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Abstract— We described a Turbo-like iterative de-
coding for analog product codes and prove that the
iterative decoding method is an iterative projection
in Euclidean space and converge to least-squares
solution. Using this geometric point of view, any block
analog codes can be decoded by a similar iterative
method.

I. ENCODING

We first study the analog product code with parity-
check component codes [1]. The encoding extends
construction of a product code with binary parity
check component codes to the analog (real/complex)
number field. The N = n? analog symbols are first
arranged by an n X n matrix and then mapped into
an (n + 1) x (n + 1) matrix X such that the sum
along each column equals to zero and the sum along
each row equals to zero.

In order to simplify the analysis, we define x
contains the sequence of columns of X:

x = vec (X)

A parity-check matrix H, Hx = 0 can be con-
structed as
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-] o

where ®@ denotes the Kronecker product and 1 is
an (n + 1)-dimensional column vector of 1’s. H;
and H» are corresponding to column and row con-
straints, respectively. It is known that the codeword
space X is uniquely defined by the parity-check
matrix as

o[

H,

X ={x: Hx =0}.

If we define two spaces corresponding to the column
and row constraints as

Hy =
Hy =

then X = H; N 'Hos.

{z : Hix = 0}

{z : Hyx = 0} @

II. DECODING

Given the noise corrupted received codeword Y
and knowing that the rows and columns sum to be
zeros, we compute two types of information for each
symbol:

n+1
Yiij = — Z Yij Lj=1,...,n+1

e ®

Y2i5 = — Z Yij ,7=1,...,m+1
i=1,i#£j

where y; ; denoting the components of Y. The
algorithm is the analog counterpart of the one for
binary product codes usually used to explain Turbo
decoding. Equations (3) show the extrinsic informa-
tion of the rows and columns, respectively.

Let y = vec (YY), the two types of extrinsic in-
formation can also be represented by vector format:

I®Dy and (I®I)y

where I is the (n + 1) x (n + 1) identity matrix,
I=E-1 Eisan (n+1)x (n+1) matrix of 1's.

The decoding method is an analog counterpart of
the Turbo decoding for binary codes in [2] where the
estimated vector is computed as the weighted sum
of the previous vector and the extrinsic information
vectors
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where w is weight parameter, k& denotes the iteration
step index and

o w
Yoy = 1aswd ©E)ye-)

2) _
Ye—1) = 330 (B ® Dy(i—1)-
We can prove that yé;ll) is orthogonal to space
‘H1 by showing that it is a linear combination of
columns of H{ as
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where

w
= H .
(e 112w 1Y(k-1)
Furthermore, when w = ﬁ Hy - (yg-1) —

y(;ll)) = 0. This means yg,_1) — y(;ll lies in
1 by the definition of H; (r.f. (2)). Thus, when
D . o
w = ﬁ, Y1) —ygkll)ls the projection of y(;_1)
onto space Hj. Similarly, yg_1) — y((z)_l) is the
projection of y(,_1) onto space Hs, see Fig. 1.
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Fig. 1. The projection of y(;_1) onto the space H1

A geometric illustration of Eqn. (4) for w = ﬁ
is given in Fig. 2. At each iteration step k, the
previous vector y(,_1) is projected onto H; and
‘H2 in parallel which deliver two projection vectors
—ygi)_l) and —ygz)_l). Both projection vectors are
added to y(;_1) resulting the current vector yx).
From Fig. 2, we see that this process makes Y.
converge to Hj N Hy which is actually the least-
squares solution. It is shown in (5) that the length
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Fig. 2. A geometric illustration of the iterative decoding when

_ 1
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of y((li)_l), yg)_l) is determined by the parameter w,
the larger w 1is, the longer the length is.

In order to confirm yY(.) € H1MH2, y(—1) should
always be located in between H; and Hs in each
iterative step which means 0 < w < 1/(n —1).

Furthermore, we notice that the speed of the con-
vergence can be improved if w is properly chosen.

III. ITERATIVE DECODING FOR ANY BLOCK
ANALOG CODE

For any block analog code, its parity check matrix
H can be expressed as
_ | Ha
H = [ o ] |
Let Hi,H2 be orthogonal spaces to Hi, Ho,
respectively. Our decoding approach is to find the
projection of a vector y(;_1) onto Hy, Ha.

Assume that y(;_1) — y((;)_l) is the projection of
Y—1) onto space Hy and Y1) — y((ill) is the
projection of y(;_1) onto space Hj. The iterative
algorithm can be written as

— (1) (2)
Yk) = Yk-1) — AY1) — AYe1)-
As long as A < 1, y(,) Will converge to the least-
squares solution.
According to Fig. 1, y((l?_l) is orthogonal to Hj,
thus can be expressed as a linear combination of
columns of H{ . Without loss of generality, suppose

1 _ T
y(k_l) = Hj .

Since y(_1) — y((;)_l) lies in Hj, we have

Hi-(yg-1) —yéi),l)) = Hy-(yg—1)— Hi o) = 0.
The solution for o is
a=(HH)""Hyyg_1

The prerequisite for this solution is that H; is a row
full-rank matrix, otherwise the inverse of (H;HY)

does not exit. Now, y((,al) can be expressed as

y((li)—l) = H{ (H\H]) 'Hiy3_1), (6
Similarly,
2 _
y((k)q) = Hj (HyH3 )~ Hay,—1).

where H5 must also be a row full-rank matrix.

IV. CONCLUSION

Starting from a geometric illustration of the iter-
ative decoding of analog product codes, we found
an iterative decoding procedure for arbitrary linear
analog block codes by splitting its parity-check
matrix in two and projecting received codewords
onto the Null spaces of these two matrices in an
iterative fashion.
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