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Abstract—We present a novel joint source-channel coding sys-
tem based on low-density parity-check codes where the amount
of information about the source bits available at the decoder
is increased by improving the connection profile between the
factor graphs that compound the joint system. Furthermore, we
propose an optimization strategy for the component codes based
on a multi-edge-type joint optimization. Simulation results show a
significant improvement in the performance compared to existent
joint systems based on low-density parity-check codes.

I. INTRODUCTION

The “separation principle” between source and channel

coding states that there is no loss in asymptotic performance

when source and channel coding are performed separately. It

is though widely observed that for communication systems

transmitting in the non-asymptotic regime with limited delay

constraints, the separation principle may not be applicable and

gains in complexity and fidelity may be obtained by a joint

design strategy [1].

In this paper, we investigate a joint system which performs

linear encoding of sources by means of error-correcting codes.

The strategy of such schemes is to treat the source output u

as an error pattern and perform compression calculating the

syndrome generated by u, i.e., the source encoder calculates

s = uHT , where H is the parity-check matrix of the linear

error-correcting code being considered as source encoder, and

the syndrome s represents the compressed sequence. Herein

we consider only binary memoryless sources, since it is widely

known that linear source codes achieve the entropy rate for this

kind of sources. Nevertheless, the optimality of linear source

compression can be extended to very general sources with

memory and nonstationarity [2].

Compression schemes based on syndrome encoding for

binary memoryless sources were developed in the context of

variable-to-fixed length algorithms in [3] and [4]. Afterwards,

Ancheta [5] developed a fixed-to-fixed linear source code

based on syndrome formation. Due to the limitations of the

practical error-correcting codes known at that time, this line of

research was left aside by the advent of Lempel-Ziv coding.

Nevertheless, due to a lack of resilience of state-of-the-art data

compressors to transmission errors and to the fact that such
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compression algorithms just have an efficient performance

with block sizes much longer than the ones typically specified

in some modern wireless standards, there are state-of-the-art

applications that do not apply data compression.

In order to cope with such limitations of some modern

data compression algorithms, the authors in [2] proposed the

use of syndrome-source compression by means of low-density

parity-check (LDPC) codes together with belief propagation

decoding, which was further extended in [6] to cope with a

noisy channel. In contrast to general linear codes, an LDPC

code has a sparse parity-check matrix and can thus be used as

a linear compressor with linear complexity in the block length.

In addition, syndrome source-coding schemes can be naturally

extended to joint source-channel (JSC) encoding and decoding

configurations.

One of the schemes proposed in [6] for JSC consists of

a serial concatenation of two LDPC codes, where the outer

code works as a syndrome-source compressor and the inner

code as the channel code. The codeword resulting from such a

concatenation is then jointly decoded using the source statistics

and channel information by means of the belief propagation

algorithm applied to the joint source-channel factor graph.

In spite of its introduction in [6], it was in [7] that this

scheme was first studied for a JSC application. However, the

bit error-rate curves presented in [7] showed considerably high

error floors for source output sequences with moderate block

length. The proposed solutions to cope with such high error

floors were either to reduce the source compression rate or

to increase the codeword size, but such solutions have the

following drawbacks.

First of all, increasing the size of the codeword would

undermine one of the advantages of the JSC scheme, namely

the possibility of a better performance in a non-asymptotic

scenario. Second, reducing the compression rate is also not

desirable, since it pushes the system performance away from

its asymptotically achievable capacity. In this paper, we pro-

pose the construction of an LDPC-based joint source-channel

coding scheme which significantly lowers the error floor result-

ing from the compression of source sequences that correspond

to uncorrectable error patterns of the LDPC codes used as

syndrome-source encoder.



II. LDPC-BASED JOINT SOURCE-CHANNEL SYSTEM

In [6], the authors proposed a configuration for a joint

source-channel encoding system using LDPC codes for both

source compression and channel coding. This structure is

based on a serial concatenation of two LDPC codes where

the outer and the inner codes perform syndrome-source com-

pression and channel coding, respectively. In this concatenated

approach, a codeword c is defined by

c = s ·Gcc = u ·HT
sc ·Gcc ,

where Gcc is the l×m LDPC generator matrix of the channel

code, Hsc is the l× n parity-check matrix of the LDPC code

applied for source coding, s is the 1 × l source compressed

sequence, and u is the 1× n source output.

Considering a binary memoryless source and performing

standard belief propagation decoding, the simulation results

in [7] showed the presence of error floors in the error-rate

curves, which are a consequence of the fact that some output

sequences emitted by the source form error patterns that cannot

be corrected by the LDPC code used as source compressor.

Our idea to cope with this problem is to improve the amount

of information about the source bits available at decoding. We

do it by inserting new edges connecting the check nodes of

the channel code to the variable nodes of the source code in

the factor graph that represents the serial concatenated system

introduced in [6]. The reasoning of this strategy is that such

an edge insertion will provide an extra amount of extrinsic

information to the variable nodes of the source LDPC which

will significantly lower the error floor due to uncorrectable

source output patterns. We depict this idea in Fig. 1, where

the new inserted edges in the concatenated JSC system of [6]

are represented by the dashed lines.

Fig. 1. Joint source-channel factor graph with inserted edges.

The variable and the check nodes of the source LDPC

(left) represent the source output and the compressed source

sequence, respectively. Since we will consider only binary

sources, the variable nodes represent binary symbols. In this

system, each check node of the source LDPC is connected to

a single variable node of the channel code (right) forming the

systematic part of the channel codeword. We consider that only

m variable nodes are transmitted (the n source output symbols

are punctured prior to transmission). Thus, the overall rate

is n/m. Furthermore, Lsc
v and Lcc

v denote the log-likelihood

ratios representing the intrinsic information received by the

source (v = 1, . . . , n) and channel (v = n + 1, . . . , n + m)

variable nodes, respectively. In this work, we will limit our

investigation to memoryless binary sources.

A. Encoder

To understand our proposed serial encoding strategy, con-

sider the representation of the factor graph depicted in Fig. 1

by a m× (n+m) matrix H. This matrix can be written as

where Hsc is the l × n source encoder parity-check matrix,

Hcc is the (m − l) × m parity-check matrix of the channel

code, I is an l × l identity matrix, and L is an (m − l) × n
matrix, to which we will refer as linking matrix. The linking

matrix L represents the connections among the check nodes

of the channel code to the variable nodes of the source code.

The encoding of our proposed system diverts slightly from

the serial approach of [7]. The difference lies in the fact that

the message to be encoded before the transmission is formed

by the concatenation of the source output u and its syndrome

s computed by the source code, i.e., a codeword c is defined

by

c = [u, s] ·GL = [u,u ·HT
sc] ·GL , (1)

where GL is an (n + l) × (n + m) matrix constructed such

that the row space of GL is the null space of [L,Hcc], i.e.,

GL is the generator matrix of a linear systematic code whose

parity-check matrix is given by the horizontal concatenation

of the matrices L and Hcc. In the following, we show that

every codeword of the code spanned by GL is a codeword of

the code spanned by the null space of H.

Proposition 1: Let H =
[

[Hsc, I,0]
T , [L,Hcc]

T
]T

de-

note the matrix whose factor graph representation corresponds

to the joint system depicted in Fig. 1, HL = [L,Hcc], and

[u, s] be the concatenation of the source output u and its

syndrome-compressed sequence s. A codeword c formed by

the encoding of the vector [u, s] by the linear code spanned

by the null space of the matrix HL is also a codeword of the

linear code spanned by the null space of H.

Proof : Let GL denote the systematic generator matrix of

the null space of the matrix HL. Since the code spanned

by the rows of GL is systematic, its codewords can be

written as c = [d,p], where d is the systematic part of the

codeword. Let d = [u, s], then we can write c = [u, s,p],
where u = [u0, . . . , un−1] represents the source output, s =
[s0, . . . , sl−1] denotes the syndrome compressed sequence, and

p = [p0, . . . , pm−l−1] is a vector whose elements are the parity

bits generated by the inner product between [u, s] and GL. For

every codeword c, we have

c ·HT
L = c · [L,Hcc]

T = 0 . (2)

Recall now that according to our compression rule, and since

our operations are defined over GF(2), we can write

[u0, . . . , un−1] ·HT
sc = [s0, . . . , sl−1]

[u0, . . . , un−1] ·HT
sc + [s0, . . . , sl−1] · I = 0 , (3)

where I is an l × l identity matrix, and 0 is a vector whose

elements are all equal to zero. Note that Eq. (3) can be written

as

[u0, . . . , un−1, s0, . . . , sl−1] · [Hsc, I]
T = 0 . (4)



Consider now the l× (n+m) matrix [Hsc, I,0]. According to

Eq. (4), for every vector p = [p0, . . . , pm−l−1], we can write

[u0, . . . , un−1, s0, . . . , sl−1, p0, . . . , pm−l−1]·[Hsc, I,0]
T = 0 ,

i.e.,

c · [Hsc, I,0]
T = 0 . (5)

Finally, consider the inner product

c ·HT = c ·
[

[Hsc, I,0]
T , [L,Hcc]

T
]

=
[

c · [Hsc, I,0]
T , c · [L,Hcc]

T
]

. (6)

Substituting eqs. (2) and (5) into Eq. (6), we have

c ·HT = 0 ,

i.e., a codeword c of the code spanned by the null space of

HL is also a codeword of the code spanned by the null space

of H.

�

The encoding algorithm of our proposed joint source-

channel system can be summarized as follows:

1) Given a source output vector u, compute s = u ·HT
sc.

2) Compute v = [u, s], i.e., the horizontal concatenation

of vectors u and s.

3) Generate the codeword c = v ·GL.

4) Transmit c after puncturing its first n bits.

Steps 1 and 3 are the source and channel encoding steps,

respectively. Since Hsc is sparse, the source encoding has

a complexity that is linear with respect to the block length.

Furthermore, applying the technique presented in [8] for

encoding LDPC codes by means of their parity-check matrix,

the complexity of the channel encoding can be made approx-

imately linear.

B. Decoder

The decoding of the LDPC-based joint source-channel sys-

tem is done by means of the belief propagation algorithm

applied to the factor graph of Fig. 1, whose structure is known

to both the encoder and the decoder. We assume that the

decoder knows the statistics of the source.

Herein, we assume that the source is a memoryless

Bernoulli source with success probability pv , and that the

transmission takes place through a binary input AWGN chan-

nel. Within this framework, we can write Lsc
v = log

(

1−pv

pv

)

and Lcc
v = 2yv

σ2
n

where yv is the received BPSK modulated

codeword transmitted through an AWGN with noise variance

σ2
n (consequently Lcc

v has variance σ2
ch = 4/σ2

n).

III. MULTI-EDGE NOTATION

A. Multi-edge-type LDPC codes

Multi-edge-type LDPC codes [9] are a generalization of

irregular and regular LDPC codes. Diverting from standard

LDPC ensembles where the graph connectivity is constrained

only by the node degrees, in the multi-edge setting, several

edge classes can be defined, and every node is characterized

by the number of connections to edges of each class. Within

this framework, the code ensemble can be specified through

two node-perspective multinomials associated to variable and

check nodes, which are defined respectively by [9]

ν(r, x) =
∑

νb,drbxd and µ(x) =
∑

µdxd, (7)

where b, d, r, and x are vectors which are explained as follows.

First, let me denote the number of edge types used to represent

the graph ensemble and mr the number of different received

distributions. The number mr represents the fact that the

different bits can go through different channels and thus, have

different received distributions. Each node in the ensemble

graph has associated to it a vector x = (x1, . . . , xme
) that

indicates the different types of edges connected to it and a

vector d = (d1, . . . , dme
) referred to as edge degree vector

which denotes the number of connections of a node to edges

of type i, where i ∈ (1, . . . ,me).
For the variable nodes, there is additionally the vector

r = (r0, . . . , rmr
), which represents the different received

distributions and the vector b = (b0, . . . , bmr
), which indicates

the number of connections to the different received distribu-

tions (b0 is used to indicate a variable node with no available

intrinsic information at the decoder). We use xd to denote
∏me

i=1 x
di
i and rb to denote

∏mr

i=0 r
bi
i . Finally, the coefficients

νb,d and µd are non-negative reals such that, if n is the total

number of variable nodes, νb,dn and µdn represent the number

of variable nodes of type (b,d) and check nodes of type1 d,

respectively.

B. Multi-edge notation for joint source-channel factor graphs

In order to being able to quantify the amount of information

exchanged by the individual factor graphs representing the

channel and source codes during decoding, we define herein a

multi-edge framework for the JSC system. Within this frame-

work, we define four edge types within the corresponding

graph, i.e., me = 4. Additionally, now we also have two differ-

ent received distributions corresponding to the source statistics

and channel information, respectively. Figure 2 depicts the

four edge types and two received distributions. The solid and

dashed lines depict type-1 and type-2 edges, respectively. The

type-3 and type-4 edges are depicted by the dash-dotted and

dotted lines, respectively. Moreover, the received distributions

of the source and channel variable nodes are depicted by

solid and dashed arrows, respectively. Note that the source

and channel code factor graphs exchange information solely

through type-3 and type-4 edges. Since the variable nodes have

access to two different observations, the vector r = (r0, r1, r2)
has three components. The first component (r0) represents a

bit with no available intrinsic information, second component

(r1) corresponds to the observation accessible to the n source

LDPC variable nodes, and the third component (r2) denotes

the channel observations, which are available only to the

m channel LDPC variable nodes. Furthermore, since each

variable node has access to either the source statistics or the

channel observation, we can write b = (0, 1, 0) for the source

and b = (0, 0, 1) for the channel variable nodes, respectively.

1We will frequently refer to nodes with edge degree vector d as “type d”
nodes.



Fig. 2. Multi-edge joint source-channel factor graph.

IV. ASYMPTOTIC ANALYSIS

In this section, we derive the multi-edge-type mutual in-

formation evolution equations for LDPC-based joint source-

channel coding systems. We will use the edge-perspective

degree distributions λ(j)(r,x) and ρ(j)(x) to describe the

evolution of the mutual information between the messages sent

through type-j edges and the associated variable node values.

The edge-perpective multi-edge degree distributions can be

written as

λ(j)(r, x) =
νxj

(r, x)

νxj
(1, 1)

, ρ(j)(x) =
µxj

(x)

µxj
(1)

, (8)

where νxj
(r, x) and µxj

(x) are the derivatives of ν(r, x) and

µ(x) with respect to xj , respectively.

Note that, since we are dealing with syndrome-source

encoding (a framework where the source output is analogous

to an error pattern) of memoryless Bernoulli sources with a

probability of emitting a one equal to pv , we can model the

received distributions of the source code variable nodes as the

distribution of the output of a BSC with crossover probability

pv [5].

Let I
(j)
v,l (I

(j)
c,l ) denote the mutual information (MI) between

the messages sent through type-j edges at the output of

variable (check) nodes at iteration l and the associated variable

node value. Assuming Gaussian approximation [10] of the

messages exchanged through the joint factor-graph during BP

decoding, we can express the mutual information equation for

the channel code variable nodes, i.e., for j ∈ {2, 3} as

I
(j)
v,l =

∑

d

λ
(j)
d

J(σ2
ch + (dj − 1)[J−1(I

(j)
c,l−1)]

+
∑

s 6=j

ds[J
−1(I

(s)
c,l−1)]) , (9)

where σ2
ch is the variance of the received channel message,

λ
(j)
d

is the probability of a type-j edge being connected to a

variable node with edge degree vector d, and the function J(·)
relates all the MI quantities to the variance of LLR messages

and is defined as [11]

J(σ2) = 1−
∫ ∞

−∞

e
(ξ−σ2/2)2

2σ2

√
2πσ2

· log2[1 + e−ξ]dξ .

In addition, for the source code variable nodes, i.e., for j ∈

{1, 4}, we can write

I
(j)
v,l =

∑

d

λ
(j)
d

JBSC((dj − 1)[J−1(I
(j)
c,l−1)]

+
∑

s 6=j

ds[J
−1(I

(s)
c,l−1)], pv) , (10)

with the function JBSC defined as [7]

JBSC(σ
2, pv) = (1− pv)I(xv;L(1−pv)) + pvI(xv;L(pv)) ,

where xv denotes the corresponding bitnode variable,

L(1−pv) ∼ N (σ
2

2 + Lsc
v , σ2), and L(pv) ∼ N (σ

2

2 − Lsc
v , σ2).

Finally, the mutual information between the messages sent

by a check node through a type-j edge and its associated

variable value for both source and channel LDPC codes (i.e.,

for all j) can be written as

I
(j)
c,l =1−

d(j)
cmax
∑

i=1

∑

d:dj=i

ρ
(j)
d ·

J((dj − 1)[J−1(1− I
(j)
v,l )] +

∑

s 6=j

ds[J
−1(1− I

(s)
v,l )]) ,

(11)

where ρ
(j)
d is the probability of a type-j edge being connected

to a check node with edge degree vector d, and d
(j)
cmax is the

maximum number of type-j edges connected to a check node.

In order to limit the search space of the optimization

algorithm, we consider only check-regular source and channel

LDPC codes. Furthermore, the check nodes of source and

channel LDPC codes are considered to have edge degree

vectors d = (dc1 , 0, 1, 0) and d = (0, dc2 , 0, 1), respectively.

As a consequence, the multi-edge check node degree distri-

butions of the source and channel LDPC codes are given by

ρ(1)(x) = x
dc1

−1
1 and ρ(2)(x) = x

dc2
−1

2 , respectively.

A. Source code mutual information evolution

For the source code factor graph, the variable nodes

only have connections to type-1 and type-4 edges, i.e., all

source code variable nodes have an edge degree vector d =

(d1, 0, 0, d4) where d1 ∈ {2, . . . , d(1)vmax}, and d4 ∈ {0, 1}.

We can summarize the set of mutual information evolution

equations as follows:

• variable nodes messages update:

I
(1)
v,l =

∑

d

λ
(1)
d

JBSC((d1 − 1)[J−1(I
(1)
c,l−1(d))]

+ d4[J
−1(I

(4)
c,l−1(d))], pv) (12)

• check nodes messages update:

I
(1)
c,l (d) = 1−

J((dc1 − 1)[J−1(1− I
(1)
v,l )] + [J−1(1− I

(3)
v,l (d))])

(13)

• source to channel decoder messages update:

I
(4)
v,l (d) = d4 · JBSC(d1[J

−1(I
(1)
c,l−1(d))], pv) (14)

I
(3)
c,l = 1− J(dc1 [J

−1(1− I
(1)
v,l )]) (15)



• channel decoder messages update:

I
(3)
v,l (d) = Tv(I

(3)
c,l−1, I

(4)
v,l−1(d)) (16)

I
(4)
c,l (d) = Tc(I

(3)
c,l , I

(4)
v,l (d)) (17)

where Tv(·) and Tc(·) are the transfer functions of the channel

decoder, which is considered to be fixed. Given the channel

code degree distribution λ(2)(r, x) and ρ(2)(x), those functions

can be explicitly computed by means of eqs. (9) and (11) for

every edge degree vector d 2. In the computation of Tv(·) and

Tc(·), the rightmost sum in Eq. (11) will be zero if I
(4)
v,l (d) =

0, since the corresponding check node is not receiving any

information through type-4 edges in this case.

Combining eqs. (12) - (17) we can summarize the mutual

information evolution for the source code as a function of

the mutual information in the previous iteration, the source

statistics, the channel condition, and the degree distributions:

I
(1)
v,l = F1(λ, dc, I

(1)
v,l−1, pv, σch) , (18)

where dc = [dc1 , dc2 ], and λ = [λ(1), λ(2)] with λ(j) denoting

the sequence of coefficients λ
(j)
d for all d and j ∈ {1, 2}. The

initial conditions are I
(4)
v,0(d) = I

(4)
c,0 (d) = I

(1)
c,0 (d) = 0 ∀ d,

and I
(3)
c,0 = 0.

By means of Eq. (18), given a channel LDPC code, we

can predict the convergence behavior of the iterative decoding

for the source code and then optimize the multi-edge edge-

perspective variable node degree distributions λ(1)(r, x) under

the constraint that the mutual information must be increasing

as the number of iterations grows.

V. OPTIMIZATION

In the proposed algorithm herein, we first compute the

rate optimal channel LDPC code assuming a transmission

over an AWGN channel with noise variance σ2
n. This is a

standard irregular LDPC optimization [12] and since we are

not considering any connection to the source code in this

first step, it can be done by means of eqs. (9) and (11) with

d = (0, d2, 0, 0) and d2 ∈ {2, . . . , d(2)vmax}, where d
(j)
vmax

denotes the maximum number of type-j edges connected to a

variable node. The optimized degree distribution obtained at

this step will be denoted as λ
(2)
0 (r, x).

After having optimized the channel code variable nodes de-

gree distribution, we assign the variable nodes of higher degree

to the message bits. This is done in order to better protect the

compressed message transmitted through the channel, since

the more connected a variable node, the better its error error

rate performance [13]. This can be done as follows,

1) Given λ
(2)
0 (r, x), compute the node-perspective multi-

edge degree distribution ν0(r, x) =
∫
λ
(2)
0 (r,x)dx2

∫ 1
0
λ
(2)
0 (r,x)dx2

.

2) Assign a fraction Rcc of nodes (the ones with higher

degree) to the systematic part of the codeword, where

2For the computation of Tv(·), note that by means of Eq. (8) we can write

λ
(3)
d

(r, x) =

[ ∫
λ
(2)
d

(r,x)
∫ 1
0 λ

(2)
d

(r,x)

]′

x3

, where f ′

x denotes the partial derivative of f

with respect to x.

Rcc is the rate of the channel code. This is done by

turning a variable node with edge degree vector d =
(0, d2, 0, 0) into a variable node with edge degree vector

d = (0, d2, 1, 0). This gives rise to a modified node-

perspective degree distribution ν(r, x), where a fraction

of Rcc nodes have one connection to type-3 edges.

3) Given ν(r, x), compute the new edge-perspective multi-

edge variable node degree distribution λ(2)(r, x) =
νx2

(r,x)

νx2
(1,1) .

Once we have optimized the channel code, we optimize

(maximizing its rate) the source LDPC code considering its

connections to the channel LDPC code graph.

Let dvmax
= [d

(1)
vmax , d

(2)
vmax , d

(3)
vmax , d

(4)
vmax ] be a vector

whose components d
(j)
vmax represent the maximum number of

connections of a single variable node to type-j edges. Also,

recall that the components of the vector dc = [dc1 , dc2 ] define

the number of connections of the source code check nodes

to type-1 edges (dc1 ) and the number of connections of the

channel code check nodes to type-2 edges (dc2 ). Additionally,

λ(j) denote the sequence of the coefficients of λ(j)(r, x). Given

dvmax
, dc, pv , and σ2

n = σ2
ch/4, the optimization problem can

be written as shown in Algorithm 1.

Algorithm 1 Joint source-channel code optimization

1) Optimize the rate of the channel LDPC code without consid-
ering the connections to the factor graph of the source LDPC

code. Save the obtained the degree distribution λ
(2)
0 (r, x).

2) Compute λ(2)(r, x) by assigning as systematic bits a fraction
of the variable nodes with higher degrees of the optimized
channel LDPC code.

3) Considering λ = [λ(1), λ(2)], maximize
∑d

(1)
vmax

s=2

∑
d:d1=s

λ
(1)
d /s under the following constraints,

C1 :
∑

d
λ
(1)
d = 1 ,

C2 : F1(λ, dc, I, pv, σch) > I, ∀ I ∈ [0, 1) ,

C3 :
∑

d:d1=2 λ
(1)
d < 1

2
√

pv(1−pv)
· 1
(dc1−1)

,

C4 :
∑

d:d4>0

λ
(1)
d

d1
= 1/(dc1dc2

∑
d:d3=1

λ
(2)
d

d2
) .

where C1 and C2 are the proportion and convergence con-

straints, respectively. Since we are considering the conver-

gence only through edges of type-1, the stability condition C3
remains the same as for standard LDPC codes ensembles with

codewords transmitted over a BSC with transition probability

pv [9]. Furthermore, the rate constraint C4 must be considered

due to the fact that the number of type-4 edges connected to

the source code variable nodes must be equal to the number of

channel code check nodes (since we assume that every channel

code check nodes is connected to only one type-4 edge).

For given λ(2), dc, pv , and σch, the constraints C1, C2, C3,

and C4 are linear in the parameter λ(1). This means that the

optimization of both source and channel codes can be solved

by linear programming. For a given channel condition, every

different set of vectors dvmax
, dc will give rise to systems

with a different overall rate. In practice, we fix the vector

dvmax
and vary dc1 and dc2 to obtain the joint system with

maximum overall rate for a binary symmetric source with



transition probability pv and an AWGN with noise variance

σ2
n.

VI. SIMULATION RESULTS

Herein, we present simulation results obtained with an

LDPC-based JSC coding system constructed according to the

degree distributions optimized by the algorithm previously

proposed. We optimized a system with the following param-

eters: pv = 0.03, σ2
n = 0.95, dvmax

= [30, 30, 1, 1], and

dc = [22, 6]. For such source and channel conditions, the

asymptotically optimal Shannon limit is C/H(S) ≃ 2.58
source symbols per channel use, where C is the channel

capacity and H(S) is the source entropy. The compression

rate obtained for the source code was Rsc = 0.2361, and

the transmission rate obtained for the channel LDPC code

was Rcc = 0.4805 giving an overall coding rate of Rover =
Rcc/Rsc ≃ 2.03.

In order to show the merits of the proposed optimization,

we compare the performance of our proposed system with the

LDPC-based JSC systems with the same overall rate Rover =
2.03 introduced by Caire et al. in [6] to which we will refer as

System I. This system has the edges between the check nodes

of the source LDPC code and the systematic variable nodes of

the channel LDPC code as the only connections between the

factor graphs of the source and channel codes. Furthermore,

it consists of a source code jointly optimized with a fixed

channel code previously optimized for the AWGN channel.

Every simulation point presented was obtained considering

BPSK modulated signal transmitted over an AWGN channel

and a total of 50 decoding iterations.

Since we are interested in an almost-noiseless compression

scenario, we chose the word-error rate (WER) as figure

of merit. The simulation results for our optimized system

(referred to as JSC opt) and System I with source message

of lengths n = 3200 and n = 6400 are depicted in Fig. 3. As

mentioned previously, the results for System I show an very

high error floor for high SNR’s which are a consequence of

the compression of source codewords that form error patterns

not correctable by the source LDPC code. Figure 3 shows that

our proposed system managed to significantly lower this error

floor while keeping the overall rate constant.

VII. CONCLUDING REMARKS

We proposed an LDPC-based joint source-channel coding

scheme and, by means of a multi-edge analysis, proposed an

optimization algorithm for such systems. Based on a syndrome

source-encoding, we presented a novel configuration where

the amount of information about the source bits available at

the decoder is increased by improving the connection profile

between the factor graphs of the source and channel codes that

form the joint system. The presented simulation results show a

significant reduction of the error floor caused by the encoding

of messages that correspond to uncorrectable error patterns

of the LDPC code used as source encoder in comparison to

existent LDPC-based joint source-channel coding systems.

The next step will be to improve our design by placing

infinite reliability on some source variable nodes. This was
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Fig. 3. Performance of joint source-channel coded systems with
Rover = 2.03 for n = 3200 and n = 6400 .

done in the context of pure source compression in [2] and will

be the subject of our future investigations in order to lower

even more the error floor presented in our simulations.
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