Up to now, we only discussed the Hamming code with parameters (N = 7, K = 4, dH = 3). The

properties of binary Hamming codes of other lengths are gathered in the following table.

Properties of Hamming codes

Length: N = 2M − 1

Number of parity positions: M

Number of information pos. (dimension): K = 2M − 1−M

Minimum Hamming distance: dHm = 3

The parity-check equations relate parity-check and information symbols (bits). e.g., we obtain

from the parity-check equations with the H-Matrix from (1.38)
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c4 = c1 + c2 + c3

c5 = c0 + c2 + c3 (1.40)

c6 = c0 + c1 + c3

Let ci, i = 0..3 be the information positions taken to be the unit vectors. We then obtain the four

codewords

c0 c1 c2 c3 c4 c5 c6
1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

(1.41)

These are also the four linearly independent code vectors that span the vector subspace of the

code.

Theorem 1.5 The code C of length N and dimension K results from a linear combination of

K linearly independent codewords. These linearly independent codewords constitute the so-called

generator matrix

Hence, codewords are obtained by the product

c = iG (1.42)

In systematic representation, one can easily derive the corresponding G-Matrix for a given H-

Matrix:

Theorem 1.6 Let a parity-check matrix H be given in the form H = [A|IN−K]. Then the corre-

sponding generator matrix G follows to be G = [IK| −AT].

Proof: From HcT = 0 =⇒

[A|IN−K ]






c0
...

cN−1




 = 0






cK
...

cN−1




 = −A






c0
...

cK−1




 = −A






i0
...

iK−1






With
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c0
...

cK−1




 = IK






i0
...

iK−1




 ,

we obtain






c0
...

cN−1




 =

[
IK

−A

]






i0
...

iK−1






Taking the transposes, we finally get

c = iG with G = [IK| −AT] .

1.5.4 Equivalent representations of the generator matrix

Similar to the modifications of the parity-check matrix in Section 1.5.3, we observe: linear combi-

nations of codewords are still valid codewords. This means that linear combinations of the rows

of the generator matrix do not change the code. Permutations of the columns, however, do also

mean a corresponding permutation of the bit positions in the codeword. This has to be taken into

consideration for the parity-check matrix, as well.

1.5.5 Extending Codewords

One often used extension is the attachment of an additional parity position, thereby increasing the

codeword length by one. If the original code had an odd minimum Hamming distance (weight),

the minimum distance (weight) will be increase by one, as well.

For the parity equations one additional parity sum is required. The new parity-check matrix H

will be

He =










1 1 1 . . . 1

0

0

H
...

0










(1.43)

The extended Hamming code with the parameters (8,4,4) has an H matrix
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1 1 1 1 1 1 1 1

0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

(1.44)

As far as the generator matrixG is concerned, this just means the extension by one parity position,

which results from the modulo-2 sum of all other positions.

1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0

(1.45)

This extended Hamming code is also the first-order Reed-Muller code of length 23.

1.5.6 Reed-Muller codes

An early description of the repetition code ?

But let your speech be, Yea, yea; Nay, nay:

and whatsoever is more than these is of the evil one

Matthew 5:37

An ‘r-th order’ Reed-Muller code RM(r,m) of length 2m can be defined by a blocked generator

matrix as follows

G =








G0

G1

...

Gr








, (1.46)

where G0 is the all-ones vector of length 2m (repetition code!). G1 is an m×2m matrix consisting

of all binary m-tuples appearing only once. Gl (2 ≤ l ≤ r) results from all different products of l

rows of G1.

The number of information bits is thus

K = 1 +

(
m

1

)

+ · · ·+
(
m

r

)

. (1.47)

The minimum Hamming distance dHm is dHm = 2m−r (without proof).

As an example, we show the generator matrix of the 3rd order RM code of length 24 = 16:
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G







G0 =
[
1111111111111111

]
= [c0]

G1 =







0000000011111111

0000111100001111

0011001100110011

0101010101010101







=







c1
c2
c3
c4







G2 =











0000000000001111

0000000000110011

0000000001010101

0000001100000011

0000010100000101

0001000100010001











=











c1c2
c1c3
c1c4
c2c3
c2c4
c3c4











G3 =







0000000000000011

0000000000000101

0000000000010001

0000000100000001







=







c1c2c3
c1c2c4
c1c3c4
c2c3c4






.

(1.48)

Obviously,

RM(0, m) ⊂ RM(1, m) ⊂ RM(2, m) ⊂ RM(3, m) . (1.49)

Search for the generator matrix of the extended Hamming code (16,11,4) inside the Reed-Muller

RM(3, 4) generator matrix!

1.5.7 Perfect codes

Theorem 1.7 Sphere-packing or Hamming bound:

Let a code with parameters (N,K) have a correcting capability of t.

Binary case:

2K
(

1 +

(
N

1

)

+

(
N

2

)

+ · · ·+
(
N

t

))

≤ 2N (1.50)

Non-binary case over a field with q elements.

qK
(

1 +

(
N

1

)

(q − 1) +

(
N

2

)

(q − 1)2 + · · ·+
(
N

t

)

(q − 1)t
)

≤ qN (1.51)

This theorem [24] follows from simple counting of all possible vectors within an n-dimensional

‘sphere’ of ‘radius’ t according to Fig. 1.9. These are all possible vectors of weight less or equal

to t. All vectors inside of all correction spheres follow from a multiplication with 2K , the number

of codewords. This number, of course, has always to be smaller than the number of all possible
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2N

2K

t

(
N
t

)

1

(
N
1

)
= N

Figure 1.9: Illustration of the sphere-packing bound

vectors of length n. The non-binary case is an obvious extension, since there are q − 1 possible

error values.

Definition 1.13 A perfect code fulfills the Hamming bound with equality, i.e., no words are left

outside of the decoding spheres.

Only three different code classes do exist that are perfect:

1. binary repetition code with odd length N

2. Hamming codes

3. binary and ternary Golay code

The repetition code, as the name implies, has a generator matrix

G = (1, 1, 1, . . . , 1)
︸ ︷︷ ︸

N

(1.52)

and the parity-check matrix

H =










1 1 0 0 · · · 0

1 0 1 0 0

1 0 0 1 0
...

. . .

1 0 · · · 0 0 1










(1.53)

The repetition code is dual to the parity-check code, hence, the above G and H matrices of the

repetition code are the same as the H and G matrices of the parity-check code, respectively.

Definition 1.14 Let the generator and parity-check matrices of a code C be G and H, respectively.

Its dual code C⊥ has a generator matrix G⊥ = H and a parity-check matrix H⊥ = G.
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We have

HGT = 0

GHT = 0 (1.54)

Golay codes

The binary Golay code has the parameters (23,12,7), extended (24,12,8), and the ternary one has

the parameters (11,6,5).

Theorem 1.8 The extended binary Golay code is self-dual, i.e., G⊥24 = G24.

Note that duality is not the same as orthogonality. There is no orthogonality in finite fields.

In [25], Massey defines so-called linear codes with complementary duals to model orthogonality

to some extent. To make the difference clear, consider the scalar product of two vectors a and b.

If a · bH = 0, one would conclude the two vectors to be orthogonal when the components are real

or complex. Now consider multiplying tow exemplary vectors

[
0 1 1 0 1 0 1

]














0

1

1

0

1

0

1














= 0 modulo 2

The vectors are the same and hence not orthogonal. We obtain a zero result for all vectors of

even weight. We clearly see that the notion of orthogonality is not suitable for finite fields, e.g.,

for the binary number field. This also means that projection to find a least-squares optimum over

the reals or complex numbers does not have a counterpart over finite fields.

The self-dual generator matrix of the binary extended Golay code is shown in (1.55).

G24 =
























1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
























(1.55)
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1.5.8 Decoding with the standard array

The standard array is a table of all qN words with components from a field with q elements. The

first row consists of the codewords, starting from the all-zero word. Along the columns, error

vectors will be added to the codewords, until all possible qN vectors are tabulated. If one would

stop at the error-correcting capability t (designed distance) as the maximum weight of error

vectors, a non-complete error correction will be represented by the table. Non-tabulated words

would not be assigned to codeword and would thus stay uncorrected. The error vectors that are

added to the zero codeword are called coset leaders, the corresponding row is the coset. Cosets

have the same distance properties as the original code, but they are nonlinear (no zero codeword).

The columns down to the error pattern with weight t are denoted as decoding spheres.

Standard array:

decoding

sphere

0 c2 c3 · · · cqk

0+ e1 c2 + e1 c3 + e1 · · · cqk + e1
coset 0+ e2 c2 + e2 c3 + e2 · · · cqk + e2

...
...

0+ ej c2 + ej c3 + ej · · · cqk + ej
0+ ej+1 c2 + ej+1 c3 + ej+1 · · · cqk + ej+1
...

...

0+ el c2 + el c3 + el · · · cqk + el
coset

leader

j =
t∑

i=1

(
N

i

)

(q − 1)i
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Chapter 8

Reed-Solomon codes

Reed-Solomon codes are one of the most important codes in applications. They are applied

in numerous modern transmission and storage system. One may just think of the CD player,

ADSL, optical and wireless transmission. These block codes are not bit-, but symbol-oriented,

a symbol consisting of some bits (over GF (2m), e.g., a byte). They are thus very suited for

the correction of bursts. For practical applications, the existence of powerful en- and decoding

algorithms are essential. RS codes fulfil the Singleton bound with equality. This property is also

named MDS (maximum distance separable) . It is also advantageous that the weight distribution

can be computed easily. This simplifies error probability approximations. RS codes are based

on the discrete Fourier transform. Before we will introduce it over finite fields, in the following

section, we will illustrate encoding (and decoding) as a polynomial interpolation.

8.1 Encoding as a polynomial interpolation

A polynomial a(x) = a0 + a1x + · · · + aK−1xK−1 of degree K − 1 can be formulated dependent

on given samples by means of so-called ‘continuous’ Kronecker delta functions δj(x). a(x) is then

given by the Lagrange interpolation

a(x) =

K−1∑

j=0

δj(x) · a(xj) (8.1)

δj(x) =

∏

k = 0, . . . , K − 1
k 6= j

(x− xk)

∏

k = 0, . . . ,K − 1
k 6= j

(xj − xk)

=

∏K−1
k=0 (x− xk)

(x− xj) ·
[

d
dx

∏K−1
k=0 (x− xk)

]

x=xj

(8.2)
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given samples

interpolated

Figure 8.1: Encoding as a polynomial interpolation

For the delta function, we have

δj(x) =

{
1 if x = xj

0 if x = xk , k = 0, . . . , K − 1 , x 6= xj
(8.3)

With the delta functions, it is straight forward to compute further N−K samples as a function of

the K given samples assuming that the underlying polynomial is of limited degree K − 1. Figure

8.1 shows an interpolating polynomial of degree 7 with 8 predefined samples. Four further sam-

ples have been computed. These four samples are redundant, since the interpolating polynomial

is already uniquely defined by 8 samples. Adding these four samples can be considered as an

encoding. One may think of the 12 samples as a transmitted codeword. Let us imagine that four

errors have occurred at known positions. Since the polynomial is uniquely defined by any arbitrary

8 samples, with 8 error-free samples, all 12 samples can again be recomputed. This procedure is

called erasure decoding, the correction of errors at known positions.

In the following section, we will introduce the link between the polynomial interpolation and the

DFT. To illustrate this already here, let us think of time-domain codeword samples to be located

around the unit circle as shown in Fig. 8.2. For drawing purposes, we are additionally forcing the

time domain to be real by requiring DFT-domain components to be conjugate symmetric. This,

the reader might later recognize as a complex BCH code after having read Chapter 13. In the

figure, red bars stand for information symbols in time domain (original domain), while green ones

represent redundant ones.

8.2 Reed-Solomon codes and the

discrete Fourier transform

In a finite field, only a finite number of samples can be used. This results from the powers of an

element of order N . Let us, e.g., consider all the elements of an extension field GF (Pm). Then

there are Pm − 1 elements that can be generated as powers of the primitive element. This means
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Figure 8.2: Analog BCH code (RS code with conjugacy constraints)

that the possible code length would be N = Pm − 1. The values at these positions again result

from a polynomial of degree K−1. In an extension field, however, there are also elements of order

N with N |Pm − 1.

From the limited degree of the polynomial C(x), one can immediately make statements regarding

the minimum distance = minimum weight of the resulting codes. At first, we recall the so-called

fundamental theorem of algebra.

Theorem 8.1 A polynomial C(x) = C0+C1x+C2x
2+ . . . CK−1xK−1 of degree K−1 has at most

K − 1 different roots xj. Hence, the polynomial can be factorized as C(x) = CK−1 · (x− x1) · (x−
x2) · · · (x− xK−1) = CK−1 ·

∏K−1
j=1 (x− xj).

With this, we can immediately provide a statement on the minimum weight and with it on the

minimum distance of a code defined by a degree-limited polynomial.

Theorem 8.2 Let C(x) be a polynomial of degree K − 1 = N −M − 1 with arbitrary coefficients

from a field IF. If we compute the values of the polynomial at N different positions x = xj , xj ∈
IF, j = 0, . . . , N − 1, the vector of N samples (C(x0), C(x1), . . . , C(xN−1)) has minimum weight

wHm = M + 1 = N −K + 1. Since the sum of two such vectors is equivalent to the sum of the

corresponding polynomial coefficients, the sum of vectors fulfills the degree limitation, too. Thus,

it is a linear code. The minimum distance is equal to the minimum weight.

Proof: The number of zeros cannot exceed K − 1 = N −M − 1. Hence, at least, N − (K − 1) =

M + 1 positions have to be non-zero.
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This theorem also specifies an important property that is named as follows:

Definition 8.1 A Maximum Distance Separable (MDS) code fulfills the Singleton bound

(dHm ≤M + 1 = N −K + 1) with equality.

According to the previous theorem this is the case. We will now formally define Reed-Solomon

codes. (This definition will later be generalized.)

Definition 8.2 A Reed-Solomon (RS) code of length N and minimum Hamming distance

dHm is the set of vectors, whose components are values of a polynomial C(x) of degree ≤ K − 1 =

N − dHm at the positions zj, with z being an element of order N from an arbitrary number field.

We are, of course, especially interested in z ∈ GF (Pm), zN = 1, zj 6= 1 for 0 < j < N .

c = (c0, . . . , cN−1) , cj = C(x = zj) (8.4)

Example 8.1 GF (P = 7), primitive element: z = 5, order N = P − 1 = 6

We specify an RS code of length N = 6 with correction capability of t = 2 symbols. From

dHm ≥ 2 · t + 1 follows the maximum degree of the polynomial K − 1 = N − dHm = 6 − 5 = 1.

The degree-limited polynomial exists only of two components C0, C1. Since every component can

assume P = 7 values, the code consists of 7 · 7 = 49 codewords.

Let the information be localized in the coefficients of the polynomial. With C(x) = C0 + C1x =

3 + 1 · x, we obtain

c0 = C(x = z0 = 1) = 3 + 1 · 1 = 4

c1 = C(x = z1 = 5) = 3 + 1 · 5 = 1

c2 = C(x = z2 = 4) = 3 + 1 · 4 = 0
...

c = (c0, . . . , c5) = (4, 1, 0, 2, 5, 6)

The definition of RS codes by means of a polynomial at positions zj with z being an element of

order N reminds us to the well-known discrete Fourier transform that we will write in a maybe

somewhat unusual form. Let us for a moment assume that the considered polynomial C(x) has

full degree N − 1. Then we would have

cj = C(x = zj) =
N−1∑

k=0

Ckz
jk (8.5)

This is nothing else than the IDFT from the DFT domain into the original domain. In the

following, we again define forward and backward transforms of the DFT. We write the inverse

transform first, since we have already introduced it. We could also have defined the first relation

as the ‘forward’ transform; however, we would like to have a relation to time and frequency domain.
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Definition 8.3 Let C = (C0, C1, . . . , CN−1) be the coefficient vector of a polynomial C(x) =

C0 + C1x + · · · + CN−1xN−1 and let z be an element of order N (i.e., zN = 1, but zj 6= 1 for

0 < j < N). The discrete Fourier transform (DFT) and its inverse transform (IDFT) are

defined to be

IDFT:

cj = C(x = zj) =
N−1∑

k=0

Ckz
jk , j = 0, 1, . . . , N − 1 , (8.6)

DFT:

Ck = N−1 · c(x = z−k) = N−1 ·
N−1∑

j=0

cjz
−jk , k = 0, 1, . . . , N − 1 , (8.7)

where we again have written the vector c = (c0, c1, . . . , cN−1) as a polynomial c(x) = c0 + c1x +

· · ·+ cN−1xN−1.

Note the alternative description of vectors as polynomials which is often used in coding theory.

We will provide the proof that the DFT transform is uniquely invertible.

138



Proof:

We start from (8.7):

N−1 · c(x = z−k) = N−1 ·
N−1∑

j=0

cjz
−jk

= N−1 ·
N−1∑

j=0

(
N−1∑

l=0

Clz
jl

)

z−jk

= N−1 ·
N−1∑

l=0

Cl

N−1∑

j=0

zj(l−k)

= N−1 ·
N−1∑

l=0

Cl

N−1∑

j=0

γj , γ = zl−k

The geometric series
∑N−1

j=0 γj is equal to

N−1∑

j=0

γj =

{

N for γ = zl−k = 1, i.e., l = k
γN−1
γ−1 = 0 for γ = zl−k 6= 1, i.e., l 6= k, but γN = zN(l−k) = 1

Hence, in the transformation, only N−1 · c(x = z−k) = N−1 · Ck ·N is left, as required.

In a prime field GF (P ), we have for N = P − 1: N−1 = N = P − 1, since (P − 1)(P − 1) =

P 2 − 2P + 1 = 1 mod P . In an extension field of the binary numbers GF (2m), we even have

1/N = 1/(2m − 1) = 1.

In the following, we will recall some important properties of the discrete Fourier transform; es-

pecially, we are interested in the convolution and shift properties. Hereto, we note that in the

polynomials we replace x by a power of an element of order N , i.e., x has the property xN = 1.

This allows to compute mod (xN − 1), i.e., xN can be replaced by 1.

First, we will apply this property when multiplying two polynomials. Since we compute mod

(xN − 1), the result will not have a degree higher than N − 1.

(a0 + a1x+ · · ·+ aN−1x
N−1) · (b0 + b1x+ · · ·+ bN−1x

N−1) = c0 + c1x+ · · ·+ cN−1x
N−1 (8.8)

c0 = b0 · a0 + b1 · aN−1 + b2 · aN−2 + · · ·+ bN−1 · a1
c1 = b0 · a1 + b1 · a0 + b2 · aN−1 + · · ·+ bN−1 · a2

...

cj =

N−1∑

l=0

bl · aj−l mod N

This is nothing else than the cyclic convolution of the coefficients of the vectors a = (a0, a1, . . . , aN−1)
and b = (b0, b1, . . . , bN−1) that we are used to indicate with a ‘⋆’.

a ⋆ b ≡ a(x) · b(x) mod (xN − 1) (8.9)
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The following table (Eq. (8.10)) collects the convolution and shift properties of the DFT.

Original domain DFT domain

cj = aj · bj C(x) = A(x) ·B(x) ,

Ck =
∑N−1

l=0 Al · Bk−l mod N

c(x) = N−1a(x) · b(x) , Ak ·Bk

cj = N−1 ·∑N−1
l=0 al · bj−l mod N

cj mod N = aj−l mod N , Ck = Ak · z−k·l
c(x) = a(x) · xl mod (xN − 1)

cj = aj · zj·l Ck mod N = Ak−l mod N ,

C(x) = A(x) · xl mod (xN − 1)

(8.10)

We shortly proof the two convolution theorems.

Proof:

1st convolution theorem:

cj = C(x = zj) = A(x = zj) · B(x = zj) = aj · bj

2nd convolution theorem:

Ck = N−1 · c(x = z−k) = N−1 · a(x = z−k) ·N−1 · b(x = z−k) = Ak · Bk

From the shift theorem in the DFT domain, we conclude an important property of RS codes

allowing us to extend their definition. The shift theorem tells us that zeros stay unchanged and

no new ones will be added when cyclically shifting the transform domain, i.e., the minimum

distance is preserved.

Definition 8.4 (extended version) A Reed-Solomon (RS) code of length N and minimum

Hamming distance dHm is a set of vectors, whose components are the values of a polynomial

C(x) = xj · C ′(x) of degree{C ′(x)} ≤ K − 1 = N − dHm at positions zj, with z being an element

of order N from an arbitrary number field.

c = (c0, . . . , cN−1) , cj = C(x = zj) (8.11)

Before we will proceed to means of encoding, we will discuss some properties that will then be

required.

First, we study the case when a product of two polynomials a(x) · b(x) = 0 mod (xN − 1)

= (. . . ) · (xN − 1). Since the product of two polynomials corresponds to the convolution of their

coefficients, we obtain under the additional assumption that b(x) is monic (degree{b(x)} = K <

N − 1, bK = 1)

0 =
N−1∑

l=0

bl · aj−lmodN = 1 · aj−KmodN +
K−1∑

l=0

bl · aj−lmodN (8.12)
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−bK−1 −bK−2 −b1 −b0

aj−K

aj−K+1 aj−K+2 aj−1 aj

Figure 8.3: Shift register of the convolution in Eq. (8.12)

This recursion can be realized by the shift register in Fig. 8.3.

Furthermore, we will require the fact that zeros in the original or transform domain will correspond

to linear factors of the polynomial description in the transform or original domain, respectively.

cj = 0 ⇐⇒ C(x) = (. . . ) · (x− z+j) (8.13)

CN−j = 0 ⇐⇒ c(x) = (. . . ) · (x− z+j) (8.14)

All possible linear factors together yield

xN − 1 =

N−1∏

j=0

(x− zj) (8.15)

This follows from the fact that (xN − 1) can at most have N roots. Furthermore, since z is an

element of order N , all N different powers zj , j = 0, 1, . . . , N − 1 are roots of xN − 1 ((zj)N =

(zN )j = 1).

8.3 Encoding

We have described RS codes by a degree-limited polynomial, i.e., requiring M = 2t subsequent

zeros from index K to N − 1 of the DFT vector (not mentioning cylic shifts). How will we now

choose the relation between K information symbols and the codewords? In principal, there are

two possibilities. On one hand, the information can, of course, directly be chosen to be the K

DFT-domain samples. An IDFT yields the code vector. On the other hand, the K samples can

be specified in time domain and a polynomial interpolation would yield the other samples taking

into account the limited degree of the polynomial. We thus distinguish between methods in DFT

and in the original (time) domain. Usually, one of four different methods is applied. In the sequel,

we will describe these four options.
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zK−1z2z1z0 = 1

I(l)0 I(l)1 I(l)2

..., N − 1
l = 0, 1, ...

cl

I(l)K−1

Figure 8.4: IDFT shift register

8.3.1 Encoding in DFT domain

As has been mentioned, the information can just be put into K = N − 2t subsequent positions in

DFT domain. We first write the IDFT as a matrix operation.

c = C ·










1 1 1 1 · · ·
1 z1 z2 z3

1 z2 z4 z6

1 z3 z6 z9

...
. . .










(8.16)

Let the information be C = (I0, I1, . . . , IK−1, 0, . . . , 0
︸ ︷︷ ︸

2t=dHm−1

). This yields the set of linear equations

c = (I0, I1, . . . , IK−1) ·










1 1 1 1 · · · 1

1 z1 z2 z3

1 z2 z4 z6

...

1 zK−1 z2(K−1) z3(K−1) · · · z(N−1)(K−1)










. (8.17)

In order to realize this as a shift register, we rewrite the equations, following the so-called Horner

scheme, as

c0 = C(z0 = 1) = I0 +I1 +I2 + · · ·+ IK−1
c1 = C(z1) = I0 +I1 · z1 +I2 · z2 + · · ·+ IK−1 · zK−1
c2 = C(z2) = I0 +(I1 · z1) · z1 +(I2 · z2) · z2 + · · ·+ (IK−1 · zK−1) · zK−1
...

. (8.18)

For the term of a sum denoted as I(l)j , we obtain the recursion I(l+1)
j = I(l)j · zj with I(0)j = Ij .

This representation leads to the shift register shown in Fig. 8.4.

As an example, we study the code (6,2,5) over GF(7) with the primitive element z = 5 (z0 = 1,
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zN−1 zN−2 z1

N−1

Cl

. . . , N − 1
l = 0, 1, . . .

c
(l)
N−1c

(l)
2c

(l)
1c

(l)
0

zN = 1

Figure 8.5: DFT shift register

z1 = 5). With (I0, I1) = (3, 1), we subsequently obtain

·1 ·5
l I l0 I l1 −→ cl =

∑

j I lj
0 3 1 −→ 4

1 3 5 −→ 1

2 3 4 −→ 0

3 3 6 −→ 2

4 3 2 −→ 5

5 3 3 −→ 6

c = (4, 1, 0, 2, 5, 6)

Since the DFT differs from the IDFT only in the factor N−1 and the sign of the powers of the

element of order N , the same matrix description applies also to Cj = N−1 · c(x = zN−j), leading
to the DFT shift register in Fig. 8.5.

As a check, one may compute the DFT vector (C0, C1, . . . , CN−1) from the time-domain vector

c = (4, 1, 0, 2, 5, 6).

·1 ·3 ·2 ·6 ·4 ·5
l cl0 cl1 cl2 cl3 cl4 cl5 −→ Cl = N−1 ·∑j c

(l)
j

0 −→ 3

1 −→ 1

2 −→ 0

3 −→ 0

4 −→ 0

5 −→ 0

Since the encoding in DFT domain will not lead to a systematic codeword in time domain, i.e.,

the information will not be visible in the codeword, this encoding procedure will usually not be

selected. The same applies for the non-systematic encoding directly in time domain, which will be

described in the next section. However, this will be the basis for the next two encoding methods.
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8.3.2 Non-systematic encoding with the generator polynomial

The degree limitation of the polynomial C(x) (degree{C(x)} ≤ K−1 = N−dHm) can be described

by linear factors in time domain, since

CN−j = N−1 · c(x = z−(N−j)) = N−1 · c(x = zj) = 0 , j = 1, ...,M . (8.19)

c(x) has to be a multiple of

g(x) =
∏

j:CN−j=0

(x− zj) = g0 + g1 · x+ · · ·+ 1 · x2t . (8.20)

In the special case of zeros at the upper end, which we will mostly consider, this means

g(x) =
2t∏

j=1

(x− zj) . (8.21)

g(x) is called generator polynomial due to its relation to the generator matrix. How the

generator matrix is actually derived from the generator polynomial will be described later.

A codeword in polynomial representation c(x) thus follows from the product

c(x) = i(x)
︸︷︷︸

degree: K−1=N−2t−1

· g(x)
︸︷︷︸

degree: M=2t

. (8.22)

The K coefficients of i(x) = i0 + i1 · x + · · · + iK−1 · xK−1 can be used as information. Clearly,

CN−j = N−1 ·c(x) = N−1 ·i(x) ·g(x) = 0 for the roots of g(x), x = z−(N−j), j = 1, ...,M . The roots

of the generator polynomial are hence in line with the zeros in DFT domain. The code, i.e., the set

of codewords is the same as with encoding in DFT domain, having obeyed the degree limitation

of the polynomial C(x). However, the relation between information and codeword differs. Now,

especially, the information is neither contained in the original, nor in the DFT domain. It is a

non-systematic encoding.

In our example, we had four uppermost zeros in the DFT domain, which means

g(x) = (x− z1)(x− z2)(x− z3)(x− z4)

= (x− 5)(x− 4)(x− 6)(x− 2)

= (x+ 2)(x+ 3)(x+ 1)(x+ 5)

= 2 + 5x+ 6x2 + 4x3 + x4 .

With the same information i(x) = 3 + 1 · x, we obtain the codeword

c(x) = i(x) · g(x) = 6 + 3x+ 2x2 + 4x3 + x5 ⇐⇒ c = (6, 3, 2, 4, 0, 1) ,

which is not the same as the one that resulted from the DFT-domain encoding. We also determine

the i(x) that corresponds to the codeword that we obtained from the DFT-domain encoding.

i(x) =
c(x)

g(x)
=
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( 6x5 +5x4 +2x3 +0x2 +1x +4 ) : (x4 + 4x3 + 6x2 + 5x+ 2) = 6x+ 2

−6x5 −3x4 −1x3 −2x2 −5x
2x4 +1x3 +5x2 +3x +4

−2x4 −1x3 −5x2 −3x −4
0

In this division, the K coefficients of i(x) do only depend on the K highest coefficients of c(x).

The remaining M = N −K coefficients of c(x) have an influence on the remainder of the division,

which has to be zero.

8.3.3 Systematic encoding with the generator polynomial

From the previous section, we already know that the code polynomial can be described as a

multiple of the generator polynomial.

c(x) = u(x) · g(x) .

We now require to preserve the higher coefficients of the code polynomial c(x) as a systematic

part of the encoding. Therefore, we write

c(x) = cN−1x
N−1 + · · ·+ cN−Kx

N−K + cN−K−1x
N−K−1 + · · ·+ c0

= iK−1x
N−1 + · · ·+ i0x

N−K + cN−K−1x
N−K−1 + · · ·+ c0 (8.23)

= u(x) · g(x) . (8.24)

The part of the code polynomial that does not carry information will now be moved to the right

side.

cN−1x
N−1 + · · ·+ cN−Kx

N−K = u(x) · g(x)− cN−K−1x
N−K−1 · · · − c1x− c0

= u(x) · g(x) + r(x) (8.25)

This means that the remaining part of the codeword −r(x) is equal to the remainder of the division

of cN−1xN−1 + · · ·+ cN−KxN−K by g(x).

Example 8.2 In the example that we used to illustrate the DFT-domain encoding, we had the

correspondence

c = (4, 1, 0, 2, 5, 6) C = (3, 1, 0, 0, 0, 0)

Let us use the two rightmost positions in the original domain as information, i.e., c5x
5 + c4x

4 =

6x5 + 5x4. With the generator polynomial g(x) = x4 + 4x3 + 6x2 + 5x + 2, the remainder of the

division is computed as follows.

( 6x5 +5x4 ) : (x4 + 4x3 + 6x2 + 5x+ 2) = 6x+ 2

−6x5 −3x4 −1x3 −2x2 −5x
2x4 +6x3 +5x2 +2x

−2x4 −1x3 −5x2 −3x −4
5x3 +0x2 +6x +3 = r(x)

The parity positions of the codeword are obtained from the remainder r(x) as c0+c1x+c2x
2+c3x

3 =

−r(x) = −(3 + 6x+ 0x2 + 5x3) = 4 + 1x1 + 0x2 + 2x3.
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c4, c5

−g0 = 5 −g1 = 2 −g2 = 1 −g3 = 3

r
(j)
0 r

(j)
1 r

(j)
2 r

(j)
3

Figure 8.6: Systematic encoder circuit based on the generator polynomial

When we determine the remainder, we actually compute modulo the polynomial g(x). To come

to a shift register structure, we formulate the division as an iterative computation mod g(x). This

yields a division circuit that we already know from Section 7.2.5. We write the part of c(x) that

carries the information as

cN−1x
N−1 + cN−2x

N−2 + · · ·+ cN−Kx
N−K =

cN−1x
N−1 + cN−2x

N−2 + · · ·+ cMxM =

(. . . ((0x+ cN−1x
M )x+ cN−2x

M )x+ . . . )x+ cMxM . (8.26)

When starting in the inner brackets with the computation mod g(x), the iteration for the remainder

r(x) will become

r(j)(x) = x · r(j−1)(x) + cN−jx
M mod g(x) . (8.27)

Figure 8.6 shows the shift register for the example.

The remainders that show up during the iterations are listed in the following table.

j r
(j)
0 r

(j)
1 r

(j)
2 r

(j)
3 uj

0 0 0 0 0 0

1 2 5 6 4 6

2 3 6 0 5 2

The result of the division is not too interesting. It is nevertheless computed and the coefficients

will appear behind the (upper right) addition and are also listed in the rightmost column of the

table. This column yields u(x) = u0x+ u1 = 6x+ 2.

Noting that the parity positions result from the negative remainder, the shift register can be

extended such that the complete codeword will be put out. Such an extension is shown in Fig.

8.7.

8.3.4 Systematic encoding with the parity-check polynomial

In (8.12) we provided a recursion formula and subsequently a shift register structure for the case

when a product of two polynomials is a multiple of (xN − 1), i.e., a(x) · b(x) = 0 mod (xN − 1)

= (. . . ) · (xN − 1).
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−g0

c0, . . . , cN−1

−g1 −g2
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(j)
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(j)
0
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(j)
M−1

‘0’

cN−K , . . . , cN−1

r
(j)
2

−gM−1

cN−K−1...
c0

Figure 8.7: Extended systematic encoder circuit based on the generator polynomial

−hK−1 −h1 −h0

j = N − 1, . . . , 0

cjcN−K−1
cN−K cN−2 cN−1

Figure 8.8: Systematic encoding shift register based on the parity-check polynomial

Let a(x) be the code polynomial c(x) = u(x) ·g(x), a multiple of g(x). If we define a parity-check

polynomial

h(x) := (xN − 1)/g(x) = h0 + h1x+ · · ·+ 1xK (8.28)

(degree h(x) = N− degree g(x) = N −M = K),

we obtain

c(x) · h(x) = 0 mod (xN − 1) = (. . . ) · (xN − 1) . (8.29)

Figure 8.8 shows the shift-register structure.

Example 8.3 In our example, we had N = 6 and M = 4 with g(x) = (x−z1)(x−z2)(x−z3)(x−
z4). h(x) follows to be

h(x) = (x6 − 1)/g(x) = (x− z5)(x− z0) = (x− 3)(x− 1) = 3 + 3x+ x2 .
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c4 c5

−h1 = 4 −h0 = 4

j = 5, 4, . . . , 0

cjc3

Figure 8.9: Systematic encoder using the parity-check polynomial of Example 8.3

The corresponding encoder circuit is shown in Fig. 8.9.

Note: An encoder on the basis of the generator polynomial in the previous section requires a shift

register of length M , whereas the one using the parity-check polynomial needs a register of length

K. Depending on the coderate, one or the other method will be preferred. When the number of

parity positions is required to be variable, the circuit using the parity-check polynomial should

be chosen. RS codes allow to adaptively change the number of parity positions, i.e., one can

adaptively transmit more and more parities and always preserve the optimum error-correction

properties (t = ⌊M/2⌋).

8.3.5 Generator and parity-check matrices from

generator and parity-check polynomials

We have currently described cyclic codes by polynomials. At the beginning, however, we spec-

ified linear block codes by their generator and parity-check matrices. We will now provide the

connection between both representations. For simplicity, we only do this for the non-systematic

encoding with the generator polynomial in Section 8.3.2 described by Eq. (8.22),

c(x) = i(x) · g(x) .

We again arrange the coefficients of the polynomials as vectors in the form

c(x) ⇐⇒ c = (c0, c1, . . . , cN−1)
i(x) ⇐⇒ i = (i0, i1, . . . , iK−1) .

The multiplication of two polynomials i(x)·g(x) corresponds to the convolution of their coefficients.

cl =

K−1∑

j=0

ijgl−j (8.30)

This can be rephrased by a set of linear equations with a Toeplitz matrix.

(c0, c1, . . . , cN−1) = (i0, i1, . . . , iK−1) ·G
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with

G =










g0 g1 g2 · · · · · gN−K 0 0 0 · · 0

0 g0 g1 g2 · · · · · gN−K 0 0 · · 0

0 0 g0 g1 g2 · · · · · gN−K 0 · · 0
...

...

0 0 · · · 0 g0 g1 g2 · · · · · gN−K










(8.31)

In order to determine a corresponding parity-check matrix, we consider the product

c(x) · h(x) = i(x) · g(x) · h(x) = i(x)(xN − 1) = −i(x) + xN i(x) . (8.32)

Since the maximum degree of i(x) is K−1, the coefficients of the powers K to N −1 will be zero.

Since the multiplication of polynomials means the convolution of their coefficients, we obtain

K∑

j=0

hjcl−j = 0 for l = K, . . . , N − 1 , (8.33)

expanding it,

h0cK + h1cK−1 + h2cK−2 + · · ·+ hKc0 = 0

h0cK+1 + h1cK + h2cK−1 + · · ·+ hKc1 = 0
...

h0cN−1 + h1cN−2 + h2cN−3 + · · ·+ hKcN−K−1 = 0 .

We obtain the parity-check equations

(0, 0, . . . , 0)
︸ ︷︷ ︸

N−K

= (c0, c1, . . . , cN−1) ·HT

with

H =










hK hK−1 hK−2 · · · · · h0 0 0 0 · ·0
0 hK hK−1 hK−2 · · · · · h0 0 0 · ·0
0 0 hK hK−1 hK−2 · · · · · h0 0 · · 0
...

...

0 0 · · · 0 hK hK−1 hK−2 · · · · · h0










. (8.34)

This H-matrix is again the generator matrix G⊥ of the dual code with the generator polynomial

g⊥(x) = xKh(x−1), the reciprocal parity-check polynomial.

Taking advantage of the Euclidean division algorithm treated later, systematic generator and

parity-check matrices can be derived, too. We do not provide this derivation.
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Chapter 9

The decoding as an

interpolation problem

and the derivation of the

key equation for error localization

The decoding becomes very simple when the error positions are already given. This case is known

as erasure decoding. Erased symbols are regenerated from the rest of the codeword. For RS

codes, a possible procedure has already been described. The non-erased components determine the

code polynomial of degree ≤ K−1 and replacing the erased components is then again a polynomial

interpolation and is thus the same as the encoding. More problematic seems to find the location

of errors. Hereto, first an error-indicator, called syndrome is required. The syndrome definition

will be treated in the next section. The decoding, i.e., the error correction thus consists of three

steps:

1. Computation of the syndrome,

2. Finding the error locations,

3. Determining the error values at the error locations and correction of the received word.

9.1 The syndrome as an error indicator

The syndrome is usually defined as follows:

Definition 9.1 Terms computed from the received word r that are only dependent on the error

vector f but not of the transmitted codeword c, i.e., of the submitted information.

One possibility to define a syndrome would, e.g., be by means of the H-matrix

s = rHT = (c+ f)HT = f HT . (9.1)
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This syndrome vector could, e.g., be used to address the entries of a table of error pattern ordered

by their syndromes (list decoding).

In the case of RS codes, however, it appears to be more suitable to define the M consecutive

positions of the DFT vector as a syndrome that were required to be zero for all valid codewords.

{c|cj = C(x = zj), degree C(x) ≤ K − 1 = N −M − 1 = N − 2t− 1 = N − dHm} . (9.2)

Then, the syndrome S follows from

r = c+ f ◦—• R = C + F = (C0 + F0, . . . , CK−1 + FK−1, FN−2t, . . . , FN−1
︸ ︷︷ ︸

S

) . (9.3)

In polynomial representation this reads

R(x) = R0 +R1x+ · · ·+RK−1x
K−1

︸ ︷︷ ︸

R⋆(x) (unknown part of F (x))

+ RN−2tx
N−2t + · · ·+RN−1x

N−1
︸ ︷︷ ︸

S(x) · xN−2t (known part of F (x))

(9.4)

Since the correcting capability of RS codes does not change when cyclically shifting the zeros in

the DFT vector, the syndrome can be located at every positions that are cyclically consecutive,

i.e., also at the lower end.

r = c+ f ◦—• R = C+ F = (F0, . . . , F2t−1
︸ ︷︷ ︸

S

, C2t + F2t, . . . , CN−1 + FN−1) (9.5)

In polynomial representation this reads

R(x) = R0 + · · ·+R2t−1x
2t−1

︸ ︷︷ ︸

S(x) (known part of F (x))

+ R2tx
2t + · · ·+RN−1x

N−1
︸ ︷︷ ︸

R⋆(x) · x2t (unknown part of F (x))

(9.6)

Note that the shift property of the DFT says that a cyclic shift in DFT domain corresponds to

a multiplication with a factor in time domain, i.e., the error positions stay the same, whatever

syndrome position was selected. Nevertheless, the error values are changed!

Example 9.1 We again consider our example over GF (7) with N = 6 and t = 2:

c = (4, 1, 0, 2, 5, 6) ◦—• (3, 1, 0, 0, 0, 0)

Let the received vector be

r = (4, 1, 0, 4, 5, 5)

We have the correspondence

r = (4, 1, 0, 4, 5, 5) ◦—• (2, 1, 2, 1, 0, 5
︸ ︷︷ ︸

S

)

This syndrome follows from the error vector f = (0, 0, 0, 2, 0, 6).
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9.2 Prony’s curve-fitting method as a

decoding algorithm

In Prony’s approach [61], given samples are interpolated by a linear combination of exponential

functions. The method is known for centuries (1795), but has been reinvented in the coding theory

under the name Gorenstein-Zierler algorithm. Wolf [62] realized the equivalence in 1967.

Prony’s method uses the following interpolation function:

y(x) = A0e
a0x + A1e

a1x + · · ·+ An−1e
an−1x . (9.7)

Abbreviating µx
j := eajx, this reads

y(x) = A0µ
x
0 + A1µ

x
1 + · · ·+ An−1µ

x
n−1 . (9.8)

In case of equidistant samples x = 0, 1, . . . , NS − 1, we obtain the set of equations

A0 + A1 + · · ·+ Ae−1 = y0
A0µ

1
0 + A1µ

1
1 + · · ·+ Ae−1µ1

e−1 = y1
A0µ

2
0 + A1µ

2
1 + · · ·+ Ae−1µ2

e−1 = y2
...

A0µ
e
0 + A1µ

e
1 + · · ·+ Ae−1µ

e
e−1 = ye

...

A0µ
NS−1
0 + A1µ

NS−1
1 + · · ·+ Ae−1µ

NS−1
e−1 = yNS−1 .

(9.9)

With respect to the unknowns A0, . . . , Ae−1, the set of linear equations has a Vandermonde coeffi-

cient matrix, as we know it from the DFT/IDFT. Would all the µj be known, we would just have

to solve the Vandermonde system for the Aj . With respect to the µj, however, the set of equation

is nonlinear. The solution will be enabled by defining a polynomial

µe + α1µ
e−1 + α2µ

e−2 + · · ·+ αe−1µ+ αe = 0 (9.10)

with the roots µj . Shortly, we will recognize that this polynomial is equivalent to the so-called

error-locator polynomial in the decoding of RS codes, whose roots determine the error locations.

If we multiply the first equation from (9.9) with αe, the second with αe−1, . . . , and the (e + 1)st

with 1 and sum up all these equations, we obtain the first equation of the following set of linear

equations.
ye−1α1 + ye−2α2 + · · ·+ y0αe = −ye
yeα1 + ye−1α2 + · · ·+ y1αe = −ye+1

...

yNS−2α1 + yNS−3α2 + · · ·+ yNS−n−1αe = −yNS−1

(9.11)

The further equations are obtained by successively starting from the second equation, third, and

so forth. This set of equations can directly be solved for NS = 2e and has a Toeplitz1 structure.

1A Hankel matrix is an upside-down Toeplitz matrix.
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(9.11) can be written as

(1, α1, α2, . . . , αe)











ye ye+1 ye+2 yNS−1

ye−1 ye ye+1
. . .

ye−2 ye−1 ye
. . .

. . .
. . .

y0 yNS−e−1











= (0, . . . , 0) . (9.12)

For such banded Toeplitz matrices exist efficient solution methods from which we will describe the

most important two, the Berlekamp-Massey and the Euclidean division algorithm. In the area of

signal processing (e.g., linear prediction, LPC), other algorithms have been introduced, namely

the Levinson-Durbin and the Trench algorithms. The Levinson-Durbin algorithm, e.g., cannot

be used in the decoding due to problems with singular submatrices. This is actually also known

to be a problem in signal processing when submatrices become ill-conditioned. The Berlekamp-

Massey and Euclidean algorithms, however, can easily be modified to be used in signal-processing

applications.

The set of equations can be solved for NS = 2e. Then the roots are to be determined and finally,

the coefficients Ai are derived from the Vandermonde system.

The relation to the decoding problem can be seen at once when writing down the equations of

the syndrome components dependent on the error positions and error values. For simplicity, we

assume a syndrome at the lower end. We obtain

fl0 + fl1 + · · ·+ fle−1 = S0

fl0(z
−l0)1 + fl1(z

−l1)1 + · · ·+ fle−1(z
−le−1)1 = S1

fl0(z
−l0)2 + fl1(z

−l1)2 + · · ·+ fle−1(z
−le−1)2 = S2

...

fl0(z
−l0)2t−1 + fl1(z

−l1)2t−1 + · · ·+ fle−1(z
−le−1)2t−1 = S2t−1 .

(9.13)

We observe the correspondences

µj ≡ z−lj yj ≡ Sj .

For e ≤ t, the set of equations can be uniquely solved. From the solutions µj = z−lj of the

polynomial (9.10), the usage of the polynomial as an error-locator polynomial becomes obvious,

since lj are the error locations.

9.3 Derivation of the key equation

Slightly different from the previous section, the error-locator polynomial is usually defined as

Definition 9.2 The error-locator polynomial Γ(x) is defined as

Γ(x) =
∏

j∈IF
(x − zj) ,

where IF is the set of indices of the error positions, i.e., (IF = {j|fj 6= 0}).
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Likewise, the non-error locator polynomial is defined as

Γ(x) =
∏

j∈IF

(x − zj) ,

where IF is the set of indices of the error-free positions, i.e., (IF = {j|fj = 0}).

Due to xN − 1 =
∏N−1

j=0 (x− zj), we have

Γ(x) · Γ(x) = (xN − 1) . (9.14)

Since F (x) has zeros at the non-error positions (j ∈ IF : F (zj) = 0), we also have

F (x) = T (x) · Γ(x) = T (x) ·
∏

j∈IF

(x − zj) . (9.15)

F (x) is also a multiple of Γ(x). The polynomial T (x), the so-called error-evaluator polynomial

will later be described when we will deal with the error values.

From the two previous equations, we obtain a relation, called the key equation:

Γ(x) · F (x) = Γ(x) · T (x) · Γ(x) = T (x) · (xN − 1) = 0 mod (xN − 1) . (9.16)

The product of the polynomials Γ(x) and F (x) corresponds to the cyclic convolution of the coef-

ficient vectors. Let e be the number of errors, we obtain

N−1∑

l=0

Γl · Fj−l mod N =
e∑

l=0

Γl · Fj−l mod N = 0 j = 0, . . . , N − 1 . (9.17)

The frequency components due to errors can only be directly read at the positions of the syn-

drome S. The decoding problem can now be formulated such that we have to find the error-locator

polynomial with the least number of linear factors (roots) (x−zj), i.e., of lowest degree that fulfills
the key equation (9.16) or (9.17). This is equivalent to searching for an error polynomial F (x),

from which we only know the syndrome positions, with as many linear factors (x−zj) as possible.

The underlying assumption is that a smaller number of errors are more probable than a larger

number of errors. This is usually the case (see, e.g., the binary symmetric channel). Furthermore,

we assume that all codewords appear with the same probability and the error vector does not

depend on the transmitted codeword.

In the following, we write the error-locator polynomial in a slightly different form in which the

first coefficient is equal to one, i.e.,

Γ(x)|neu =
1

∏

j∈IF z
j
· Γ(x) = 1 + Γ1x+ Γ2x

2 + · · ·+ Γex
e . (9.18)

When starting the decoding, the actual number of errors is unknown. As we said, the natural

assumption is that error pattern with lower weight are more probable. Thus, if the actual error
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Sj−1 Sj−2 Sj−3 Sj−L✲ ✲

✻ ✻ ✻ ✻

✻ ✻ ✻ ✻

−Γ1 −Γ2 −Γ3 −ΓL

+ + +✛ ✛ ✛ ✛

Sj Sj−L−1 . . . S0

Figure 9.1: Shift-register representation of the key equation

number e is not known, the best we can do is to successively increase the degree of the error-

locator polynomial and check, if Eq. (9.17) can be fulfilled. Hence, we work with an error-locator

polynomial

Γ(x) = 1 + Γ1x+ Γ2x
2 + · · ·+ ΓLx

L (9.19)

of degree L and check

L∑

l=0

Γl · Sj−l mod N = 0 , Sj−l mod N = Fj−l mod N , jS0 + L ≤ j ≤ jSM−1
mod N

⇐⇒ Sj = −
L∑

l=1

Γl · Sj−l mod N , jS0 + L ≤ j ≤ jSM−1
mod N (9.20)

As long as e ≤ t = ⌊M/2⌋, a unique solution to Eq. (9.20) can be found. This solution can be

represented by the linear shift register in Fig. 9.1.
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Chapter 10

The Berlekamp-Massey algorithm for

solving the key equation

This Toeplitz algorithm was first described in Berlekamp’s book [63] and further illustrated as

shift-register synthesis by Massey [64]. In here, we will discuss Massey’s description in parallel to

a matrix-based illustration.

10.1 The key operations of the algorithm

We are searching for a shift-register of shortest length according to Fig. 9.1, i.e., an error-locator

polynomial of lowest degree L that fulfills the key equation (9.20). To this end, in the BMA we

successively increase the length of the shift-register starting from L = 0 until L will be equal to

the real error number e (assuming no decoding error).

A change in the coefficients Γj or additionally, a length change, will take place, if Eq. (9.20) is

not fulfilled or in other words, if the discrepancy

dn = Sn +
Ln∑

j=1

ΓjSn−j (10.1)

is not equal to zero.

The new shift-register coefficients result from a previous one by adding an earlier coefficient set

before the last length change. These coefficients will be shifted so far that they again meet the same

syndrome positions that they once processed when leading to the discrepancy dm. Accordingly,

the shifted coefficient set yields the same discrepancy dm that lead to the earlier length change.

The recursion formula of the BMA for updating the coefficients of the error-locator polynomial,

Γn+1(x) = Γn(x) −
dn
dm

xn−mΓm(x) , (10.2)

n−m : shift,

dn : current discrepancy,

dm : discrepancy before the last length change,
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forces the discrepancy to zero.

A length change is only required, if dn 6= 0 ∧ 2Ln ≤ n. dn 6= 0 ∧ 2Ln ≤ n ist.

A further illustration is given in Fig. 10.1, where the coefficient sets are shifted along the syndrome

vector. There we see that n−m leading zeros (right side) are added to the earlier coefficient set

when the two coefficient sets are linearly combined at the position n to cancel out the current

discrepancy. The prepending of the leading zeros is described by the multiplication by xn−m.

S0 S1 Sm−Lm Sm−1 Sm Sn−1 Sn S2t−1

1

1

Γ
(n)
Ln

Γ
(n)
1

Γ
(m)
1Γ

(m)
Lm

n−m

dm

dn

Figure 10.1: Illustration of the recursion formula of the Berlekamp-Massey algorithm

The principal structure of the BMA will become more obvious when we look at the iteratively

solved set of linear equations [65]. This leads to an alternative description to the more common

shift-register synthesis that was once provided by Massey [64].

The key equation was

Sj = −
e∑

l=1

ΓlSj−l , (10.3)

which corresponds to the set of linear equations

(1,Γ1,Γ2, . . . ,Γe)











Se Se+1 · · S2e · SM−1

Se−1 Se
. . . · ·

· Se−1
. . .

. . . · ·
· . . .

. . . Se+1 ·
S0 · · Se−1 Se · SM−1−e











= (0, . . . , 0) (10.4)

with a Toeplitz coefficient matrix.

In the following, we describe the BMA as a logical consequence of the matrix structure and

the requirement to find the error-locator polynomial of lowest possible degree. Note that this
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requirement results from the assumption that the probability of error pattern decreases with their

weight.

The algorithm starts from L = 0 using the smallest possible sub-matrix

(1) · (S0) = (S0) =: (dI0) . (10.5)

The first discrepancy dI0 is thus equal to S0. Even if the discrepancy would be zero, it would be

necessary to check the next bigger sub-system.

Since we are searching for the error-locator polynomial of lowest degree, it is natural to extend

the vector Γ by append a zero to the right to investigate the next bigger sub-system. This does

not yet increase the degree of the corresponding error-locator polynomial. We obtain the set of

equations

(1, 0)

(
S1 S2

S0 S1

)

= (dII0 , dII1 ) . (10.6)

We are looking for a solution leading to a zero right side. If dII0 and dII1 are not zero, the first

position can be forced to zero, if also dI0 was unequal zero.

If we use a vector (0, 1) together with a 2×2 matrix instead of (1) in Eq. (10.5), i.e., prepending a

zero on the left, the first component on the right side will again be the earlier discrepancy dI0 = S0.

By linearly combining the two left and right zero-extended vectors, it is now possible to force the

first component on the right side to zero.

[(1, 0) − dII0
dI0

(0, 1)] ·
(

S1 S2

S0 S1

)

= (0, dIII1 ) (10.7)

In case dIII1 6= 0, the sub-matrix is non-singular (detS1 6= 0) and a length change together with

using the next bigger sub-matrix is required. However, even if dIII1 should be zero, the next bigger

sub-matrix would have to be checked if it is singular, too.

At this point, we like to mention that a length change in the sense of the usual BMA description [64]

is performed, when the discrepancy was zero and the next operation extends the solution vector

with non-zero components.

After the first steps of the algorithm and thus its initialization have been presented, we will now

point out the main operations that rely on the Toeplitz structure.

It has already become visible that the extension of the solution vector with zeros on the left or

right sides, together with considering the corresponding bigger Toeplitz sub-matrix represent the

kernel of the algorithm. In the following we study the zero-extensions, i.e., its impact on the right

side in some more detail.

158



Appending zeros on the right:

Extending the vector Γ by appending zeros on the right leads to a left shift of the right side by

one position and two new components will show up on the right side.

(1,Γ1,Γ2, . . . ,Γl) ·






Sl S2l

. . .

S0 Sl




 = (ρ0, ρ1, ρ2, . . . , ρl) (10.8)

(1,Γ1,Γ2, . . . ,Γl, 0) ·






Sl+1 S2(l+1)

. . .

S0 Sl+1




 = (ρ1, ρ2, . . . , ρl, ρl+1, ρl+2) (10.9)

Prepending zeros on the left:

Extending the vector Γ by prepending zeros on the left preserves the right side and just adds one

new component at the rightmost location.

(1,Γ1,Γ2, . . . ,Γl) ·






Sl S2l

. . .

S0 Sl




 = (ρ0, ρ1, ρ2, . . . , ρl) (10.10)

(0, 1,Γ1,Γ2, . . . ,Γl) ·






Sl+1 S2(l+1)

. . .

S0 Sl+1




 = (ρ0, ρ1, ρ2, . . . , ρl, ρl+1) (10.11)

We use the property that an earlier solution vector (before the last length change) leads to zeros

on the right side down from a certain component on. A prepending of zeros to the left preserves

this right side except for new components on the right. Let the resulting vector be Γv.

The current solution vector Γ will now be appended with zeros on the right end, shifting the right

side of the set of equations to the left, until the first non-zero component exactly matches the

position of the first non-zero component when using Γv.

Both set of equations will then have the structure

(0, . . . , 0, 1,Γv1,Γv2, . . . ) ·
(
·
)

= (0, . . . , 0
︸ ︷︷ ︸

, dvj , dvj+1, dvj+2, . . . ) (10.12)

(1,Γ1,Γ2, . . . , 0, . . . , 0) ·
(
·
)

= (
︷ ︸︸ ︷

0, . . . , 0, dj, dj+1, dj+2, . . . ) (10.13)

With a linear combination of both solution vectors, the first non-zero component dj is forced to

zero. The new solution vector will then be

Γ := (1,Γ1,Γ2, . . . , 0, . . . , 0) −
dj
dvj
︸︷︷︸

=dn/dm

(0, . . . , 0, 1,Γv1,Γv2, . . . ) (10.14)

This is equivalent to the recursion (10.2).
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The first non-zero component on the right side of the set of equations before the last length change

acts like a marking that needs to be reached by the current solution vector by rightsided appending

of zeros.

In the following, we illustrate the algorithm with two examples. The first one shows the basic

procedure more clearly, whereas Example 10.2 treats the special case of singular sub-matrices.

There, we will observe that it may even be necessary to extend the syndrome matrix by unknown

components to proceed in the algorithm. These will however not be used in the following steps.

Both examples use an odd number of syndrome components, which may first appear to be unusual,

since the correcting capability of an RS code is t = ⌊M/2⌋. When looking more carefully, one

will realize that the last syndrome component is actually not required. It can only be used for an

additional check, if all errors have been found.

From the example, we also observe that a length change in the sense of the BMA will only occur,

when dn 6= 0 ∧ 2Ln ≤ n.

The last step of the second example shows the final result together with the original 4× 4 matrix.

The BMA solution, however, was already found in the previous step. This last step was only

provided for illustration purposes. Note that it does not result from just eliminating the last row

(and last column) of the 5× 5 matrix which would correspond to the zero in the solution vector.
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Example 10.1

GF(7), primitive element: 5, syndrome length: 5

Error vector: (1, 0, 0, 0, 1, 0)

Syndrome: (5, 2, 4, 5, 2)

(1,Γ1,Γ2)





4 5 2

2 4 5

5 2 4




!
= (0, 0, 0)

(1) · (5) = (5)

(1, 0)

(
2 4

5 2

)

= (2, 4)

(1, 0) − 2
5
(0, 1) = (1, 1)

(1, 1)

(
2 4

5 2

)

= (0, 6)

(1, 1, 0)





4 5 2

2 4 5

5 2 4



 = (6, 2, 0)

(1, 1, 0) − 6
5
(0, 0, 1) = (1, 1, 3)

(1, 1, 3)





4 5 2

2 4 5

5 2 4



 = (0, 1, 5)

(1, 1, 3) − 1
6
(0, 1, 1) = (1, 2, 4)

(1, 2, 4)





4 5 2

2 4 5

5 2 4



 = (0, 0, 0)

Γ(x) = 1 + 2x+ 4x2

Γ(50) = 1 + 2 · 1 + 4 · 1 = 0 ←−
Γ(51) = 1 + 2 · 5 + 4 · 4 = 6

Γ(52) = 1 + 2 · 4 + 4 · 2 = 3

Γ(53) = 1 + 2 · 6 + 4 · 1 = 3

Γ(54) = 1 + 2 · 2 + 4 · 4 = 0 ←−
Γ(55) = 1 + 2 · 3 + 4 · 2 = 1

Error positions: 0 and 4
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Example 10.2

GF(11), primitive element: 6, syndrome length: 7

Error vector: (1, 0, 1, 0, 4, 0, 0, 0, 0, 0)

Syndrome: (5, 8, 4, 7, 4, 5, 8)

(1,Γ1,Γ2,Γ3)







7 4 5 8

4 7 4 5

8 4 7 4

5 8 4 7







!
= (0, 0, 0, 0)

(1) · (5) = (5)

(1, 0)

(
8 4

5 8

)

= (8, 4)

(1, 0) − 8
5
(0, 1) = (1, 5)

(1, 5)

(
8 4

5 8

)

= (0, 0)

(1, 5, 0)





4 7 4

8 4 7

5 8 4



 = (0, 5, 6)

(1, 5, 0, 0)







7 4 5 8

4 7 4 5

8 4 7 4

5 8 4 7







= (5, 6, 3, 0)

(1, 5, 0, 0) − 5
5
(0, 0, 0, 1) = (1, 5, 0, 10)

(1, 5, 0, 10)







7 4 5 8

4 7 4 5

8 4 7 4

5 8 4 7







= (0, 9, 10, 4)

(1, 5, 0, 10) − 9
5
(0, 1, 5, 0) = (1, 1, 2, 10)

(1, 1, 2, 10)







7 4 5 8

4 7 4 5

8 4 7 4

5 8 4 7







= (0, 0, 8, 3)

(1, 1, 2, 10, 0)









4 5 8 ? ?

7 4 5 8 ?

4 7 4 5 8

8 4 7 4 5

5 8 4 7 4









= (0, 8, 3, ?, ?)
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(1, 1, 2, 10, 0) − 8
5
(0, 0, 1, 5, 0) = (1, 1, 7, 2, 0)

(1, 1, 7, 2, 0)









4 5 8 ? ?

7 4 5 8 ?

4 7 4 5 8

8 4 7 4 5

5 8 4 7 4









= (0, 0, 0, ?, ?)

(1, 1, 7, 2)







7 4 5 8

4 7 4 5

8 4 7 4

5 8 4 7







= (0, 0, 0, 0)

Γ(x) = 1 + x+ 7x2 + 2x3

Γ(60) = Γ(1) = 0 ←−
Γ(61) = Γ(6) = 9

Γ(62) = Γ(3) = 0 ←−
Γ(63) = Γ(7) = 3

Γ(64) = Γ(9) = 0 ←−
Γ(65) = Γ(10) = 5

Γ(66) = Γ(5) = 10

Γ(67) = Γ(8) = 7

Γ(68) = Γ(4) = 3

Γ(69) = Γ(2) = 3

Error positions: 0, 2, and 4
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10.2 Massey’s description of the Berlekamp algorithm

As was mentioned, the algorithm was originally described by Berlekamp in [63] and later illustrated

as shift-register synthesis by Massey in [64]. In Massey’s paper, all main proofs are given, especially

the one showing that successively always the shift register of shortest length is found. Also the

exact step size for length changes is derived there. In the following we provide the algorithm in

Massey’s formulation, which may directly be used for programming.

1) 1→ Γ(x) 1→ Γv(x) 1→ τ

0→ L 1→ dm 0→ n

2) IF n = M − 1, STOP. OTHERWISE COMPUTE

dn = Sn +
∑L

i=1 ΓiSn−i .
3) IF dn = 0, THEN τ + 1→ τ , GO TO 6).

4) IF dn 6= 0 AND 2L > n, THEN

Γ(x)− dnd
−1
m xτΓv(x)→ Γ(x)

τ + 1→ τ

GO TO 6).

5) IF dn 6= 0 AND 2L ≤ n, THEN

Γ(x)→ Λ(x)

Γ(x)− dnd
−1
m xτΓv(x)→ Γ(x)

n + 1− L→ L

Λ(x)→ Γv(x)

dn → dm
1→ τ.

6) n + 1→ n RETURN TO 2).

(10.15)

(τ corresponds to the shift n−m.)

It is assumed that the operations become clear from the previous sections. In the following few

paragraphs, some remarks for a deeper understanding of the BMA are provided.

10.3 Error and erasure decoding in the BMA

As we already know, erasures can be seen as errors at known positions. In analogy to the error-

locator polynomial, we define an erasure polynomial

Λ(x) =
∏

j∈IE
(x− zj) , (10.16)

where IE denotes the index set of the erasure positions (|IE| = aE).

With the matrix description, it is obvious that the algorithm should now start with the subset of

equations

(1,Λ1,Λ2, . . . ,ΛaE) ·






SaE S2aE
. . .

S0 SaE




 = (ρ0, ρ1, ρ2, . . . , ρaE ) , (10.17)

164



i.e., the vector Γ will be initialized by Λ. Then, the appending (→ Γ(x)) and prepending (→
Γv(x)) of zeros follows. The roots of the erasure polynomial Λ(x) will be preserved when initializing

the BMA with it. Λ(x) will be a factor both in Γ(x) and in Γv(x), meaning that this factor will

be preserved in all linear combinations of the two polynomials.

The first usable discrepancy in the above set of equations is ρ0. Hence, the syndrome length that

is left for determining the remaining errors is M−aE . The number of correctable additional errors

will then be
⌊
M−aE

2

⌋
.
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