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Abstract —

An overview of countermeasures agains phase
instabilities affecting coded-modulation systems
is given. It comprises two different proposals.
One method tries to preserve the stability prop-
erties of the uncoded modulation by periodi-
cally inserting samples that are restricted to
the uncoded modulation alphabet (time-vari-
ant coded modulation). A possibility of in-
troducing a frame synchronization without any
loss in data rate is pointed out. As second
proposal, rotationally invariant coding is de-
scribed. All coding schemes are based on so-
called Multilevel Codes, where the component
codes are mostly block codes. The rotationally
invariant modulation codes achieve asymptotic

coding gains of up to 6 dB.
1 Introduction

Since Ungerbock’s trellis-coded 8-PSK had been
studied for real satellite channels, it became
obvious that the expected coding gain is re-
duced by ’cycle slips’ of the carrier loop lead-
This is due to the
fact that, of course, the retention range of the

ing to long error bursts.

carrier loop for 8-PSK is only half as wide as
that for 4-PSK. Most of the convolutional codes
used, are 180°-invariant with a wide random
walk zone between adjacent retention ranges of
size (—m/8,7/8]. If a phase jitter is stronger
than +7/8, the phase loop falls out of track,
causing a long error burst.

The probability of such a failure of the carrier
loop is reduced if the retention range could be
increased. This is possible at least for a part of
the transmitted symbols if they are taken from
a subset of the modulation alphabet, e.g. 4-
PSK in the case of coded 8-PSK. This means a

time-variant modulation code that periodically
changes the modulation alphabet.

Another possible alternative is to choose rota-
tionally invariant modulation codes (45°-invar-
iant for 8-PSK). Random walks are avoided. A
phase instability only causes the carrier loop
to pass over to a new stable working point. Of
course, errors occur during a transition, but the
length of such error events is reduced.

Both measures are not necessarily independent,
but may be combined to reduce the probability
of error bursts and shorten them if they occur.

Time-variant as well as rotationally invariant
coded modulation will be described in this con-
tribution. The underlying construction princi-
ple is established by multilevel codes (or Gen-
eralized Concatenated Codes, GCC, [1], [2]),
where the component codes are mostly block
codes. The next section is devoted to time-
variant coding, whereas the remainder deals
with rotational invariance. 27 /M-invariant M-

PSK and 7/2-invariant M-QAM are treated.

2 Time-variant block-coded
modulation

In time-variant coded modulation the code or a
time-variant mapping periodically restricts the
modulation alphabet to a subset. The idea is
due to Hagenauer/Sundberg [4] and Bertels-
meier/Komp [5]. Figure 1 shows the structure
consisting of a rate (n—1)/n convolutional code
and a time-variant mapping.

A computer search was necessary to obtain con-
volutional codes with desired Euclidean distan-
ces.

The appointment of suitable codes is simpli-
fied if multilevel block codes are chosen. For
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Figure 1: Time-variant convolutionally en-

coded modulation

a M-PSK (or even M-QAM), logaM binary
component codes of equal length n are nec-
essary to protect the logo M binary partitions
of the modulation alphabet. These component
codes may be gathered in a matrix, where the
columns represent the numbering of the points
of the M-PSK. For M = 3 this writes

a@ a(l),a(l), .. ,ag) —ec AD
A=|a? | = a%Q),a%Q), e ,ag) —ec A®?
a®) a§3),a§3), ... ,ag’) —c A®)

(1)

The corresponding set partitioning of the 8-
PSK is shown in Figure 3.

The minimum quadratic Euclidean distance of
two such schemes is known to be

dg,,,, =min{d? .49}
J

min

where dg) is the minimum Hamming distance

of the j-th component code and dg) is the mini-
mum quadratic Euclidean distance between the

corresponding 2—7)-PSK subsets.

Time-variant coded modulation is simply set
up by fixing some components in the matrix,
beginning with those in the first row. E.g. fix-
ing components in only the first row of an 8-
PSK scheme means the restriction to 4-PSK.
One has to notice that the Hamming distance
of a row code is decreased by the number nscj )
If the product of Eu-

clidean times Hamming distances correspond-

of fixed components.

ing to each row should be chosen uniformly, or
at least decreasing with row index j one has to

ensure that

(di —n§Hd > (@ —nf)dE . ()

As will be seen from some typical examples of
multilevel coded 8-PSK in the next section, of-
ten we have

dPd) > dPd? , dPdd . (3)
This allows to fix one or two components in a
frame of length n to 4-PSK, without any reduc-
tion in asymptotic coding gain.

This fixed components can also be used to in-
troduce a frame synchronization sequence (e.g.
Barker or m-sequence), not reducing the avail-
able data rate (see [6] for a detailed descrip-
tion). The fixed components of e.g. the first
row code for coded 8-PSK are simply alter-
nated according to the synchronization sequence.
With it the 4-PSK subsets of the 8-PSK are al-
ternating. An example with a Barker sequence
of length 7 is given in Figure 2.

e .
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Figure 2: Barker sequence of length 7
(0,0,0,1,1,0,1), represented by the selection of
4-PSK subsets from the 8-PSK

The original binary synchronization sequence
is recovered by exponentiation with four. The
maximum of the absolute value of a complex
crosscorrelation with the original binary sequence
indicates the position of frame synchronization
and the corresponding phase equals the phase
offset (times 4), if it is within the retention
range of (—n/4,+n/4]. Additionally, a symbol
synchronization can be achieved by oversam-
pling the crosscorrelation.

3 Rotationally invariant multilevel
coded modulation

The second alternative to resist phase instabil-
ities is rotational invariance. Several proposals




concerning this subject can be found in litera-
ture:

* Oerder, Meyr (6- und 8-state trellis codes)

* Ungerbock et al. (nonlinear trellis codes)

* Wei, Pietrobon et al. (multidimensional trel-
lis codes)

* Massey et al. (ring codes)

* Lin, Kasami, et al., Henkel (multilevel block
codes)

This contribution concentrates on the last prin-
ciple. First of all, conditions are developed that
have to be fulfilled to ensure rotational invari-
ance. M-PSK is treated first, differences for
M-QAM are pointed out afterwards.

3.1 Necessary and sufficient conditions
for phase invariance with respect to
multiples of 27 /M

A signal space code is rotationally invariant
with respect to multiples of 2r /M if and only if
it is invariant with respect to a 27 /M rotation.
Therefore we need to consider only the rotation
by 27 /M.

The 27 /M rotation is equivalent to the addi-
tion of (r(®), (k=1 @) M) =(0,...,0,1)
(az(k)’agk—l) o? @

to each ceena e )i =1,...,m,
which again equals the addition mod M of the

(et}

all-ones vector to the base M representation
(octal for 8-PSK) of (agk), agkfl), ..,a? agl)).

[ ]

For illustration, the following table shows the
addition of (0,0,0,1) = /8 to all possible 4-
tuples of the 16-PSK.

2 (3

. 4
Changes in a;’, a;"’, and aZ(- ) are framed.

We observe that the binary numbering is changed

according to

a’z('l)|+27r/M = oV +1 mod?2 (4)
. N
a§])|+27r/M az(-]) + H az(") mod 2, (5)
n=1
i=2,... k.

| +(0,0,0,1), +/8 |

o o0 0 0 — o0 0 0 1
o o [o] 1 — o 0o [1] o
o o 1 0 — o0 0o 1 1
o [o] [t] 1 — o [1] [o] o
o 1 0 0 — o0 1 0 1
o 1 [o] 1 — o 1 [1] o
o 1 1 0 — o 1 1 1

OO — o oo
1 0 0 0 — 1 0 0 1
1o [o] 1 — 1 o [1] o
1 o 1 0 — 1 0 1 1
1 [o] [1] v — 1 [1] [o] o
1 1 0 0 — 1 1 0 1
11 [o] 1 — 1 1 [1] o
1 1 1 0 — 1 1 1 1

OO — oo E o

Together with the assumption of linearity, the
necessary and sufficient conditions for phase-
invariant coded modulation based on Zinoviev’s
scheme are:

(1,1,...,1) € AW,
- .
]H a™ e AU j=2 ...k

m=1

The following section shows that Reed-Muller
codes as outer codes easily fulfil these condi-
tions if they are chosen in a special increasing
order.

3.2 Combining Reed-Muller codes to
form phase-invariant PSK

An r-th order Reed-Muller code RM(r,m) of
block length 2™ can be defined by a block gen-
erator matrix of the form (see e.g. [7]

Go

G

G = : ’ (7)

G
where G is the all-ones vector of length 2™. G4
is an m x 2™-matrix, consisting of each binary
m-tuple appearing once as a column. G; (2 <

[ < r) is formed by all different products of [
rows of G;. Thus, the number of information



bits follow to be

k= (1) (7).

The minimum Hamming distance can be shown
to be dg = 2™ 7.

(8)

We observe that RM(0,m) C RM(1,m) C
RM(2,m) C ...C RM(m,m) and in view of the
conditions for phase-invariance derived above:

(1,1,...,1) e RM(r,m),

a,m € RM(r(M m) =
- 1T Q. € RM(’I‘(j),m) .

j—1
Z r(W)Sr(])

n=1

It follows that phase-invariant coded M-PSK
(M = 2F) is achieved if the outer codes AU
are chosen according to

A = RM(r), m),
(1) < r2) < ..o < r(k),
Jj—1 . )
YoM <@ vl =m, j=2...k,
n=1
(10)

which in turn means that A1) c A® c ... C
A®) | equality being excluded.

In the following table some GCC schemes with
RM codes for coded 8-PSK, fulfilling these con-
ditions, are given:

[ () ] (nkdr) [ om) [ dp [ dude [G] R ]
1 (8,1,8) (0,3) | 0.586 | 4.688
2 (8,7,2) (2,3) 2 4 3| 2/3
3 (8,8,1) (3,3) 4 4
1 | (16,1,16) | (0,4) | 0.586 | 9.376
2 | (16,11,4) | (2,4) 2 8 6 | 9/16
3 | (16,15,2) | (3,4) 4 8
1 | (32,6,16) | (1,5) | 0.586 | 9.376
2 | (32,26,4) | (3,5) 2 8 6 | 21/32
3 | (32,31,2) | (4,5) 4 8
1 | (64,22,16) | (2,6) | 0.586 | 9.376
2 | (64,57,4) | (4,6) 2 8 6 | 0.74
3 | (64,63,2) | (5,6) 4 8

(G :=dpg,,, /2 /dB= 10log min;{(d%¥-d%)/2},
where 2 is the quadratic Euclidean distance of
the uncoded 4-PSK, R = k) /5n(): coder-
ate)

The 3-dB gain of the first example corresponds
to what is achieved with 4-state trellis codes,
and the other three examples are comparable
to 128-state TCM.

Until now, only the rotational invariance of the
code has been ensured, not yet of the informa-
tion itself. A special differential en- and decod-
ing is necessary. This results in supplementary
conditions for the component codes.

3.3 Differential coding for
phase-invariant GCC schemes

A possible differential en- and decoding scheme
for 8-PSK is given in Figure 4 and 5, respec-
tively. It consists of a differential encoding mod
8 over a modulation interval of block length n
after the GCC encoder. The differential de-
coder itself has to be positioned after the GCC
decoding, otherwise leading to a 3-dB loss. Thus,
the GCC schemes additionally must be invari-
ant against differential encoding mod 8.

Regarding the mod-8 addition of two codewords
A1 € A and As € A, Ay # Ay, as performed
by the differential encoder, we obtain

4- (AP + 49 1+ 2-(AP + 4D + (4] +4),
(11)

where A,(Cj ) denotes the j-th binary component
of the octal number. First we realize that, of
course, (Agl) + Agl)) € AN mod 2 (linearity).
)

and Agl) have ones or, equivalently, where the

(1)

componentwise product Agl) - Ay

A carry occurs at positions, where both Agl

yields ones.
Thus, products of codewords out of A have
to be in A3,

Analysing the third binary component, we ob-
serve that similarly, products of codewords out
of A® have to be in A®) as well.



In the general case of M-PSK we obtain

AD € A6) AP € AG)
o AD A € AU,
j=1,...k—1

(12)

In the case of RM(r,m) codes as outer codes
this means:

Codes that fulfil both conditions are given sub-

3.4 Conditions for 90°-rotationally in-
variant M-QAM

In the case of 90°-invariant QAM only condi-
tions for the first two codes have to be ful-
filled, because the numbering in the set par-
titions is chosen to be itself rotationally invari-
ant for (j) = (3),(4),.... The differential en-
/decoding is performed in the same way, ex-
cept that there are mod-4 operations concern-
ing only the digits of the first two component

codes ((7) = (1), (2))-

The following table describes the effect of a
phase shift by 90° on 16-QAM symbols.

sequently. | /2 |
00 0 0 — 0 0 0 1
|i|(nde |(rm|dE|deE|G(J)| R | o 0o [0] 1 — o o 0
B ECRE N O I I R B O e i S e il
) bl
lah |G 1] vl Z e
1 | (16,1,16) | (0,4) | 059 | 9.38 | 6.71 | 7/12=
2 | (16,11,4) | (24) | 2 8 6 0.58 o o 1 [o] 1 — o 1 0
3 | (16,16,1) | (4,4) | 4 4 3 | <2/3 o r 1t 0 — 0 1 1 1
I | (1658) | (1,4) | 059 | 469 | 3.7 | 3/4= 0 1 1 — o 1 [0] o
2 | (16,15,2) | (3,4) | 2 4 3 0.75 o tr 6 0 0 — 1 0 0 1
3 | (16,16,1) | (4,4) 4 4 3 >2/3 10 @ 1 — 1 0 0
1 | (32,6,16) | (1,5) | 0.59 | 9.38 | 6.71 10 i 0 — 1 0 1 1
2 | (32,26,4) | (35) | 2 8 6 2/3 0 10 1 — 1 0 [o] o
3 | (32,32,1) | (555) | 4 4 3 1 1 0 0 — 1 1 0 1
1 | (32,16,8) | (2,5) | 0.59 | 4.69 | 3.7 | 79/96= 11 [o] 11— 1 1 0
2 (32,31,2) (4,5) 2 4 3 0.82 e 1 1 1 0 — 1 1 1 1
3 (32,32,1) (5,5) 4 4 3 >2/3 1 1 1 — 1 1 EI 0

The schemes labelled with a ‘o’ are unequal er-
ror protection codes and those denoted with a
‘e’ have rates greater than 2/3, enabling to pro-
vide additional outer codes (e.g. Reed-Solomon
codes). This improves the coding gain by de-
creasing the overall coderate. The redundancy
of the outer code may be chosen such that the
original data rate of the uncoded transmission

is retained (R;,i,) = 2/3 for coded 8-PSK).

It should be mentioned that another differen-
tial encoder is currenly developed which frees
from the second condition at least for the last
component code. This means the codes of the
first table (p. 4) being still valid. Especially
the last code scheme with n = 64 is of some
importance, because it offers a constant 6 dB
gain and additionally a rate greater than 2/3

(enables outer RS code).

For reasons of our particular numbering of the
QAM points, only the components of a(!) and
a® are changed according to

al? = 1,..,1) +a®
a? = a) 44® (14)
agj) = d¥) j=3,...,i.

Presuming linearity, we obtain the following
necessary and sufficient conditions for phase in-
variance with respect to multiples of 7 /2:

1,1,..,1) € AW

A0 4@ (15)

The supplementary condition caused by the spe-
cial differential encoding is also similar to the



one for PSK:

AN e A0 AN e AM

— AN . A € 4@ (16)

It is again caused by the carry in the mod-4
addition

2. (AP + AD) + (AP + 4P,

(1)

where again (Agf), A."’) denote the binary com-

ponents of the mod-4 numbers.

In the case of RM codes the two conditions can
be expressed as

1.) ‘Phase invariance’ of A:
7'-(2) Z 7'-(1) V 7"(2) =m
‘Differential invariance’:

?"(2) 2 2. 7'(1) V ?"(2) =m

2) (18)

Just as for PSK, the second condition can be
omitted if another differential encoding is used
(see Figure 6). However, interesting schemes
(in the following table) automatically meet the
second condition. (For further details see [8].)

LG) [ (nkydu) | (nm) |de [dade | G | R |
1 (8,44) | (1,3 | 1 4 3
2 | (872 | (23 | 2 4 3 | 084
3| (881 | (33) | 4 4 3 | >3/4
4| 881 | 33) | 8 8 | (6
1 | (1658 | (1,a) | 1 ) 6
2 | (16,11,4) | (2,4) | 2 8 6 | 073
3 | (16,152) | (3,4) | 4 8 6 | <3/4
4 | (16,16,1) | (4,4) | 8 8 6
1| (32,168) | (1,5) | 1 8 6
2 | (32,264) | (35) | 2 8 6 | 0.82
3 | (3231,2) | (45) | 4 8 6 | >3/4
4| (32321) | (55) | 8 8 6

3.5 Multilevel convolutional codes

90°-invariant QAM can also be achieved by com-
bining suitable convolutional codes, whereas in
the block-coded case, the all-ones sequence has
to be a valid codesequence of the first compo-
nent code and codesequences of the first code
have to be valid codesequences of the second
code, too. It can be shown that this implies
that all generators of code one and two must

have odd weight. Additionally, a special con-
struction ensures that the second condition is
also fulfilled.

To elude additional conditions due to the dif-
ferential coding, the special encoder of Figure 6
has to be applied. Some results for 90°-invariant
coded QAM are given if the following table.

| Code | Generators | R | L | ds | G |
1 (4,7,7) ;13]6
2 (10,13,15) 2123 |47
or 2 (16,13,15) 212| 3 |47
1 (15,15,13) 1409
2 (51,61,73) 213|565
1 (1,2,7,7) 1138
2 (46,52,61,73) | 2 | 2 | 4 | 6.0

In computing the asymptotic coding gain, only
the first two codes have been considered. The
generators are given in octal representation. dy
is the free distance, L - k the constraint length,
where R = k/n'. The advantage of such convo-
lutional multilevel schemes is to be seen in the
considerably low complexity. The numbers of
states for the last code, e.g., are only 4 and 8,
respectively.

For reasons of page limititations, the semi-al-
gebraic construction cannot be treated in de-
tail, but a separate publication is currently pre-
pared.

4 Summary

Two different construction principles of modu-
lation codes to combat with phase intabilities
have been described. The first was to periodi-
cally alternate the modulation alphabet, called
time-variant coded modulation. It reduces the
probability of error bursts caused by cycle slips
This method addition-
ally offers the possibility to introduce frame

of the carrier phase.

synchronization sequences without any rate re-
duction. The second measure was to choose
rotationally invariant modulation codes. Con-
struction rules have been stated for multilevel
block and convolutionally encoded M-PSK and
M-QAM. The least decoding effort is achieved

with multilevel convolutionally encoded QAM.
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Figure 3: Set partitions of the 8-PSK
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Figure 6: Modified differential encoding for 90°-phase invariant block-coded 16-QAM



