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Abstract— We described a Turbo-like iterative de-
coding for analog product codes and prove that the
iterative decoding method is an iterative projection
in Euclidean space and converge to least-squares
solution. Using this geometric point of view, any block
analog codes can be decoded by a similar iterative
method.

I. ENCODING

We first study the analog product code with parity-
check component codes [1]. The encoding extends
construction of a product code with binary parity
check component codes to the analog (real/complex)
number field. The N = n2 analog symbols are first
arranged by an n× n matrix and then mapped into
an (n + 1) × (n + 1) matrix X such that the sum
along each column equals to zero and the sum along
each row equals to zero.

In order to simplify the analysis, we define x
contains the sequence of columns of X:

x = vec (X)

A parity-check matrix H,Hx = 0 can be con-
structed as

H =
[

H1

H2

]
=

[
I ⊗ 1T

1T ⊗ I

]
(1)

where ⊗ denotes the Kronecker product and 1 is
an (n + 1)-dimensional column vector of 1′s. H1

and H2 are corresponding to column and row con-
straints, respectively. It is known that the codeword
space X is uniquely defined by the parity-check
matrix as

X = {x : Hx = 0}.
If we define two spaces corresponding to the column
and row constraints as

H1 = {x : H1x = 0}
H2 = {x : H2x = 0} (2)

then X = H1 ∩H2.

II. DECODING

Given the noise corrupted received codeword Y
and knowing that the rows and columns sum to be
zeros, we compute two types of information for each
symbol:

y1i,j = −
n+1∑

j=1,j 6=i

yi,j i, j = 1, . . . , n + 1

y2i,j = −
n+1∑

i=1,i 6=j

yi,j i, j = 1, . . . , n + 1

(3)

where yi,j denoting the components of Y . The
algorithm is the analog counterpart of the one for
binary product codes usually used to explain Turbo
decoding. Equations (3) show the extrinsic informa-
tion of the rows and columns, respectively.

Let y = vec (Y ), the two types of extrinsic in-
formation can also be represented by vector format:

(I ⊗ Ī)y and (Ī ⊗ I)y

where I is the (n + 1) × (n + 1) identity matrix,
Ī = E− I , E is an (n+1)× (n+1) matrix of 1′s.

The decoding method is an analog counterpart of
the Turbo decoding for binary codes in [2] where the
estimated vector is computed as the weighted sum
of the previous vector and the extrinsic information
vectors
y(k) = (y(k−1) − w(I ⊗ Ī)y(k−1) − w(Ī ⊗ I)y(k−1))/(1 + 2w)

= y(k−1) − y
(1)
(k−1) − y

(2)
(k−1)

(4)
where w is weight parameter, k denotes the iteration
step index and

y
(1)
(k−1) = w

1+2w (I ⊗E)y(k−1)

y
(2)
(k−1) = w

1+2w (E ⊗ I)y(k−1).
(5)

We can prove that y
(1)
(k−1) is orthogonal to space

H1 by showing that it is a linear combination of
columns of HT

1 as

y
(1)
(k−1) = HT

1 α



where

α =
w

1 + 2w
H1y(k−1).

Furthermore, when w = 1
n−1 , H1 · (y(k−1) −

y
(1)
(k−1)) = 0. This means y(k−1) − y

(1)
(k−1) lies in

H1 by the definition of H1 (r.f. (2)). Thus, when
w = 1

n−1 , y(k−1)−y
(1)
(k−1)is the projection of y(k−1)

onto space H1. Similarly, y(k−1) − y
(2)
(k−1) is the

projection of y(k−1) onto space H2, see Fig. 1.

y(k−1) − y
(1)
(k−1)

0
H1 = {x : H1x = 0}
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−y
(1)
(k−1)

Fig. 1. The projection of y(k−1) onto the space H1

A geometric illustration of Eqn. (4) for w = 1
n−1

is given in Fig. 2. At each iteration step k, the
previous vector y(k−1) is projected onto H1 and
H2 in parallel which deliver two projection vectors
−y

(1)
(k−1) and −y

(2)
(k−1). Both projection vectors are

added to y(k−1) resulting the current vector y(k).
From Fig. 2, we see that this process makes y(∞)

converge to H1 ∩ H2 which is actually the least-
squares solution. It is shown in (5) that the length
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Fig. 2. A geometric illustration of the iterative decoding when
w = 1

n−1
.

of y
(1)
(k−1), y

(2)
(k−1) is determined by the parameter w,

the larger w is, the longer the length is.
In order to confirm y(∞) ∈ H1∩H2, y(k−1) should

always be located in between H1 and H2 in each
iterative step which means 0 < w ≤ 1/(n− 1).

Furthermore, we notice that the speed of the con-
vergence can be improved if w is properly chosen.

III. ITERATIVE DECODING FOR ANY BLOCK

ANALOG CODE

For any block analog code, its parity check matrix
H can be expressed as

H =
[

H1

H2

]
.

Let H1,H2 be orthogonal spaces to H1, H2,
respectively. Our decoding approach is to find the
projection of a vector y(k−1) onto H1,H2.

Assume that y(k−1) − y
(1)
(k−1) is the projection of

y(k−1) onto space H1 and y(k−1) − y
(2)
(k−1) is the

projection of y(k−1) onto space H2. The iterative
algorithm can be written as

y(k) = y(k−1) − λy
(1)
(k−1) − λy

(2)
(k−1).

As long as λ ≤ 1, y(∞) will converge to the least-
squares solution.

According to Fig. 1, y
(1)
(k−1) is orthogonal to H1,

thus can be expressed as a linear combination of
columns of HT

1 . Without loss of generality, suppose

y
(1)
(k−1) = HT

1 α.

Since y(k−1) − y
(1)
(k−1) lies in H1, we have

H1 ·(y(k−1)−y
(1)
(k−1)) = H1 ·(y(k−1)−HT

1 α) = 0.

The solution for α is

α = (H1H
T
1 )−1H1y(k−1)

The prerequisite for this solution is that H1 is a row
full-rank matrix, otherwise the inverse of (H1H

T
1 )

does not exit. Now, y
(1)
(k−1) can be expressed as

y
(1)
(k−1) = HT

1 (H1H
T
1 )−1H1y(k−1) (6)

Similarly,

y
(2)
(k−1) = HT

2 (H2H
T
2 )−1H2y(k−1).

where H2 must also be a row full-rank matrix.

IV. CONCLUSION

Starting from a geometric illustration of the iter-
ative decoding of analog product codes, we found
an iterative decoding procedure for arbitrary linear
analog block codes by splitting its parity-check
matrix in two and projecting received codewords
onto the Null spaces of these two matrices in an
iterative fashion.



REFERENCES

[1] M. Mura, W. Henkel and L. Cottatellucci, Iterative Least-
Squares Decoding of Analog Product Codes, IEEE Intern.
Symp. on Information Theory (ISIT 2003), Yokohama, June
29 - July 4, 2003.

[2] J. Hagenauer, E. Offer, and L. Papke, ”iterative decoding
of binary block and convolutional codes,” IEEE Trans. In-
formation Theory, vol. 42, no.2, March 1996.


