
Int. Zurich Seminar on Communications (IZS), Feb. 22–24, 2006

1-4244-0092-9/06/$20.00 c©2006 IEEE.
142

Path Pruning for Unequal Error Protection
Turbo Codes

Werner Henkel and Neele von Deetzen
International University Bremen (IUB)

Campus Ring 1
D-28759 Bremen, Germany

Email: {w.henkel, n.vondeetzen}@iu-bremen.de

Abstract— For some applications in communications, it is
desirable to provide unequal error protection for different types
of information data. In image coding, e.g., types of bits exist
which have to be protected with different protection levels when
transmitting these data over noisy channels. In this paper, we
concentrate on Turbo codes ([1]) with unequal error protection
capabilities which are achieved by modifying the code rate
R = k/n. After pointing out that puncturing and path pruning
are modifications of the rate in the denominator and numerator,
respectively, the latter is studied in more detail. Design rules are
given and EXIT charts for performance analysis of Turbo codes
with path-pruned convolutional component codes are presented.

I. INTRODUCTION

The usual way to adapt the rate and distance of a convolu-
tional code based on a given mother code is puncturing lead-
ing to the so-called rate-compatible convolutional codes [2].
Output bits are omitted according to some puncturing pattern,
thereby influencing the denominator of the rate R = k/n, i.e.,
modifying the number of output bits. These punctured codes
are also used in Turbo coding schemes (see, e.g., [3], [4]) to
realize unequal error protection (UEP) properties.

For rate changes, of course, the numerator may be modified
as well. When doing this, paths are pruned from the trellis.
Note that k defines the number of paths (2k in the binary case)
emerging from a state and merging into a state. Interestingly,
not much work has been done on this, e.g., [5].

Multilevel coded modulation is an example where necessar-
ily unequal error protection is required for the different levels.
When additionally requiring rotational invariance properties,
containment conditions have to be fulfilled, especially the first
code has to be contained in the second code, etc.. In [6],
multilevel convolutionally encoded modulation was studied
and design rules were set up to ensure rotational invariance
by suitable choices of the generators of the component con-
volutional codes.

From [6], we extract the design proposals and study them
now in the light of unequal error-protecting Turbo codes. In the
following section, we provide design methods for path-pruned
convolutional codes together with an example. Thereafter, we
provide some EXIT charts to show the effect of the path
pruning. A list of codes is not provided in here, but a few
examples are given in [6]. However, note that there the all-ones
sequence was additionally required to be part of the code. This

ensures that an inversion of all bits still leads to a valid code
sequence. One may anyway want to preserve this property.

II. PATH PRUNING

In this section we show how to determine sub-codes, i.e.,
path-pruned codes from a given mother code or vice versa. To
ensure sub-code properties, we have to fulfil

∀I(s)∃I(m) : I(s) ·G(s)(D) = I(m) ·G(m)(D) , (1)

i.e., C(s) ⊂ C(m), where C(s) and C(m) are the sub-code and
the mother code, respectively, and I (·) and G(·)(D) are the
information sequence and the code generator of the respective
code.

Let us first assume the number of information bits of the
sub-code to be k(s) = 1. For simplicity, the components of
the input vector of the mother code

I(m) = (I
(m)
1 , I

(m)
2 , ... , I

(m)

k(m) ) (2)

are chosen to be combinations of shifted versions of I (s), i.e.,

I
(m)
l = I(s) · gl(D) , (3)

where gl(D) describes a polynomial of degree
deg(gl(D)) = jl. The k(m) polynomials gl(D) can now be
arranged in a vector G(p)(D) of length k(m) with polynomial
entries. This vector is assumed to be delayfree [8].
We can now write Eq. (3) in vector notation not only for the
single components I

(m)
l but for the whole I(m).

I(m) = I(s) ·G(p)(D) (4)

If we now insert this into Eq. (1) we obtain

I(s) ·G(s)(D) = I(m) ·G(m)(D) (5)

= I(s) ·G(p)(D) ·G(m)(D) (6)

⇒ G(s)(D) = G(p)(D) ·G(m)(D) . (7)

Now we consider the case of k(s) ≥ 1. Likewise, one
chooses

I
(m)
l =

k(s)
∑

i=1

I
(s)
i · gil(D) , (8)

where l = 1, ... , k(m) , i = 1, ... , k(s) .



Int. Zurich Seminar on Communications (IZS), Feb. 22–24, 2006

143

This means that the single components of the input to the
mother encoder consist of combinations of the (shifted) inputs
to the sub-code. Again, this expression can more easily be
described by a matrix G(p)(D), now of dimensions [k(s) ×
k(m)] according to

I(m) = I(s) ·G(p)(D) , (9)

where G(p)(D) is of the following shape:

G(p)(D) =







g11(D) . . . g1k(m)(D)
...

...
gk(s)1(D) . . . gk(s)k(m) (D)






. (10)

Again, this implies Eq. (7):

G(s)(D) = G(p)(D) ·G(m)(D) .

This means that we can construct different sub-codes from a
given mother code by multiplying the mother code generator
by generator matrices G(p)(D). From now on we will call
this matrix pruning matrix, since it determines which state
transitions in the trellis of the mother code will be pruned. In
order to keep the complexity low, it is desirable to have the
same trellises for the mother code and the sub-code except
for the pruned state transitions and thus, the number of delay
elements should be the same in both codes. Therefore, the
pruning matrix has to fulfil the condition (for simplification,
we write G(·) instead of G(·)(D))

k(m)
∑

i=1

max
j

1≤j≤n(m)

deg(G
(m)
i,j )

!
=

k(s)
∑

i=1

max
j

1≤j≤n(m)

deg(G
(s)
i,j )

(11)

=

k(s)
∑

i=1

max
j

1≤j≤n(m)

deg(G
(p)
i,− �G

(m)
j,| ) (12)

=

k(s)
∑

i=1

max
j

1≤j≤n(m)

deg(

k(m)
∑

k=1

g
(p)
i,k · g

(m)
k,j ) , (13)

where G
(·)
i,| and G

(·)
i,− represent the ith column and the ith

row of a matrix, respectively, and � represents the scalar
product of two vectors. The left and the right side of Eq.
(11) represent the number of delay elements contained in
the mother code and the sub-code, respectively, given the
generator matrices. First, the number of delays per input
stream is determined and then these are summed up over
all input streams. Equations (12) and (13) take Eq. (7) into
account and express the sub-code generator by the pruning
code generator and the mother code generator in order to find
a condition for G(p)(D) dependent on G(m)(D).

As an example, we choose

G(s)(D) =
(

1 + D + D2 1 + D + D2 1 + D2
)

.
(14)

Letting I
(m)
1 = I(s) and I

(m)
2 = D · I(s) (and thus

G(p)(D) = [1 D]) leads to a set of solutions one of which is

G(m)(D) =

(

1 1 + D 1 + D
1 + D D 1 + D

)

. (15)

One may, of course, also define G(m)(D) and determine
G(s)(D) for given constraint lengths L(s) and L(m), which
would then be unique.

In [6], a few results of a computer search are listed.
From the described procedure, we obtain C(s) as a subcode

of C(m) which means that state transitions and thus paths
in the trellis (code sequences) are omitted (pruned) from the
trellis of C(m) in a symmetric way. Let us view the trellises
of the quoted example. In figures 1 and 2, the shift registers
and the trellis diagrams of the mother and the sub-code are
shown. C(s) is shown as solid lines as part of C(m) in Fig. 2.
We present the recursive systematic versions of the generators
from above, since we will use the convolutional codes inside
Turbo codes. It is obvious, that the state transitions of the
sub-code are contained in the trellis of the mother code.

1/000

1/111

0/001

1/110

1/111

1/111

1/110

0/001

Fig. 1. Encoder and trellis of C(s)

00/000
01/101

01/010
11/111

11/111
01/010

10/101
00/000

01/011
11/110

00/001
10/100

10/100
00/001

11/110
01/011

Fig. 2. Encoder and trellis of C(m); subcode C(s) marked in bold

These path pruned convolutional codes are now the basis
for unequal error protection Turbo codes. We use the standard
Turbo coding scheme shown in Fig. 3.



Int. Zurich Seminar on Communications (IZS), Feb. 22–24, 2006

144

PSfrag replacements

G(s)(D)

G(s)(D)

Π

Π

Π
−1

Lch,1 Lch,2

L1 L2La,1 La,2Le,1

Le,2

APP1 APP2

Fig. 3. Turbo encoder and decoder

Since the code rate of the constituent encoders, i.e., the
sub-codes is

R(s) = R(p) · R(m) =
k(p)

k(m)
·
k(m)

n(m)
=

k(p)

n(m)
,

the overall code rate of the Turbo code is
1

RTC

=
1

R
(s)
1

+
1

R
(s)
2

− 1

or equivalently

RTC =
k(p)

n
(m)
1 + n

(m)
2 − k(p)

,

where the indices 1 and 2 represent the two constituent
encoders, which have to have the same k(p) but not necessarily
the same n(m). Furthermore, the rate of the pruned Turbo code
has an upper and a lower bound given by

1

n
(m)
1 + n

(m)
2 − 1

≤ RTC ≤
k(m) − 1

n
(m)
1 + n

(m)
2 − k(m) + 1

,

(16)
since 1 ≤ k(s) ≤ k(m) in order to assure a code rate smaller

than 1 for the constituent codes.
Let us assume a frame of data containing several blocks

with different importance levels and therefore different re-
quirements in terms of bit error rates. With the above presented
UEP Turbo codes we can encode these blocks successively,
switching between different pruning codes according to rate
and bit error rate requirements of the blocks. Let the mother
code rate for example be R(m) = 4/5 and the data frame
consist of four blocks of increasing importance. One could
then use the mother code without a pruning code or with a
pruning code of rate R(p,1) = 1 for the first block, and switch
to a rate R(p,2) = 3/4 pruning code for the second block. The
third and the fourth block could be encoded by using pruning
matrices of rate R(p,3) = 2/4 and R(p,4) = 1/4, respectively.
Thus, the overall Turbo Code rates for the four blocks would

be 2/3, 3/7, 1/4, and 1/9, which obviously leads to unequal
error protection.

In the following section we show EXIT charts [7] and bit
error rate curves to investigate the properties of the pruned
codes.

III. EXIT CHARTS

In this section, we show by means of another example that
the mother code and the sub-code have different correction
capabilities and therefore are suitable for UEP. In our simu-
lations, we set the frame length to 32768 bits. Both recursive
systematic encoders have k(m) · m(m) = k(s) · m(s) = 2
memory elements. The generators of rate R(s) = 1/3, R(p) =
1/2 and R(m) = 2/3 are

G(s)(D) =
(

1 + D2 D + D2 1 + D + D2
)

, (17)

G(p)(D) =
(

1 + D D
)

, (18)

and

G(m)(D) =

(

1 D 1
1 + D 0 D

)

. (19)

Our simulations were done for an AWGN channel and we
used a Log-MAP algorithm for decoding.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

Ia, Ie

I e
,I

a

Fig. 4. EXIT chart of the sub-code C(s) at Eb/N0 = 0.1 dB

Figure 4 shows the EXIT chart for the sub-code C (s) at a
signal-to-noise ratio of 0.1 dB, where the decoder converges
and the a priori and the extrinsic mutual information, is close
to 1. In Figure 5, we see the EXIT chart of the mother code
at two different signal-to-noise ratios. The solid curves show
the mutual information for Eb/N0 = 1.8dB dB, where the
mother code just converges to the point (1; 1). The dotted
curves represent the mutual information for Eb/N0 = 0.1dB
dB, i.e., the signal-to-noise ratio for which the sub-code
converges. This is to show that the mother code still has very
bad performance while the corresponding sub-code already
converges.

Figure 6 shows the bit error rate curves of the mother code
and the sub-code over Eb/N0 for a frame length of 8192 bits,



Int. Zurich Seminar on Communications (IZS), Feb. 22–24, 2006

145

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
b
/N

0
 = 1.8dB

E
b
/N

0
 = 0.1dB

PSfrag replacements

Ia, Ie

I e
,I

a

Fig. 5. EXIT chart of the mother code C(m) at Eb/N0 = 1.8 dB and
Eb/N0 = 0.1 dB

−2 −1 0 1 2 3 4 5
−7

−6

−5

−4

−3

−2

−1

0

PSfrag replacements

Eb/N0

B
E

R

C
(m)

C
(s)

Fig. 6. Bit error rate curves of C(m) and C(s) over Eb/N0

where the solid and the dashed curve represent the mother
code and the sub-code, respectively. Additionally, we inserted
the Shannon limits for the respective codes. As we expected,
the performance of the mother code is worse than that of the
sub-code and there is a difference of approximately 1.7 dB
between the two curves.

Since the transmit power of a code word is usually
constant, regardlass of the code rate, the bit error rate curves
over Es/N0 might be more suitable. These are shown in
Figure 7. We see a difference between the performances of
around 5.5 dB.

Finally, we should mention that the examples shown in this
paper are useful for applications that do not intend to approach
the Shannon limit too closely. These codes have not yet been
optimised concerning distance properties and shapes of EXIT

−8 −6 −4 −2 0 2
−7

−6

−5

−4

−3

−2

−1

0

PSfrag replacements

Es/N0

B
E

R

C
(m)

C
(s)

Fig. 7. Bit error rate curves of C(m) and C(s) over Es/N0

curves and thus, better results might be achieved when taking
into account the influence of the pruning code on the distance
spectrum and the EXIT curves of the sub-code.

IV. CONCLUSIONS

We have shown that a pruning procedure originally designed
for multilevel coded modulation is a worthwhile and read-
ily available alternative to puncturing to adapt the rate and
distance for different protection levels in UEP Turbo codes.
Pruning can simply be accomplished by a concatenation of the
mother code and a pruning code which leads to a selection of
only some paths in the trellis. EXIT charts and bit error rate
curves of an exemplary code have been presented.

ACKNOWLEDGEMENT

This work is part of the FP6 / IST project M-Pipe and is
co-funded by the European Commission.

REFERENCES

[1] Berrou, C., Glavieux, A., Thitimajshima, P., “Near Shannon limit error-
correcting coding and decoding: turbo codes”, Proc. IEEE International
Conference on Communication (ICC), May 1993, Geneva, Switzerland,
May 1993, pp. 1064-1070.

[2] Hagenauer, J.: “Rate-Compatible Punctured Convolutional Codes (RCPC
Codes) and their Applications”, IEEE Trans. on Comm., Vol. 36, No. 4,
April 1988, S. 389-400.

[3] Caire, G., Lechner, G., “Turbo Codes with unequal error protection,”
Electronics Letters, March 28, 1996, Vol. 32, No. 7, pp. 629-631.

[4] Barbulescu, A.S., Pietrobon, S.S., “Rate compatible turbo codes,” Elec-
tronics Letters, Vol. 31, March 1995, pp. 530-537.

[5] Wang, C.-H., Chao, C.-C., “Path-Compatible Pruned Convolutional
(PCPC) Codes: A New Scheme for Unequal Error Protection”, ISIT,
Cambridge, MA, USA, Feb.1998.

[6] Koch, M., Henkel, W., “90◦-Rotationally Invariant Multilevel Convolu-
tionally Encoded QAM,” ETT, Vol. 4, No. 2, March/April 1993, pp. 25-31.

[7] ten Brink, S., “Convergence Behavior of Iteratively Decoded Parallel
Concatenated Codes,” IEEE Trans. on Communications, Vol. 49, No. 10,
pp. 1727-1737, Oct. 2001.

[8] Johannesson, R., Wan, Z.-X., “A Linear Algebra Approach to Minimal
Convolutional Encoders,” IEEE Trans. on Information Theory, Vol. 39,
Issue 4, pp. 1219 - 1233, July. 1993.


