
A Pipelined Turbo Decoder with Random Convolutional Interleaver

Werner Henkel
University of Applied Sciences

Neustadtswall 30

D-28199 Bremen, Germany

Email: Werner.Henkel@ieee.org

(formerly ftw.)

Laith Jusif and Jossy Sayir
Telecommunications Research Center (ftw.)

Donau-City-Str. 1

A-1220 Vienna, Austria

Email:
�
jusif, sayir � @ftw.at

Abstract— This paper describes a pipelined iterative decoder
(“Turbo” decoder) for parallel concatenated codes offering delay
advantages when the decoding speed of the component decoders is
not significantly higher than the channel data rate. The key com-
ponent of the decoder is a convolutional interleaver replacing the
usual random block interleaver. This interleaver is randomized by
changing the switching sequence according to a pseudo-random
sequence known at the transmitter and receiver.

I. INTRODUCTION

SINCE the introduction of “Turbo” codes in 1993 [1] the
coding community has put much effort in approaching the

Shannon limit even further. Practically, however, the delay is
much more an issue that can disqualify Turbo-like codes. Usu-
ally, big interleavers of at least 2000 bits are proposed and the
codes that approach the Shannon limit very closely only do this
with much bigger interleavers and an increased number of it-
erations. Our focus is on the reduction of the latency by us-
ing convolutional-type interleavers and codes that converge in
only a few iterations, even when we do not approach the Shan-
non limit too tightly. We adopt the original parallel concatena-
tion. The decoder, however, is pipelined to allow for higher and
continuous data throughput. This is typically required for high
data rates as, e.g., in optical communications. The pipelined
structure requires sequential operations at every stage. This
means not only a convolutional interleaver but also a decod-
ing algorithm that works sequentially, like the SOVA [2], [3]
or a sliding-window BCJR algorithm. These algorithms do not
require a blocked, terminated trellis like the original BCJR al-
gorithm [4] but operate with a limited decoding delay like the
original Viterbi algorithm does.

A standard convolutional interleaver is very structured and
will thus be inferior to the random interleavers usually applied
in Turbo coding. However, in the following section it will be-
come clear that randomization of a convolutional interleaver
is straight forward. Section 3 will then present the pipelined
Turbo decoder and Section 4 contains performance results to-
gether with the so-called EXIT charts [5] that offer an insight
into the convergence of the iterative decoding algorithm at a
certain signal-to-noise ratio.

II. A RANDOMIZED CONVOLUTIONAL INTERLEAVER

The interleaver is the key element of a Turbo coding scheme.
It determines the performance and causes the delay. The inter-
leaver type that is usually chosen for non-Turbo applications is
a convolutional interleaver due to its lower latency. We now
adopt these interleavers for Turbo codes as well.

Convolutional interleavers have especially been published by
Ramsey and Forney in [6] and [7], respectively. We follow For-
ney’s approach which is shown in Fig. 1. In there, ��� and �
denote the interleaving depth and the length of the delay el-
ements, respectively. When comparing with a standard block
interleaver, the second dimension apart from the interleaving
depth, which is usually chosen to be the code length � of the
outer code, corresponds to ���	��
������� . Due to the tri-
angular structure of the delay registers with its complementary
use in transmitter and receiver, the total delay (and memory re-
quirement) is half the one that would be needed for a block
interleaver. The random interleaver of a Turbo code is actually
a block interleaver, although the order is not regular.

In iterative decoding, the (de-)interleaving has to ensure (al-
most) statistical independence in the estimations of the two de-
coders. A random (or S-random) interleaver thus has advan-
tages compared to very regular ones. The convolutional inter-
leaver in Fig. 1 can easily be randomized by just changing the
order of the switches according to a random sequence which
is modified after each full (randomized cycle). The sequence
needs, of course, to be known at the receiver to allow for syn-
chronous switching.

The convolutional interleaver is also a key element of the
pipelined Turbo decoder which will be discussed in the follow-
ing section.

III. A PIPELINED TURBO DECODER

The well-known Turbo encoder and decoder structures are
redrawn in figs. 2 and 3, respectively. A pipelined architec-
ture is achieved by duplicating the decoders, interleavers, and
deinterleavers as in Fig. 4, thus realizing the iterations at dif-
ferent stages of the pipeline. A fully pipelined design requires
sequential operations. One such sequential component is the
convolutional interleaver that has already been described. As

¡

...

...

�
� �

� �

� �

� �
� � � �

�

�����
	��� �
��� � 	 � �

��� � 	��� �
������	 � �

channel

Fig. 1. Convolutional interleaver according to [7]

a sequential1 decoder we implemented a sliding-window BCJR
algorithm. This is essentially the same as the original BCJR
algorithm as far as the forward recursion and the current tran-
sition are concerned (� and � , respectively). For the backward
recursions, an approximation is applied, namely initializing the�

’s with the � ’s of the forward recursion at some depth in the
trellis. As long as this depth, i.e., the window is big enough, no
significant performance degradation is expected.

IV. PERFORMANCE RESULTS

As component codes we chose very simple ones, namely the
well-known ��������� � code. It is especially important to select
codes with low constraint length, since we are concentrating
on very small interleavers in the order of a few hundred bits.
A high constraint length together with a small interleaver very
easily produces cycles that quickly stop the iterative improve-
ment of the likelihoods (i.e., log-likelihood ratios).

The convergence can be observed by means of the so-called
EXIT charts [5], where the function between the mutual infor-
mation between the transmitted data and the a-priory knowl-
edge and the mutual information between the transmitted and
the extrinsic information after the component decoding is de-
picted. Thus, they unveil the effect of the decoding of a
component code on the mutual information, i.e., the function!�" �$#%� !�& � . Since the extrinsic information serves as an a-
priory information for the next decoding stop, there is a similar
relation for the second decoder. This can be shown as a second
curve with swapped axis. In [5] a bit-error scaling was added
that we also include in our figures. Fig. 5 shows an exemplary
EXIT chart with a possible trajectory for our coding scheme
at an ')(�* �,+ of 1.5 dB. One can see that due to the shape of
the mutual information functions, the convergence is extremely
fast. In order to approach capacity, however, one would design
curves that only leave a small corridor.

We now compare the bit-error rate curves of a random block
interleaver with the ones of a randomized convolutional inter-
leaver obtained by simulations. We draw separate curves for-

‘Sequential’ decoder should not be understood in the classical sense stand-
ing for algorithms like Fano, Stack, and alike.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

I
A

I
E

E
b
/N

0
=1.5 dB

P
b
=0.06

0.04

0.02

0.01

0.005

0.002
0.001

Fig. 5. EXIT chart for (7,5) component codes at .0/21 3545687�9 : dB

every iteration, meaning the outcome of a cycle of two decod-
ing steps (decoders I and II). The result is shown in Fig. 6. To
allow for a halfways fair comparison, we chose the delay of
both interleavers to be the same. The delay of convolutional
interleaving plus deinterleaving is � � �<; �=�
 �
 � �?> �A@� � .
The size of a random block interleaver can only be half of this
value to make the delay equal. This causes the poorer perfor-
mance of the random block interleaver in Fig. 6. The actual
values in our simulations were �� � �CB , � �ED with a delay
of �=D
FD
 �CB �EB �GD . The corresponding random block inter-
leaver would thus only have a size of 156, which is indeed very
small. Note that we found acceptable performances with our
very small randomized convolutional interleaver, though.

V. CONCLUSIONS

We presented a fully pipelined Turbo decoder featuring
randomized convolutional interleaver/deinterleaver pairs and a
sliding-window BCJR decoding algorithm for the component
codes. We have obtained acceptable performances at very small

0 0.5 1 1.5 2
10

−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

BER

1st iteration

2nd
iteration

3rd
iteration

random block interleaver

Fig. 6. Bit-error rates as a function of . / 1 354 for a randomized convolu-
tional interleaver (first three iterations) and a random block interleaver (only
3rd iteration shown) of equal delay.

delay and fast convergence. This scheme, however, is only
suited when the decoding speed of the component decoders is in
the order of the data rate on the channel. Note that the delay of
the convolutional (de-)interleavers accumulate in the pipeline,
which seems to be unavoidable. If the decoder speed should be
much higher than the data rate, a conventional random block
interleaver is preferred, since the decoders can operate on the
block of data much faster at later iterations independent of the
data rate on the channel.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo-codes,” Proc. ICC, May 1993, pp.
1064-1070.

[2] J. Huber, and A. Rüppel, “Zuverlässigkeitsschätzung für die Ausgangs-
symbole von Trellis-Decodern,” Proc. AEÜ, 1990, Vol. 44, No. 1, pp. 8-21.
(in German)

[3] J. Hagenauer, P. Höher: “A Viterbi algorithm with soft-decision outputs
and its applications”, Proc. Globecom 1989.

[4] L.R. Bahl, J. Cocke, F. Jelinek, J. Raviv, “Optimal decoding of linear codes
for minimizing symbol error rate,” IEEE Tr. on Inf. Th., Vol. IT-20, March
1974, pp. 284-287.

[5] S. ten Brink, “Convergence behavior of iteratively decoded parallel con-
catenated codes,” IEEE Tr. on Comm., Vol. 49, No. 10, October 2001, pp.
1727-1737.

[6] J.L. Ramsey, “Realization of optimum interleavers”, IEEE Tr. on Inf. Th.,
Vol. IT-16, May 1970, pp. 338-345.

[7] G.D. Forney, “Burst-correcting codes for the classic bursty channel”, IEEE
Tr. on Comm. Techn., Vol. COM-19, Oct. 1971, pp. 772-781.

� � +

���RSC
encoder

I

interleaver

RSC
encoder

II

� @

Fig. 2. Turbo encoder of rate 1/3

interleaver

interleaver

deinterleaver

deinterleaver

decoder I

decoder II

��

� +���

� @

�	�
@

�
@

� +

��� �
��� �
� �
@

Fig. 3. Turbo decoder �� 68721����

interleaver

interleaver

deinterleaver

deinterleaver

decoder I

decoder II

��

�����

���

�	�

���� ����� �� ���

interleaver

interleaver

deinterleaver

deinterleaver

decoder I

decoder II

��

	�

	 �

	 �

�����

���

�	�

���� ������ �� ���

Fig. 4. Pipelined Turbo decoder � 68721����

