Einfluß der Apertur bei der Abtastung kontinuierlicher Signale

In den Datenblättern vieler A/D-Umsetzer findet sich die Angabe: "Aperture Errors = ...". Dabei ist oft nicht klar herausgestellt, ob mit diesem Begriff die Dauer der Abtastung oder stochastische Schwankungen des Abtastzeitpunktes gemeint sind. Im folgenden sind die Einflüsse beider Effekte getrennt beschrieben.

1 Die Aperturöffnung

Die Aperturöffnung t_A ist die Zeitspanne der Abtastung, die nur in der Theorie den Wert Null annimmt, in der Praxis jedoch nicht zu vernachlässigen ist. Unter der Annahme, daß die Sample-and-Hold-Schaltung am Eingang eines A/D-Umsetzers während der Aperturöffnung t_A integrierendes Verhalten zeigt, ergibt die folgende Rechnung im Laplace-Bereich das Frequenzverhalten:

$$f_{A}\left(t\right) = \frac{1}{t_{A}} \int_{t-t_{A}/2}^{t+t_{A}/2} f\left(\tau\right) \ d\tau = \frac{1}{t_{A}} \int_{0}^{t+t_{A}/2} f\left(\tau\right) \ d\tau - \frac{1}{t_{A}} \int_{0}^{t-t_{A}/2} f\left(\tau\right) \ d\tau$$

$$F_{A}\left(p\right) = \frac{1}{t_{A}} \int\limits_{-t_{A}/2}^{\infty} \int\limits_{0}^{t+t_{A}/2} f(\tau) \ d\tau \ e^{-pt} dt - \frac{1}{t_{A}} \int\limits_{t_{A}/2}^{\infty} \int\limits_{0}^{t-t_{A}/2} f(\tau) \ d\tau \ e^{-pt} dt$$

Betrachtung des ersten Summanden liefert:

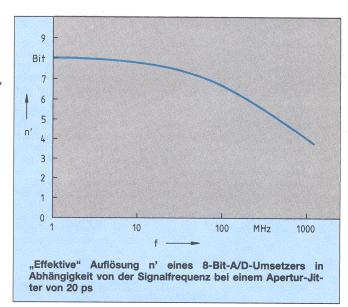
$$\begin{split} \frac{1}{t_A} \int\limits_{-t_A/2}^{\infty} \int\limits_{0}^{t+t_A/2} f(\tau) \ d\tau \ e^{-pt} dt &= e^{pt_A/2} \ \frac{1}{t_A} \int\limits_{0}^{\infty} \int\limits_{0}^{t'} f(\tau) \ d\tau \ e^{-pt'} dt' \\ &= \frac{e^{pt_A/2}}{t_A} \left[\int\limits_{0}^{t'} f(\tau) \ d\tau \ \frac{e^{-pt'}}{-p} \ \Big|_{0}^{\infty} - \int\limits_{0}^{\infty} \frac{f(t')}{-p} \ e^{-pt'} dt' \right] \\ &= 0 \end{split} \tag{partielle Integration}$$

$$= \frac{e^{pt_A/2}}{pt_A} F(p), \text{ wobei } F(p) \longrightarrow f(t)$$

Mit $F_{\Delta}(p) = A_{G}(p) F(p)$ folgt

$$A_{G}(p) = \frac{e^{pt}A^{/2}}{pt_{A}} - \frac{e^{-pt}A^{/2}}{pt_{A}} = \frac{1}{pt_{A}} 2 \sin h (pt_{A}/2)$$

Setzt man $p=j\omega$, so ergibt sich


$$A_{G}(j\omega) = \frac{2\sin(\omega t_{A}/2)}{\omega t_{A}} = \frac{\sin(\omega t_{A}/2)}{\frac{\omega t_{A}}{2}}$$

Zu diesem Ergebnis hätte man natürlich schneller gelangen können, wenn man die Transformationsregeln der Laplace-Transformation direkt verwendet hätte. Hier sollte jedoch einmal ganz formal die Rechnung vorgeführt werden. Wie man sieht, führt die endliche Aperturöffnung t_A zu einem "sin(x)/x"-Frequenzgang.

2 Apertur-Jitter

Der Apertur-Jitter Δt_A bezeichnet den gesamten Variationsbereich des stochastisch schwankenden Abtastzeitpunktes, also die Zeitspanne zwischen maximaler positiver und maximaler negativer Abweichung. Zur Veranschaulichung sei der Einfluß des Apertur-Jitters als Verringerung der Auflösung eines A/D-Umsetzers dargestellt.

Nimmt man eine Sinusaussteuerung $u_s=\hat{u}\cos(\omega t)$ eines A/D-Umsetzers an, so ergibt eine Linearisierung

Elektronik-Arbeitsblatt Nr. 167

der Sinuskurve im Nulldurchgang die Steigung u_s ' = $\hat{u}\omega$. Als "Worst-Case"-Abschätzung sei der Abtastzeitpunkt in diesem steilsten Bereich gelegen; es ergibt sich dann bei Vorhandensein eines Apertur-Jitters Δt_A ein Streubereich der Spannung von

$$\Delta u = \hat{u} \omega \Delta t_A$$

Bei Vollaussteuerung des A/D-Umsetzers mit $\hat{u}=q2^{n-1}=E/2$ (n: Auflösung, q: Stufenbreite, E: Aussteuerbereich) erhält man:

$$\begin{split} \Delta u &= q \, 2^{n-1} \, \omega \Delta t_A \\ \frac{\Delta u}{q} &= 2^{n-1} \, \omega \Delta t_A \, \left(= \frac{\text{Streubereich}}{\text{Stufenbreite eines idealen ADC's}} \right) \end{split}$$

Dies läßt sich als Verminderung der Auflösung Δn ansehen, die sich dann wie folgt ergibt:

$$\Delta n = -\log_2 (\Delta u/q + 1) = -\log_2 (2^{n-1}\omega \Delta t_{\Delta} + 1)$$

Daraus resultiert die "effektive" Auflösung n' in Abhängigkeit von der Signalfrequenz:

$$n' = n - \log_2 (2^{n-1} \omega \Delta t_A + 1) = n - \log_2 (2^n \pi f \Delta t_A + 1)$$

Das hier dargestellte Diagramm zeigt die "effektive" Auflösung n'(f) für $\Delta t_A=20$ ps und n=8.

Es sollte noch einmal klar herausgestellt werden, daß es sich bei n' um eine "Worst-Case"-Abschätzung handelt und die wahre Auflösung für Sinusaussteuerung oberhalb der Kurve anzunehmen ist. Die Darstellung ist exakt für ein Dreiecksignal der Steigung $q\omega 2^{n-1}$

Dipl.-Ing. Werner Henkel

Sachgebiet	Nr.	Thema	Heft	Seite
Analogtechnik	134	CCD-Filter	22/80	129132
	135	Berechnung des Frequenzgangs von Video-Operationsverstärkern	24/80	101104
	136	Schaltungstechnik von Video-Operationsverstärkern	26/80	81 84
	140	Der Entwurf von Schalter-Kondensator-Filtern als aktive Kettenleiter	8/81	105108
	142	Steilflankige Trennung von hohen und tiefen Frequenzen	12/81	105108
	143	Der C-Verstärker	14/81	77 80
	144	Aktive Filter 3. Ordnung	16/81	67 70
			18/81	109112
	150	Das Rauschen von Operationsverstärkern	6/82	59 62
			8/82	107108
	152	Filtergrundglieder 2. Ordnung mit optimaler Empfindlichkeit	14/82	63 64
			16/82	53 54
	155	Die Gleichtaktunterdrückung beim Differenzverstärker	22/82	125128
	158	Eigenschaften und Stabilität aller Gegenkopplungsarten	5/83	91 94
			6/83	85 88
	164	Steilflankige aktive Filter mit FDNRs	9/84	69 72
	138	Begriffe der Qualitätssicherung	4/81	99102
Bauelemente	161	Die Schaltungstechnik von Leistungs-MOSFETs	16/83	45 48
			17/83	53 56
			18/83	105106
			19/83	65 68
Digitaltechnik	153	Erzeugung von Pseudo-Zufallsfolgen mit binären Schieberegistern	18/82	79 82
	163	Parallel arbeitende Scrambler, Descrambler und Zufallsfolgen-Generatoren	26/83	67 70
	165	Aufbau und Arbeitsweise digitaler PLL-Schaltungen	14/84	57 60
			15/84	63 64
Elektromechanik	160	Elektrische Kleinmotoren	15/83	47 50
Grundlagen	145	Supraleitung	20/81	111114
	146	Zeitdiskrete Signalverarbeitung und z-Transformation	22/81	65 68
	154	Kennlinienapproximation mit Mikrocomputern	20/82	79 82
	156	Elektrostatische Aufladung – Gefahr für Halbleiter	3/83	65 68
Hochfrequenztechnik	147	Gruppenlaufzeit-Entzerrer für höhere Frequenzen	25/81	125130
	148	Optimale Dimensionierung des transformierenden Pi-Filters	2/82	71 74
	159	Smith-Diagramm per Software	12/83	71 72
	166	Gesetze und Normen zur Funkentstörung	20/84	87 88
Lasertechnik	141	Grundlagen der Lasertechnik	10/81	97102
Nachrichtentechnik	124	Die V und die XEmpfehlungen des CCITT	21/79	87 90
	127	Die Pulscode-Modulation (PCM)	1/80	85 88
	131	Grundlagen der Lichtleitertechnik	15/80	75 78
			16/80	69 72
Prozeßautomatisierung	137	Der PDV-Bus	2/81	91 92
Stromversorgung	125	BASIC-Programm für die Berechnung von Netztransformatoren	23/79	81 84