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Abstract— We define analog product codes as a special case of
analog parallel concatenated codes. These codes serve as a tool to
get some more insight into the convergence of “Turbo” decoding.
We prove that the iterative “Turbo”-like decoding of analog prod-
uct codes indeed is an estimation in the least-squares sense and
thus correspond to the optimum maximum-likelihood decoding.

I. INTRODUCTION

Since the invention of “Turbo” codes in 1993 [1], the coding
community has developed some insights into the behavior of
iterative decoding. So-called EXIT charts [5] show the devel-
opment of the mutual information between the transmitted data
and the extrinsic information (a-priori of the following decod-
ing). Thus they are a suitable tool to view the convergence in
the water-fall region of the bit-error rate curves. At the high-
SNR far end of the curve, the distance properties of the code
determine the performance. The minimum distance can be es-
timated by sending simple weight-2 or weight-3 patterns and
checking for the weight of the encoded sequence.

The intuitive understanding of the iterative behavior, how-
ever, is still not very developed. In this paper, we try an ap-
proach based on so-called Analog Codes [2—4], which are codes
over real or over complex numbers. Without discretizing (quan-
tizing), the iterative Turbo-like decoding algorithm can be un-
derstood with the tools of numerical mathematics. We show
that the iterative decoding indeed converges to the least-squares
solution which corresponds to the maximum-likelihood decod-
ing.

After describing the encoding of an analog product code in
the next section, we discuss the decoding in Section Ill, fol-
lowed by a more detailed analysis of the convergence in sec-
tions 1V to VI. An exemplary simulation result and some re-
marks conclude the paper.

Il. ENCODING

The considered discrete time communication system consists
of a source with statistically independent analog (real) symbols

X, ablock analog encoder, an additive noise channel, and a de-
coder. For simplicity, we consider the information sequence X
of length IV to be the realization of a white Gaussian stochastic
process with mean 0 and variance o2 = 1.

We assume that N = n? so that the sequence can be represented
as a matrix X of dimension n x n:
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whose rank is not greater than n. The block analog encoder we
refer to extends the idea of parity check block codes for binary
sources to analog sources. It maps the X matrix into the matrix
X*,
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This describes a product code with analog “parity-check’ com-
ponent codes, i.e., DC-free component codes.

The average power of the information components is chosen to
be 1. Since the sum of n Gaussian random variables with zero
mean and variance o2 is still a Gaussian random variable with
zero mean and variance o2 = n - 02, the average power of the
parity symbols is equal to n - 02 = n. The mean power of the



codeword is )
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The rank of the matrix that represents the codeword is still
equal to n. Then the number of redundant symbols is equal to
2n+1 and consequently the code rate is equal to n? / (n? +2n+
1).

Let us suppose that the codeword is corrupted by additive Gaus-
sian noise on a memoryless channel. Then in general the rank
of the received matrix is equal ton + 1.
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I1l. DECODING STRATEGY

In this section, the decoding algorithm is described. Given
the received codeword R q), the basic idea is to compute two
new matrices R; and R, whose elements are
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with r; ; denoting the components of R, k = 0,1,... . The
algorithm is the analog counterpart of the one described in, e.g.,
[6] for binary array codes. Equations (4) show the extrinsic in-
formation of the rows and columns, respectively, knowing that
the rows and columns sum to Zero.

The steps in (4) can be written as the elements of two update
matrices
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The actual matrix is then computed as the weighted sum of the
previous matrix and the update matrices:

(Rin_1) = wIR(_1) —wIR, 1))/(1+ 2w)
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In order to simplify the description of the method, the received
matrix is written as a vector that contains the sequence of its
rows. Let this vector be y,. The computation can then be
described as

R
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Y1) is the vector obtained at the k** iteration step. & is the
iteration matrix of dimension (n + 1) x (n + 1)? defined as

Y

® = (I-wM;—wM,)/(1+2w)
= (I-w(M;+ My))/(1+2w). 9)

Tisthe (n+1) x (n+1) identity matrix, M and M, describe
the computation per columns and per rows, respectively, w is a
weight which depends on the matrix dimension.
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Z denotes a matrix of zeros of dimension (n + 1) x (n + 1).
® is Hermitian as well as the sum M + M.

IV. CONVERGENCE

An iterative method defines a sequence of vectors

Yoy Ya) Yy » (12)
such that ideally the sequence would converge to
k— o0 *
y(k) ;> (vect) (13)
or
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where w?‘vect) indicates the vector composed of the rows of the
matrix X *. Because of the equivalence of finite norms, ||.|| may
be any norm (cf. [9]). The necessary condition for the method
not to diverge is

p(®) <1, (15)

i.e.,, the spectral radius of the iteration matrix must be less than
or equal to one.

V. EIGENVALUES

In this section we prove that under some conditions the spec-
tral radius of the iterative matrix & is less or equal to 1. A
Hermitian matrix is diagonalized by its eigenvectors. It can be
written as

1+2w)® =1I—w(M; + Ms)
=TI —w( + AT?
=T(A)TY,

(16)

where I" and A are the diagonally similar matrices of My and
M ,, respectively. A is the diagonal matrix of the eigenvalues
and the columns of T are the corresponding eigenvectors.

For simplicity, we rewrite the sum M; + M, as the sum of
two other matrices M and M

M+ My =M, + M, 17



where
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E is a matrix of all ones of dimension (n + 1) x (n +1).

We can notice that M, and M, are two block circular matrices

whose blocks have the same dimensions. Consequently, they

can be block diagonalized by the same matrix [10]
U=FQI. (20)

® denotes the Kronecker product and F is the Fourier transfor-

mation matrix:
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where w = e~ »+1. We obtain
M, =U@U", (22)
where T is diagonal. Since M, is already block diagonal
M, =U(M,)U" = M, , (23)

to diagonalize M, we can independently diagonalize every
block E with the matrix F'. Therefore, the matrix that diag-
onalizes M5 is

[F Z Z
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Now, we concentrate on the eigenvalues of M, and M, that
constitute the diagonal matrix. The eigenvalues of a circular
matrix can be found as the Discrete Fourier Transform (DFT)
of its first column. Since M is block circular but not circular,

we look for a block diagonal matrix
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The element d;; of D, (0 < k < n) is the k" element of the
DFT of the vector consisting of the elements on position (7, 5)
of every block of (—1I,1,...., I), which is the first “block col-
umn” of M. Since the vectors of elements d; ; with i # j are
always equal to zeros, the elements outside the main diagonal
are equal to zero and Dy is diagonal. Because of the symme-
tries, for every element d;; we have to consider the same vector
V!

v=(-1,1......1), (27)
whose DFT is:
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The eigenvalues of E are the DFT of the vector [1,1,-- - ,1]
whichare [n + 1,0,---,0].
If we indicate the main diagonal of A as maindiag(A), we have:

(1 + 2w)maindiag(A) =




Therefore, there are:

H 1—2wn
1 eigenvalue equal to . 1+(—2w1),

. —w\n—
2 eigenvalues equal to =757 (34)
n? eigenvalues equal to 1.

We see that there exist n? eigenvalues equal to one, which is the
dimension of the subspace of the solutions of the system.
For convergence we require

|1 -2wn| <1,
{|1—w<n—1)|51, (39)
which yields the condition
0<w<1/n. (36)
VI. LEAST-SQUARES DECODING
We found that
& =TATY . (37)

A is the diagonal matrix of eigenvalues of ® described in the
previous section, T consists of the eigenvectors ¢; ....t,, of ®,
and since ® is Hermitian, they are mutually independent, and
eigenvectors associated with different eigenvalues are mutually
orthogonal. Without loss of generality, we can assume that

tit; =0, 4,j=1..n (38)
Equation (8) can be rewritten as
Yy = Wy =TADT y () (39)
Since
lim (maindiag(A¥)) =1[0,---,0,0,1,---,1,---,0,1,---,1],
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n+1 n n
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(40)

the vector y¥), k — oo is the projection of %(©) onto the sub-
space spanned by the eigenvectors associated with the eigen-
value equal to one. For a three dimensional illustration, see
Fig. 1.
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Fig. 1. The projection onto the solution subspace spanned by the eigenvectors
with eigenvalues 1 — a 3-dimensional simplification

We would need to prove that the solution space is really
spanned by the eigenvectors with eigenvalues one. Due to space
limitations we have to postpone this to a later publication.
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Fig. 2. Simulation Result and Concluding Remarks

VII. SIMULATION RESULTS

Simulations show a good improvement of the mean square
error after just a few iteration cycles as shown in Fig. 2, but then,
it does not decrease any further. The values we obtain agree
with the values obtained by applying the classical least squares
algorithm. As expected, this method is not able to eliminate the
noise components that lie in the solution subspace. Our further
work will be devoted to how a further improvement is achieved
by restricting the alphabet again to be discrete. This brings us
nearer to standard “Turbo’ codes.
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