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Abstract. We proposed a novel decoding algorithm for Analog Codes (Reed-Solomon Codes over 
complex numbers), the syndrome repairing (SR) algorithm, for gross error correction in signal 
transmission. Simulations show that, if the number of gross errors is not too large and the amplitude 
of background noise is small enough (compared to the amplitude of gross errors), the SR algorithm 
recovers the original signal with nearly the same accuracy as if no gross errors occur upon 
transmission. In particular, if the transmission is background-noise-free, then the recovery is exact. 

Introduction 

Analog Codes, or DFT Codes [1] is a class of Reed-Solomon Codes over the complex field ^which 
allows for the detection and correction of multiple errors. The applications of Analog Codes for 
multiple errors correction in the transmission of continuous-amplitude signals has been discussed by 
many authors [2,3]; and can be summarized as follows. Assume we wish to send a signal to a 
remote receiver via a channel composed of background noise (or simply, noise) plus gross errors (or 
simply, errors) reliably. --- Here we distinguish noise and errors by their amplitudes. More concretely, 
by noise we mean a random vector with each of its entries having Gaussian distribution 

mu

,

∈^

(0Nw 2 )σ ; 
and by error we mean a vector b  whose elements are either  (no gross errors occur for this time 
step) or some large value e  (

0
we σ� ). --- One way to address this problem is to transmit the 

codeword x Au= , where  is an  encoding matrix with n ; and then recover the original 
signal u  from the received data 

A n×m m>
y x b w+= + . In Analog Codes, the encoding matrix  is formed by 

extracting  consecutive columns from the inverse discrete Fourier transform (IDFT) matrix (of 
order n ) 
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where n  denotes the set { }0,1, , 1n −" . The reason why the IDFT matrix  is utilized here as the 1
nF −

encoding matrix is that it possesses some good properties which enable us to recover the transmitted 
signal x  from the corrupted data .                                                        y x b w= + +
 
As is well known, if the noise , almost all decoding algorithms for Reed-Solomon Codes over 

finite fields [4] can be (directly) utilized for Analog Codes to detect and correct up to 

0w =

2
n m−⎢ ⎥
⎢⎣ ⎦⎥

 errors. 

For the case in which 0w ≠ , Wolf proposed a “voting” algorithm [1] and treated a simple example 
for correcting a single error in noise to illustrate the robustness of his algorithm. Wolf's method, 
however, has exponential complexity  (  is the number of errors) and hence is impractical for 
large values of . All in all, an effective and robust decoding algorithm to detect and correct multiple 
errors in noise without using the statistics of the error and the signal is still missing.  
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In this paper we proposed a novel decoding algorithm for Analog Codes,  the  syndrome repairing 
(SR) algorithm, which is of polynomial complexity (better than Wolf's voting algorithm) and is 
capable of correcting multiple errors in noise. The core of the SR algorithm is the fact that, if there is 
no background noise, i.e., if , the “biggest” syndrome matrix  (will be defined in the next 
Section) has rank t  (the number of errors). So if the noise w  is small enough, the -th singular 
value (SV) 

0w = S
1t +

1tσ +  of should be near to zero. Thus, we can determine the number of errors t  by 
checking the SVs of . Moreover, the perturbation in S caused by the small noise  is also small, 
which makes it possible to approximate S by a new matrix 

S
S w

R  with rank t . We call R the repaired 
syndrome matrix --- this is why our algorithm is named “syndrome repairing”. We then apply the 
classical Peterson-Gorenstein-Zierler (PGZ) decoder (over ) [5] to recover the original signal u . ^
In the following sections, we first introduce the Analog Codes and the PGZ decoder using matrix 
notation; then introduce the SR algorithm in detail, whose performance were illustrated by some 
numerical experiments; and finally conclude the paper.  
 

Analog Codes and the PGZ Decoder 

Without loss of generality, let us take the last m  columns of the IDFT matrix  to form the 
encoding matrix 

1
nF −

A , yielding an ( ,  Analog Code )n m
ˆ: { | 0, }n

kC x x k d= ∈ = ∈^ ,                                                                (2) 
where  is the number of redundancies of the code C , :d n m= − x̂  is the frequency domain of x . 
 
In this section we introduce the PGZ decoder for the code C  in a new manner that only employes 
matrix notation and concepts from linear algebra. 
Applying DFT on both sides of  we get y x b w= + + ˆˆ ˆ ˆy x b w= + + . Since x  is a codeword in , C ˆkx  

and so for all ˆˆk ky b w= + ˆ k k d∈ . In the sequel, we will call these 's  syndromes and k̂b ˆky 's noised 

syndromes. In particular, if the noise 0w = , the syndrome  is equal to the noised syndrome k̂b ˆky . To 
derive the PGZ decoding algorithm, we need two propositions concerning the DFT. 
Theorem 1 For any  with weight nb∈^ 0| | / 2b t d= < ⎢ ⎥⎣ ⎦

nz

, where  denotes the number of nonzero 

elements in the vector , there is a unique vector 
0| |b

b ∈^  satisfying (1) 0iz =  iff for all 0ib ≠ i n∈ ; 
(2)  and  for all . 0ˆ ˆ| | tz z= =1 ˆ 0kz = k t>

For any  and nonnegative integers ˆ nb∈^ , ,α β γ  such that 1 nβ γ α− ≤ ≤ − , we define  to be 

the 
,

ˆ( )S bγ
α β

α β×  matrix with the -th entry ( , )i k ˆ
i kb iγ ( ,k )α β∈+ − ∈

2

+

− +
⎥

  

1 1

1
,

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ( ) :

ˆ ˆ ˆ

b b b

b b b
S b

b b b

γ γ γ β

γ γ γ γ β
α β

γ α γ α γ β α

− −

+

− + − + − +

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢
⎢ ⎥
⎢ ⎥
⎣ ⎦

"

"
# # % #

"

 .                                                               (3) 

Note that  is Toeplitz matrix.  ,
ˆ( )S bγ

α β

Theorem 2 For any  with nb∈^
0

/ 2b t d= ≤ ⎢ ⎥⎣ ⎦ , its DFT has the property b̂ { },
ˆ( )rank S b tγ

α β =  

whenever , tα β ≥ . 
Now we are ready to introduce the PGZ algorithm. Assume that 

0
: /b t dδ= ≤ = 2  and that 0w = , 

then y x b= + . For this error vector , let b nz∈^  be the unique vector stated by Theorem 1, called 
the error locator (in the time-domain). It has been already known in [5] that 



 

, ( )
ˆ ˆ( ) 0S b zγ

α β β =                    ( 1,t tβ γ≥ + ≥ )                                                                               (5) 

where .  For k d , ( ) 0 1 1ˆ ˆ ˆ ˆ: , , ,z z z zβ β −⎡ ⎤= ⎣ ⎦" < ˆ ˆkb yk= , since 2t d≤ , we have . With initial 

values 
( ) ( )

ˆ ˆtb y= t

ˆ ˆ ( )k kb y k d= ∈ , the PGZ algorithm can be summarized as follows [5]: 
Algorithm 1 The PGZ algorithm for the code C  (Eq. 3). 
1) determine the number of errors t  by  

{ } { }, 1 , 1
ˆ ˆ( ) ( )d dt rank S b rank S yδ δ

δ δ δ δ− + − += = ;                                                                      (6) 

2) compute the vectors  by setting ˆˆ,z b , , tα β γ =  in Eq. 5: 
1
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t t tz S y

−
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3) recover the input u  which is the vector consisting of the last elements of m ˆˆ ˆx y b= − . 

The Syndrome Repairing Decoder 

The PGZ decoder can detect and correct at most / 2d⎢ ⎥⎣ ⎦  when 0w = . In this section, we consider the 
case where the noise has Gaussian distribution; and the number of errors is less 
than . 

0w ≠ t
/ 2dδ = ⎢ ⎥⎣ ⎦

Firstly, we determine the number of errors t . By Theorem 2, all syndrome matrices 
with,

ˆ( )S bγ
α β , tα β ≥  have rank t and thus have the singular values (SVs):  

* * * *
1 2 10t tσ σ σ σ +≥ ≥ ≥ > = =" "   .                                                         (9) 

If the noise  is small enough, then, by matrix perturbation theory [6], the noised syndrome matrix 
, as a perturbed version of , should have SVs very near to that of . Numerical 

experiment show that there is a big drop between the t -th SV and the 

w

, ˆ( )S yγ
α β ,

ˆ( )S bγ
α β ,

ˆ( )S bγ
α β

1t + -th SV of  (the 
“biggest” noised syndrome matrix we can form), providing us with an empirical formula for 
determining the number of errors t : 

, ˆ( )S yγ
α β

{ }1 2max | 2 6i i i last i σ σ σ σ+ += > − + t ,                                                      (10) 

where iσ  is the i -th SV of the matrix  and , 1 ˆ( )dS yδ
δ δ− + lastσ  its last SV. 

 
Next, we would determine the positions of errors. For the case where , the PGZ algorithm 
provides a method for computing the error locator 

0w =
z  from the syndromes (cf. Eq. 7). When 

, only the noised syndromes k

k̂b = ŷk

0w ≠ ˆˆ ˆk ky b w= +  ( k d∈ ) are available and one can only obtain 
inaccurate error locator ẑ  by Eq. 7. But Eq. 7 only utilized the first  noised syndromes; and one 
may get more accurate estimations of the error locator by using the whole family of noised syndromes, 
by putting 

2t

, 1d t dα β= − +=  and tγ =

) d̂ tb −= −

 in Eq. 5.  Now Eq. 5 becomes an overdetermined system 
, i.e., S b . When the noise w  is small enough, the syndromes   

can be approximated by the corresponding noised syndromes 
, 1

t
d t t− + ( 1)ˆ 0tz + = d t t

ˆ( )S b , (ˆ( )−
ˆ

tzt
k̂b

ˆky ( k d∈ ), thus we may estimate the 
error locator by  

†

( ) , ( )ˆ ˆˆ ( )t
t d t tz S y y−⎡ ⎤≈ − ⎣ ⎦ d t− .                                                                                 (11) 

Comparing to Eq. 7, the above formula uses more noised syndromes and may procures more accurate 
estimations of the error locator . Moreover, based on Eq. 6, we can estimate the error locator even 
more accurately. Here is the basic idea: first modify the noised syndromes 

ẑ
ˆky ( k d∈ ) a little such that 



 

the modified syndromes, denoted by , have the property stated by Eq. 6, i.e., k̂r { }, 1 ˆ( )drank S r tδ
δ δ− + = ; 

and then estimate the error locator by Eq. 11 but with all ˆky 's replaced by the modified syndromes . 
The procedure of modifying the noised syndromes 

k̂r
ˆky  to  is called syndrome repairing (SR), and 

the whole decoding procedure is hence called the syndrome repairing algorithm. The intuition 
underlying SR is quite clear: since 

k̂r

ˆky  is a noised version of  and since the syndromes  satisfy 

Eq. 6, one may obtain a better approximation  of  than 
k̂b k̂b

k̂r b̂k ˆky  by requiring that ˆ ˆk kr y≈  and 

{ }, 1 ˆ( )drank S r tδ
δ δ− + = . The SR procedure now amounts to the problem of low rank approximation of 

Toeplitz matrices: 

{ }

2

, 1δ δ

δ δ

− +

− +, 1

ˆ ˆmin ( )

ˆ. . ( )

d F
J S y r

s t rank S r t

δ= −

d
δ

  ,                                                                         (12) 
=

where  
F
i  denotes the Frobenius norm of matrices. This problem can be efficiently solved by the 

lift-and-project algorithm [7], as follows. 
Algorithm 2 
The lift-and-project algorithm for Eq. (12). 
Input: The noised syndromes ˆky ( k∈d ) and the rank t  of the target matrix.  
Procedure: Let 0υ = , ( ) )d , 1 ˆ(R Sυ δ= y  and repeat the following steps until convergence. δ δ− +

1) Lift: (a) Compute the SVD ( ) ( ) ( ) ( )R U Vυ υ υ υ= Σ ;  
(b) replace ( )υΣ  by { }( ) , ,0,tS diagυ υ υ σ= "1 2, , ,0"υσ σ and define ( ) ( ) ( ) ( )X υ U S Vυ υ υ= .  

2) Project: Let ( 1)R υ+  be the matrix formed from ( ) ( )X υυX  by replacing the diagonals of  by the 
averages of their entries, forcing it to be Toeplitz again.  
3) Put 1υ υ← +  and return Step 1).  
Output: Extract the repaired syndromes  from the Toeplitz matrix k̂r

( )R υ  in an obvious way. 
 
The syndrome repairing algorithm can now be stated as follows.  

2
dδ ⎢ ⎥1) Compute the SVD of , where , 1 ˆ( )dSδ

δ δ− + y = ⎢ ⎥⎣ ⎦

( )t

, and determine the number of errors  by Eq. 10.  t

2) Compute the repaired syndromes  by Algorithm2.  k̂r

( )

†
ˆt r3) Estimate the error locator  by ẑ ,

t
t dz S d̂rˆ t− −

d

⎡ ⎤⎣ ⎦= − . 

Numerical Experiments 

In this section, the performance of the SR algorithm is verified by some numerical experiments. In the 
first experiment, a (40,20) Analog Code is considered (so 20= and 10δ = ). We set the variance of 
noise , the number of errors 310 10wσ

−= ∼ { }1,∈

12 10

2,",5t and the amplitude of errors . 5000 
input vectors u are randomly produced; for each of which we detect the error locations by the PGZ 
decoder, Eq. 11 and the SR algorithm. Fig. 1 shows the percentage of correctly detected error 
locations versus the amplitude of noise. We see that even for very small noise ( ), PGZ fails 
to find all the error locations; whereas Eq. 11 works perfectly well when  and SR is even 
better: it finds all error locations for

10e =

310wσ
−=

210−≤wσ
−≤ × .  wσ

In the second experiment, we use a (10, 3) Analog Codes to transmit the vector . To the 
codeword 

[1,2,3]Tu =
x  we add Gaussian noise with deviation 0.1wσ =  and 2t = 10e =errors of amplitude (on 

randomly chosen positions). The received data y are decoded by our SR algorithm and the least 



 

squares method (with or without the knowledge of gross errors). The experiment were repeated 1000 
times, yielding 1000 corrupted data y . In Fig. 2 we plotted the decoding result of the first 100 data, 
where the three elements of the (estimated) input are denoted respectively by plus (+), dot (·) and 
cross (×); and the real input is represented by circled red points. We see from the figure 
that the SR algorithm (the middle subplot) recovers the input with nearly the same accuracy as the LS 
method for which the gross errors is assumed to be known (the top subplot); and that the LS method 
simply failed to recover the input if the errors are unknown (the bottom subplot).  

[1, Tu = 2,3]
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Fig.1 The influence of noise on correctly 
detected error locations ( ) 1, 2, ,5t = "
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Fig. 2 Decoding results of SR (middle) and LS 
using (top) or not using (bottom) the knowledge 
of gross errors.  

Conclusions 

Decoding Analog codes is essentially a linear problem which requires us to solve a corrupted linear 
system. Based on matrix perturbation theory, we proposed a novel algorithm, the syndrome repairing 
(SR) algorithm, for decoding Analog Codes in background noise. Simulations show that the SR 
algorithm is efficient, accurate, and robust (against the background noise). More concretely, the SR 
algorithm gives reconstruction errors which are nearly as sharp as if no gross errors had occurred. 
Another important property of SR is that the performance of SR only depends on the 
error-noise-ration (not on signal-noise-ratio), as can be seen from the definition of syndrome 
matrices. 
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