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Abstract— We study variable node degree distributions result-
ing from a linear programming approach for designing a low-
density parity-check (LDPC) code optimized for an irregular
modulation alphabet. We opt for an irregular LDPC code and
make use of the irregularities of the channel in the sense of
different modulation classes originating especially from different
distances in a hierarchical modulation signal set. Our aim is to
investigate if differences in equivalent binary channels as given
by hierarchical modulation signal sets would in any way support
resulting variable node degree distributions.

I. INTRODUCTION AND MOTIVATION

Low-density parity-check (LDPC) codes, first introduced

by Robert Gallager in his PhD thesis [1], have been shown

to perform very close to capacity, as described by the Shan-

non capacity formula. These results have motivated further

research on LDPC codes for different channels and noise

scenarios.

For this research work, we focus on designing irregular

LDPC codes which, as presented in the literature, have been

shown to perform better in comparison to the regular ones.

In [2], the authors were interested in providing unequal error

protection (UEP) for data frames and considered intentional

non-uniformities in the error probabilities for different sets of

bits to protect some more than others. For our approach, we

introduce non-uniformities by using a hierarchical modulation

which results in different error probabilities for the different

sets of bits inside a symbol. The level of non-uniformity to be

offered can be flexibly varied with the help of the constellation

parameter given by the ratio of the inter-symbol distances

describing the constellation. Apart from the natural protection

resulting from the hierarchical modulation, in here, we are not

aiming at overall UEP capabilities.

Further on, by keeping the check node degree distribution

fixed, we optimize the variable node degree distribution after

dividing it into sub-degree distributions corresponding to the

different modulation classes. The optimization is done using

density evolution and a linear programming technique based

on a rate maximization criterion.

The paper is organized as follows. Section II introduces the

concept of hierarchical modulation along with the investigation

of the different error probabilities for the bits inside a 16-

QAM hierarchical modulated symbol chosen as an example.

Section III presents the LDPC code design for a higher order

constellation (HOC) as well as the system model. Section

IV represents the main part of this paper describing the

optimization strategy in general as well as the one employed

for the irregular hierarchical modulation. In this section, the LP

algorithm as well as details regarding the code construction are

explained. In Section V, the simulation results are presented

and analyzed, followed by conclusions in Section VI.

II. HIERARCHICAL MODULATION

This section is devoted to introducing the concept of hierar-

chical modulation as well as presenting the motivation behind

using it together with irregular LDPC codes.
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Fig. 1. 16-QAM hierarchical constellation with Gray-coded bit mapping

From Fig. 1, we observe that the 16-QAM hierarchical

constellation is formed by an outer QPSK scheme which is

addressed by the two most significant bits (MSBs) of the

symbol and an inner QPSK scheme described by the remaining

least significant bits of the symbol (LSBs). Therefore, we

obtain two equivalent channels (two modulation classes). The

non-uniformity of the symbols in the hierarchical constellation

results in error probabilities which are considerably different1

for the individual bits inside the symbol. Due to this, hierarchi-

cal modulation is of interest when UEP inside a modulation

symbol is desired. The constellation parameter, α = d0/d1,

dictates how much more the first channel is protected against

errors than the second one.

Using the exact formulas derived in [3] for the channels’

bit-error probabilities for the case of a Gray-coded hierarchical

16-QAM constellation, we obtain

Pb,c1 =

(

1

2
erfc

(

√

Es

N0

d0
2

)

+
1

2
erfc

(

√

Es

N0

(

d0
2

+ d1

)

))

1The uniform constellation, characterized by α = 1, also provides some
inherent irregularities for the bits in the modulation symbol, however, hier-
archical values of α allow for a greater distinction in the equivalent binary
channels.
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where “erfc” denotes the complementary error function and

Es/N0 represents the signal-to-noise ratio with respect to the

symbol energy2. The bit-error probability of the first channel

Pb,c1 is also the bit-error probability of the first two bits (Pb,b0

and Pb,b1 ) in the modulation symbol while Pb,c2 corresponds

to the remaining two bits (Pb,b2 and Pb,b3 ).

The individual noise variances for the different modula-

tion classes can be computed from the corresponding bit-

error probability using an equivalent BPSK description of the

channels as in [4]. Thus, the error probability of the resulting

channels and the noise variances are linked by

σ2
cj

=
1

2
(

erfc−1
(

2Pb,cj

))2 . (2)

Our aim is to investigate if the non-uniformity introduced by

the different error probabilities of the bits, as a result of using

hierarchical modulation, will lead to less irregular variable

node degree distributions for the resulting LDPC codes or

other trends become visible.

III. CODE DESIGN AND SYSTEM MODEL

Making use of a hierarchical modulation results in different

modulation classes described by different noise variances.

Consequently, the standard LDPC code design, which assumes

that all the bits are transmitted over one channel and are

equally protected against errors, does not apply. A new design

which meets the properties of a hierarchical HOC is therefore

required and was introduced in [4]. The assumptions made for

the two designs, for the 16-QAM case, are presented in Fig. 2.

Fig. 2. Assumptions made for a) Standard code design and b) HOC design

In the above, σ2
0 = σ2

1 = σ2
c1

, σ2
2 = σ2

3 = σ2
c2

while σ2
BPSK

represents the noise variance of a channel that would be

described by the average bit-error probability of the HOC

scenario and provides a fair way to compare the two designs.

After applying the resulting LDPC code, every codeword

bit is assigned to one of the modulation classes available (Mj

with j = 1, . . . , Ns). Each modulation class is described by a

different bit-error ratio.
2The relation between the symbol energy and the energy of an information

bit in the case of a coded system with modulation rate Rm = log2 (M) and
code rate Rc is Es = Rc · Rm ·Eb.

A. Notations

LDPC codes are linear block codes described by a sparse

parity-check matrix H with dimensions (N − K) × N such

that N represents the length of the codeword, K the length

of the information word and the design rate of the code is

given by R = K/N . LDPC codes are usually represented

using a bipartite (Tanner) graph which is constructed using

two categories of nodes, variable and check nodes, mapping

to the elements of the codeword and to the parity check

constraints, respectively. The two types of nodes are connected

by edges which correspond to the non-zero entries of the H

matrix. We can distinguish two types of graphs, regular and

irregular. Regular LDPC codes have the property that inside

each class of nodes all the nodes have the same degree. If the

degrees of the variable/check nodes vary among the classes of

nodes, we refer to them as irregular LDPC codes. The irregular

variable and check node degree distributions are defined using

polynomials

λ(x) =

dvmax
∑

i=2

λix
i−1 and ρ(x) =

dcmax
∑

i=2

ρix
i−1 , (3)

where dvmax
and dcmax

represent the maximum variable and

check node degrees while λi and ρi give the proportion of

edges connected to variable and check nodes of degree i,
respectively [5].

Using a higher order constellation (HOC), we obtain Ns

modulation classes. The vector β = [β1, · · · , βNs
] describes

the proportion of bits assigned to each modulation class.

λ(x), with the corresponding vector λ, contains the overall

variable node degree distribution coefficients. Accordingly,

λMj ,i represents the proportion of edges connected to variable

nodes of degree i that belong to the modulation class Mj . We

also define λMj
to be the vector characterizing the sub-degree

distributions such that λMj
=
[

λMj ,2, . . . , λMj ,dvmax

]T
and

λ =
[

λM1 , · · · ,λMNs

]T
. The check node degree distribution

is described by the vector ρ =
[

ρ2, . . . , ρdcmax

]T
while E is

the total number of edges in the graph. Using the above, we

have

NMj
= βj ·N , (4)

where N is the total number of variable nodes and NMj
the

number of variable nodes associated with the modulation class

Mj . Further on, NMj
and N can be obtained also in terms of

λMj
and λ

dvmax
∑

i=2

λMj ,i

i
=

NMj

E
and

Ns
∑

j=1

dvmax
∑

i=2

λMj ,i

i
=

N

E
. (5)

IV. IRREGULARITIES IN THE MODULATION IN LDPC

CODES

A. General Description

LDPC codes are decoded using belief propagation (BP), a

message-passing decoding algorithm, during which messages,

considered to be independent random variables, are exchanged

iteratively along the edges of the graph. In [6], it was shown



that the messages at the input of the variable and check

nodes can be computed as mutual information using density

evolution (DE) and a Gaussian approximation. DE is an algo-

rithm used to predict the decoding performance by analyzing

the distribution of the messages transmitted under message-

passing decoding [7].

For the standard LDPC code design, the mutual information

messages from a check to a variable node (xcv) and from a

variable to a check node (xvc) are

x(l−1)
cv = 1−

dcmax
∑

j=2

ρjJ
(

(j − 1)J−1
(

1− x(l−1)
vc

))

(6)

x(l)
vc =

dvmax
∑

i=2

λiJ

(

2

σ2
+ (i− 1)J−1

(

x(l−1)
cv

)

)

, (7)

where l denotes the iteration number and J(·) computes the

mutual information as a function of the mean, x = J(m) using

J(m) = 1− 1√
4πm

∫

R

log2
(

1 + e−z
)

· e− (z−m)2

4m dz , (8)

which holds for z ∼ N (m, 2m), a consistent Gaussian

random variable. From (6) and (7), DE can be summarized

as

x(l)
vc = F

(

λ,ρ,σ2, x(l−1)
vc

)

. (9)

In order to ensure that DE allows for predicting the decoding

performance, some constraints have to be met. To begin with,

the convergence condition guarantees that DE converges given

that the mutual information increases after every iteration

x(l)
vc > x(l−1)

vc or F
(

λ,ρ,σ2, x(l−1)
vc

)

> x(l−1)
vc . (10)

Another condition that has to be fulfilled to ensure that

DE converges for a mutual information close to one is the

stability condition [5]. This condition represents an upper

bound requirement on the number of degree-2 variable nodes

1

λ′(0)ρ′(1)
> e−r =

∫

R

P0 (x) e
−

x
2 dx

AWGN→ e−
1

2σ2 , (11)

where P0 (x) represents the message density associated with

the received values while λ
′

(x) and ρ
′

(x) are the derivatives

of the degree polynomials.

B. Optimization of the Degree Distribution for HOC

With the previous explanations of our code design for

HOC, we can adapt the standard DE mutual information

updates to account for the resulting modulation classes. This is

accomplished by splitting the variable node degree distribution

into sub-degree distributions mapping to the different Ns noise

variances.

We notice that only (7), the update from the variable to the

check nodes, has to be adapted since the check node degree

distribution is kept constant. In [8] the term describing this

procedure is “multi-edge-type” construction

x(l)
vc =

Ns
∑

j=1

dvmax
∑

i=2

λMj ,iJ

(

2

σ2
j

+ (i− 1)J−1
(

x(l−1)
cv

)

)

.

(12)

The stability condition (11) has to be modified as well to

illustrate the different noise variances in our scheme. As a

result, we make use of the proportion vector β and obtain the

approximation, as presented in [4]

e−r =

∫

R

Ns
∑

j=1

βjP0,j (x) e
−

x
2 dx =

Ns
∑

j=1

βje
−

1

2σ2
j . (13)

A new constraint arises due to the splitting of the variable

node degree distribution and requires the sub-degree distribu-

tions to function as an overall distribution

Ns
∑

j=1

dvmax
∑

i=2

λMj ,i = 1 . (14)

Having characterized DE for our system, we are left with opti-

mizing the variable node degree distribution. Our optimization

strategy is based on maximizing the code rate for a given

Es/N0. This is equivalent to maximizing the denominator of

the fraction from the expression below

R = 1−

dcmax
∑

k=2

ρk

k

Ns
∑

j=1

dvmax
∑

i=2

λMj,i

i

. (15)

C. Linear Programming (LP) Optimization Algorithm

In this section, we introduce the linear programming al-

gorithm which will deliver the optimized variable node de-

gree distribution as well as the maximized code rate. The

LP algorithm follows the steps presented in [9], where this

optimization strategy was first introduced. The routine requires

the check node degree distribution vector ρ, the constellation

parameter α, the maximum variable node degree dvmax
, the

SNR Es/N0, and the proportion vector β.

Linear program

Optimize

max
λ

Ns
∑

j=1

dvmax
∑

i=2

λMj ,i

i
, (16)

subject to

1) Proportion distribution constraints

a) From (14)
Ns
∑

j=1

dvmax
∑

i=2

λMj ,i = 1

b) From (4) and (5), ∀j ∈ {1, · · · , Ns − 1}
dvmax
∑

i=2

λMj ,i

i
− βj

Ns
∑

j=1

dvmax
∑

i=2

λMj,i

i
= 0 (17)

2) Convergence constraint, see (10)

F
(

λ,ρ,σ2, x(l−1)
vc

)

> x(l−1)
vc (18)

3) Stability condition, see (11) and (13)

Ns
∑

j=1

λMj ,2 <





dcmax
∑

k=2

(k − 1)ρk ·
Ns
∑

j=1

βje
−

1

2σ2
j





−1

(19)



D. Code Construction

Once the optimized variable node degree distribution is

obtained, the next step is to construct the H matrix using the

Progressive Edge-Growth (PEG) algorithm. The PEG algo-

rithm maximizes the local girth of a variable node with every

newly placed edge and stands out due to its low complexity

accompanied by good performance especially for the case

when the degree distributions are optimized using density

evolution [10].

After constructing the H matrix, each individual variable

node is assigned to one of the two channels available to

ensure proper noise level during decoding and proper LLR

computation. The assignment procedure makes use of the

information provided by the H matrix (the degree of each

variable node obtained as the sum of its elements along the first

dimension) in combination with the information provided by

the optimized sub-degree distributions (the number of variable

nodes for the degrees available in each modulation class). We

start from the better protected channel and assign, for each

degree at a time, the required number of variable nodes as

the first positions in the H matrix profile which map to this

degree. After each round of assigning the variable nodes, the

entries corresponding to the already assigned variable nodes

are zeroed such that only the entries with the variable nodes

not assigned yet are left. This process is accompanied by

flagging the assigned positions in a vector of length N , with

1 if it corresponds to the first channel and 2 if it is to be sent

on the second channel.

V. SIMULATION RESULTS AND ANALYSIS

In this section, we present the simulation results obtained

for a 16-QAM hierarchical constellation with Gray-coded bit

mapping. For this scenario, we obtain two modulation classes,

Ns = 2, while the proportion of bits assigned to the two

modulation classes is β = [0.5, 0.5]. The associated noise

variances are found using (1) and (2). Other simulation param-

eters are, dvmax
= 30, N = 4096, 50 decoding iterations, and

ρ(x) = 0.00749x8+0.99101x9+0.00150x10. This ρ(x) was

obtained using numerical optimization in [5] and represents

the optimum check node degree distribution for a code with

rate R = 1/2 and dvmax
= 30.

Using the LP routine, we obtain the optimized variable node

degree distributions for different values of α at different op-

erating points. Table I show the degree distributions obtained

for a design SNR of 5 dB and 6 dB. Considering that the

check node degree distribution used is optimum for codes with

R = 1/2 (ρ(x) was not further optimized according to the

maximized rate), these operating points were chosen such that

the rates delivered are close to 1/2.

The variable node degree distributions obtained for the

traditional (α = 1) and for the hierarchical cases (α > 1)

did not confirm our understanding that, for the latter scenar-

ios, the non-uniformities added by having different bit-error

probabilities inside a symbol might support the LDPC code

and result in less irregular degree distributions. However, we

can observe other trends. To begin with, the results support

the fact that for hierarchical α’s the degree distributions tend

to concentrate around the same degrees. Another noticeable

aspect is that the sub-degree distribution mapping to the second

modulation class is more irregular than the one characterizing

the first modulation class.

TABLE I

OPTIMUM SUB-DEGREE DISTRIBUTIONS

α λM1(x) λM2(x)

Es/N0 = 5 dB

α = 1

λM1,2 = 0.0832 λM2,2 = 0.1234
λM1,3 = 0.1559 λM2,4 = 0.1007
λM1,9 = 0.0361 λM2,5 = 0.0020
λM1,30 = 0.3113 λM2,8 = 0.1570

λM2,30 = 0.0304

α = 4
√
2

λM1,2 = 0.0881 λM2,2 = 0.1195
λM1,3 = 0.1598 λM2,3 = 0.0046
λM1,30 = 0.3226 λM2,4 = 0.0979

λM2,8 = 0.1593
λM2,9 = 0.0103
λM2,30 = 0.0380

α =
√
2

λM1,2 = 0.0915 λM2,2 = 0.1168
λM1,3 = 0.1548 λM2,3 = 0.0132
λM1,30 = 0.3168 λM2,4 = 0.0935

λM2,8 = 0.1525
λM2,9 = 0.0082
λM2,30 = 0.0526

α = 2

λM1,2 = 0.0958 λM2,2 = 0.1132
λM1,3 = 0.1448 λM2,3 = 0.0256
λM1,30 = 0.3211 λM2,4 = 0.0856

λM2,8 = 0.1395
λM2,9 = 0.0060
λM2,30 = 0.0683

Es/N0 = 6 dB

α = 1

λM1,2 = 0.0927 λM2,2 = 0.1349
λM1,3 = 0.2163 λM2,4 = 0.0318
λM1,10 = 0.0174 λM2,5 = 0.1096
λM1,30 = 0.0326 λM2,9 = 0.1515

λM2,30 = 0.2131

α = 4
√
2

λM1,2 = 0.0955 λM2,2 = 0.1329
λM1,3 = 0.2010 λM2,4 = 0.1056
λM1,30 = 0.0450 λM2,5 = 0.0037

λM2,8 = 0.1680
λM2,30 = 0.1944

α =
√
2

λM1,2 = 0.0990 λM2,2 = 0.1297
λM1,3 = 0.1918 λM2,3 = 0.0082
λM1,4 = 0.0109 λM2,4 = 0.1066
λM1,30 = 0.1242 λM2,8 = 0.1133

λM2,9 = 0.0607
λM2,30 = 0.1553

α = 2

λM1,2 = 0.1046 λM2,2 = 0.1233
λM1,3 = 0.1776 λM2,3 = 0.0290
λM1,30 = 0.1865 λM2,4 = 0.0912

λM2,8 = 0.1373
λM2,9 = 0.0186
λM2,30 = 0.1318

To be able to better assess the contribution of the individual

degrees in each modulation class, we make use of the bar

chart presented in Figure 3 for the 5 dB case. We can observe

that, when different hierarchical α’s share the same degrees,

their contributions seem to follow a trend, however not the

same among different degrees and modulation classes. For the

first modulation class, the coefficients for degree 30 are not



strictly increasing or decreasing, however this may be due to

the restriction imposed by the degree distribution, i.e., the sum

of the coefficients should be 1. Another observation is that the

uniform case with α = 1 is only sometimes part of the trend.

The data provided in Table I for the 6 dB case, shares some

of the previous characteristics, however, the overall tendency

is not as strong. Even though the degree proportions are not

the same, the contributions of degree 2, degree 3, and degree

9 variable nodes for the hierarchical cases, in both modulation

classes, follow the same trend as the one for the 5 dB case.

For the second modulation class, the contributions of degree

30 variable nodes also show a trend, however, opposite to the

one present in the 5 dB case, while the degrees 4 and 8 do not

present a clear trend. The difference between the two scenarios

can be motivated by the code rate, which, for the 6 dB scenario

is much further away from 1/2 than the one for 5 dB.

M1,2 M1,3 M1,9 M1,30 M2,2 M2,3 M2,4 M2,5 M2,8 M2,9 M2,30
0
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λ
M

j
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√

2
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Fig. 3. Degree contribution for each modulation class at Es/N0 = 5 dB

From the results presented in Table II, we observe that, as

expected, increasing Es/N0 results in higher code rates, while

employing a hierarchical constellation results in lower rates

when compared to the traditional case at the same Es/N0.

One exception from this is the 5 dB case with α = 4
√
2 for

which the rate is actually slightly higher than the one for α = 1
and with α =

√
2, where the rate is the same as for the case

with α = 1. We can also observe that the difference in code

rates between the traditional and the non-uniform modulation

increases with increasing SNR, and, evaluated at the same

SNR, with increasing α.

TABLE II

MAXIMIZED CODE RATE

@ Es/N0 α R

5 dB
α = 1 0.4848
α = 4

√
2 0.4855

α =
√
2 0.4848

α = 2 0.4799

6 dB
α = 1 0.5416
α = 4

√
2 0.5407

α =
√
2 0.5380

α = 2 0.5278

Figure 4 presents the bit-error ratio performance for the 5
dB operating point. Overall, the performance curves are close
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Fig. 4. Bit-error ratio performance - Es/N0 = 5 dB

to each other, support the characteristics already underlined

by the rate performance indicator, and for the same BER

requirement, the difference in Eb/N0 for the different α’s is

not large. Consequently the curve associated with α = 4
√
2,

which resulted in a slightly better rate than the traditional case

with α = 1, shows indeed a very close performance to it.

Furthermore, the performance for the α =
√
2 scenario is

very similar to the α = 1 case which again sustains the equal

rate delivered by the LP.

VI. CONCLUSIONS

In this paper, we investigate if and how an unequal error

protection modulation can support the design of LDPC codes.

This work can easily be extended to UEP applications fol-

lowing a similar multi-edge-type approach. For the average

performance studied in here, we have to conclude that hier-

archical modulation does not significantly support the LDPC

design and the average performance typically degrades due to

the non-dense packing of a hierarchical signal set. However,

a weak irregularity in the signal set may actually lead to a

slight performance improvement. Hierarchical signal sets, i.e.,

unequal error protecting modulation may still be suitable to

support UEP code designs.
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