OFDM (DMT) Bit and Power Loading for Unequal Error Protection

Werner Henkel and Khaled Hassan

School of Engineering and Science International Universities Bremen (IUB)

11th International OFDM-Workshop, 2006

Werner Henkel & Khaled Hassan OFDM (DMT) Bit and Power Loading for Unequal Error Protection

ヘロン 人間 とくほ とくほ とう

э.

Outline

Why Unequal Error Protection (UEP)?

- Why UEP Physical Transport?
- 2 UEP: Bit-Loading
 - Previous Work
 - Proposed UEP Bit-Rate Maximization
- 3 Channel Model
 - Noise Environment
- 4 Simulation Results
 - UEP Performance: SER Analysis
 - Bit and Power Loading

5 Conclusions

Outline

Motivations

- Why Unequal Error Protection (UEP)?
- Why UEP Physical Transport?
- 2 UEP: Bit-Loading
 - Previous Work
 - Proposed UEP Bit-Rate Maximization
- 3 Channel Model
 - Noise Environment
- 4 Simulation Results
 - UEP Performance: SER Analysis
 - Bit and Power Loading
- 5 Conclusions

イロト イポト イヨト イヨト

Realizing UEP

- Source encoders of some applications deliver data of different importance.
- ♦ The different error sensitivities of different communication devices, e.g., PDAs, laptops, ···.
- Matching the channel variations to enhance performance and throughput.

・ロト ・ 同ト ・ ヨト ・ ヨト

Realizing UEP

- Source encoders of some applications deliver data of different importance.
- ◊ The different error sensitivities of different communication devices, e.g., PDAs, laptops, ···.
- Matching the channel variations to enhance performance and throughput.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Source encoders of some applications deliver data of different importance.
- ◊ The different error sensitivities of different communication devices, e.g., PDAs, laptops, ···.
- Matching the channel variations to enhance performance and throughput.

・ロット (雪) () () () ()

Motivations W

Why UEP Physical Transport?

Advantages of UEP Physical Transport

Why UEP physical transport?

- Reduce effort and complexity
- Arbitrary performance steps

Werner Henkel & Khaled Hassan OFDM (DMT) Bit and Power Loading for Unequal Error Protection

・ロット (雪) () () () ()

Э

Motivations Why U

Why UEP Physical Transport?

Advantages of UEP Physical Transport

Why UEP physical transport?

- Reduce effort and complexity
- Arbitrary performance steps

Werner Henkel & Khaled Hassan OFDM (DMT) Bit and Power Loading for Unequal Error Protection

・ロット (雪) () () () ()

Э

Motivations

Why UEP Physical Transport?

IUB

Э

Advantages of UEP Physical Transport

Why UEP physical transport?

- Reduce effort and complexity
- Arbitrary performance steps

Werner Henkel & Khaled Hassan OFDM (DMT) Bit and Power Loading for Unequal Error Protection

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivations

Why UEP Physical Transport?

IUB

Э

Advantages of UEP Physical Transport

Why UEP physical transport?

- Reduce effort and complexity
- Arbitrary performance steps

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

Motivations

- Why Unequal Error Protection (UEP)?
- Why UEP Physical Transport?
- 2 UEP: Bit-Loading
 - Previous Work
 - Proposed UEP Bit-Rate Maximization
- 3 Channel Model
 - Noise Environment
- 4 Simulation Results
 - UEP Performance: SER Analysis
 - Bit and Power Loading
- 5 Conclusions

・ 同 ト ・ ヨ ト ・ ヨ ト

Bit-Loading Algorithms

Bit-Loading solutions:

- Optimum: add bits to the locations of minimum incremental power, e.g.: Hughes-Hartogs and Campello
- Sub-optimum: based on Shannon capacity (Chow et. al.) or Lagrange-optimization (Fischer-Huber and Yu-Willson)

くロト (調) (正) (正)

Bit-Loading Algorithms

Bit-Loading solutions:

- Optimum: add bits to the locations of minimum incremental power, e.g.: Hughes-Hartogs and Campello
- Sub-optimum: based on Shannon capacity (Chow et. al.) or Lagrange-optimization (Fischer-Huber and Yu-Willson)

Bit-Loading by Chow et. al.:
$$b_k = \log_2\left(1 + \frac{\mathsf{SNR}_k}{\gamma}\right)$$

Bit-Rate Maximization Problem:

$$\max_{b \in Z} \left\{ B_{\text{tot}} = \sum_{k=0}^{N-1} b_k \right\}$$

ubject to
$$\sum_{k=0}^{N-1} P_k(b_k) < P_T ,$$

ヘロト ヘアト ヘビト ヘビト

1

7

Bit-Loading Algorithms

Bit-Loading solutions:

- Optimum: add bits to the locations of minimum incremental power, e.g.: Hughes-Hartogs and Campello
- Sub-optimum: based on Shannon capacity (Chow et. al.) or Lagrange-optimization (Fischer-Huber and Yu-Willson)

Bit-Loading by Chow et. al.:
$$b_k = \log_2\left(1 + \frac{\text{SNR}_k}{\gamma}\right)$$

Quantization Error:

$$egin{array}{rcl} \hat{b}_k &=& \lfloor b_k \!+\! 0.5
floor_0^{b_{ ext{max}}} \ \Delta b_k &=& b_k \!-\! \hat{b}_k \end{array}$$

ヘロト 人間 ト くほ ト くほ トー

Proposed UEP Bit-Rate Maximization

Modifications to Bit-Loading by Chow et. al.

3

Problem definitions

- N_g levels of protections with noise margins γ_j
- Noise margin step size $\Delta \gamma_i$
- Target-rates T_j for each class
- Over all target bit-rate B_T

$$\begin{array}{lll} b_{k,j} &=& \log_2\left(1+\frac{\mathrm{SNR}_{k,j}}{\gamma_j}\right) \\ \hat{b}_{k,j} &=& \lfloor b_{k,j}+0.5 \rfloor_0^{b_{\max}} \\ \Delta b_{k,j} &=& b_{k,j}-\hat{b}_{k,j} \end{array}$$

Proposed UEP Bit-Rate Maximization

Modifications to Bit-Loading by Chow et. al.

Problem definitions

- N_g levels of protections with noise margins γ_j
- Noise margin step size Δγ_j
- Target-rates T_j for each class
- Over all target bit-rate B_T

Modified bit-loading:

$$\begin{array}{lll} b_{k,j} &=& \log_2\left(1+\frac{{\rm SNR}_{k,j}}{\gamma_j}\right) \\ \hat{b}_{k,j} &=& \lfloor b_{k,j}+0.5 \rfloor_0^{b_{\max}} \\ \Delta b_{k,j} &=& b_{k,j}-\hat{b}_{k,j} \end{array}$$

Modifications to Bit-Loading by Chow et. al.

3

Problem definitions

- N_g levels of protections with noise margins γ_j
- Noise margin step size $\Delta \gamma_i$
- Target-rates T_j for each class
- Over all target bit-rate B_T

Modified bit-loading:

$$\begin{array}{lll} b_{k,j} &=& \log_2\left(1+\frac{\mathrm{SNR}_{k,j}}{\gamma_j}\right) \\ \hat{b}_{k,j} &=& \lfloor b_{k,j}+0.5 \rfloor_0^{b_{\max}} \\ \Delta b_{k,j} &=& b_{k,j}-\hat{b}_{k,j} \end{array}$$

Proposed UEP Bit-Rate Maximization

Modifications to Bit-Loading by Chow et. al.

Problem definitions

- N_g levels of protections with noise margins γ_j
- Noise margin step size $\Delta \gamma_i$
- Target-rates T_j for each class
- Over all target bit-rate **B**_T

Modified bit-loading:

э

SNR-sorting SNRs have to be allocated to N_g levels. Allocate important data to weaker subcarriers to protect them against non-stationary points.

Proposed UEP Bit-Rate Maximization

Modifications to Bit-Loading by Chow et. al.

Problem definitions

- N_g levels of protections with noise margins γ_j
- Noise margin step size $\Delta \gamma_i$
- Target-rates T_j for each class
- Over all target bit-rate **B**_T

Modified bit-loading:

$$\begin{array}{lll} b_{k,j} &=& \log_2\left(1+\frac{\mathsf{SNR}_{k,j}}{\gamma_j}\right) \\ \hat{b}_{k,j} &=& \lfloor b_{k,j}+0.5 \rfloor_0^{b_{\max}} \\ \Delta b_{k,j} &=& b_{k,j}-\hat{b}_{k,j} \end{array}$$

SNR-sorting

- SNRs have to be allocated to N_g levels.
- Allocate important data to weaker subcarriers to protect them against non-stationary noise

Modifications to Bit-Loading by Chow et. al.

Problem definitions

- N_g levels of protections with noise margins γ_j
- Noise margin step size $\Delta \gamma_i$
- Target-rates T_j for each class
- Over all target bit-rate B_T

Modified bit-loading:

$$\begin{array}{lll} b_{k,j} &=& \log_2\left(1+\frac{\mathsf{SNR}_{k,j}}{\gamma_j}\right) \\ \hat{b}_{k,j} &=& \lfloor b_{k,j}+0.5 \rfloor_0^{b_{\max}} \\ \Delta b_{k,j} &=& b_{k,j}-\hat{b}_{k,j} \end{array}$$

SNR-sorting

- SNRs have to be allocated to N_g levels.
- Allocate important data to weaker subcarriers to protect them against non-stationary noise.

Input: SNR_{*k,j*} in *k*th subcarrier of *j*th class, *N*, *N_g*, *B_T*, *T_j*, and $\Delta \gamma$ **Output:** γ_j , average probability of error $\overline{\mathscr{P}}_{ej}$, and bit-loading

- Compute b_{kj} using γ_j $(\gamma_j = \gamma_0 - j \cdot \Delta \gamma)$.
- Adjust *M_j* iteratively,
- If $B_{tot} \neq B_T$, $\gamma_{0,new} = \gamma_{0,old} \cdot 2^{\frac{a_0}{c}}$
- If B_{tot} ≠ B_T again, add or subtract bits according to Δb_k.
- The power is allocated according to \$\overline{\mathcal{P}_{ej}}\$

Input: SNR_{k,i} in k^{th} subcarrier of j^{th} class, N, N_g , B_T , T_j , and $\Delta \gamma$ **Output:** γ_i , average probability of error $\overline{\mathcal{P}_{e_i}}$, and bit-loading

- Compute b_{ki} using γ_i
- Adjust *M_i* iteratively,
- ۲

OFDM (DMT) Bit and Power Loading for Unequal Error Protection

Input: SNR_{k,j} in k^{th} subcarrier of j^{th} class, N, N_g , B_T , T_j , and $\Delta \gamma$ **Output:** γ_j , average probability of error $\overline{\mathscr{P}}_{e_j}$, and bit-loading

- Compute b_{kj} using γ_j $(\gamma_j = \gamma_0 - j \cdot \Delta \gamma)$.
- Adjust *M_j* iteratively,
- If $B_{tot} \neq B_T$, $\gamma_{0,new} = \gamma_{0,old} \cdot 2^{\frac{\mu}{2}}$
- If B_{tot} ≠ B_T again, add or subtract bits according to Δb_k
- The power is allocated according to \$\overline{\mathcal{P}_{ej}}\$

Input: SNR_{k,j} in k^{th} subcarrier of j^{th} class, N, N_g , B_T , T_j , and $\Delta \gamma$ **Output:** γ_j , average probability of error $\overline{\mathscr{P}}_{e_j}$, and bit-loading

- Compute b_{kj} using γ_j $(\gamma_j = \gamma_0 - j \cdot \Delta \gamma)$.
- Adjust \mathcal{M}_j iteratively, if $\sum_{k,j} b_{k,j} < T_j$
- If $B_{tot} \neq B_T$, $\gamma_{0,new} = \gamma_{0,old} \cdot 2^{\frac{2\pi}{2}}$
- If B_{tot} ≠ B_T again, add or subtract bits according to ∆b_{k,i}
- The power is allocated according to \$\mathcal{P}_{e_i}\$

Input: SNR_{k,i} in k^{th} subcarrier of j^{th} class, N, N_g, B_T, T_i , and $\Delta \gamma$ **Output:** γ_i , average probability of error $\overline{\mathcal{P}_{e_i}}$, and bit-loading

- Compute b_{ki} using γ_i $(\gamma_i = \gamma_0 - j \cdot \Delta \gamma).$
- Adjust *M_i* iteratively, if $\sum_{k,j} b_{k,j} > T_j$
- ۲
- ۲

Input: SNR_{k,j} in k^{th} subcarrier of j^{th} class, N, N_g , B_T , T_j , and $\Delta \gamma$ **Output:** γ_j , average probability of error $\overline{\mathscr{P}}_{e_j}$, and bit-loading

- Compute b_{kj} using γ_j $(\gamma_j = \gamma_0 - j \cdot \Delta \gamma)$.
- Adjust *M_j* iteratively, repeat unit Σ_{k,j} b_{k,j} = T_j or maximum iteration
- If $B_{tot} \neq B_T$, $\gamma_{0,new} = \gamma_{0,old} \cdot 2^{\frac{B_{tot}-N}{N}}$
- If $B_{tot} \neq B_T$ again, add or subtract bits according to $\Delta b_{k,j}$
- The power is allocated according to \$\overline{\mathcal{P}_{ei}}\$

Input: SNR_{k,j} in k^{th} subcarrier of j^{th} class, N, N_g , B_T , T_j , and $\Delta \gamma$ **Output:** γ_j , average probability of error $\overline{\mathscr{P}}_{e_j}$, and bit-loading

- Compute b_{kj} using γ_j $(\gamma_j = \gamma_0 - j \cdot \Delta \gamma)$.
- Adjust *M_j* iteratively, repeat unit Σ_{k,j} b_{k,j} = T_j or maximum iteration
- If $B_{tot} \neq B_T$, $\gamma_{0,new} = \gamma_{0,old} \cdot 2^{\frac{B_{tot} B_T}{N}}$
- If $B_{tot} \neq B_T$ again, add or subtract bits according to $\Delta b_{k,j}$
- The power is allocated according to \$\overline{\mathcal{P}_{ej}}\$

haled Hassan OFDM (DMT) Bit and Power Loading for Unequal Error Protection

Input: SNR_{k,j} in k^{th} subcarrier of j^{th} class, N, N_g , B_T , T_j , and $\Delta \gamma$ **Output:** γ_j , average probability of error $\overline{\mathscr{P}}_{e_j}$, and bit-loading

- Compute b_{kj} using γ_j $(\gamma_j = \gamma_0 - j \cdot \Delta \gamma)$.
- Adjust *M_j* iteratively, repeat unit Σ_{k,j} b_{k,j} = T_j or maximum iteration
- If $B_{tot} \neq B_T$, $\gamma_{0,new} = \gamma_{0,old} \cdot 2^{\frac{B_{tot} B_T}{N}}$
- If B_{tot} ≠ B_T again, add or subtract bits according to Δb_{k,j}
- The power is allocated according to \$\overline{\mathcal{P}_{ej}}\$

OFDM (DMT) Bit and Power Loading for Unequal Error Protection

Input: SNR_{k,j} in k^{th} subcarrier of j^{th} class, N, N_g , B_T , T_j , and $\Delta \gamma$ **Output:** γ_j , average probability of error $\overline{\mathscr{P}}_{ej}$, and bit-loading

- Compute b_{kj} using γ_j $(\gamma_j = \gamma_0 - j \cdot \Delta \gamma)$.
- Adjust *M_j* iteratively, repeat unit Σ_{k,j} b_{k,j} = T_j or maximum iteration
- If $B_{tot} \neq B_T$, $\gamma_{0,new} = \gamma_{0,old} \cdot 2^{\frac{B_{tot} B_T}{N}}$
- If B_{tot} ≠ B_T again, add or subtract bits according to Δb_{k,j}
- The power is allocated according to \$\overline{\mathcal{P}_{ej}}\$

Outline

Motivations

- Why Unequal Error Protection (UEP)?
- Why UEP Physical Transport?

2 UEP: Bit-Loading

- Previous Work
- Proposed UEP Bit-Rate Maximization
- 3 Channel Model
 - Noise Environment
- 4 Simulation Results
 - UEP Performance: SER Analysis
 - Bit and Power Loading

5 Conclusions

イロト イポト イヨト イヨト

 ADSL2plus with 512 subcarriers is considered for this channel.

- A wireline cable of diameter 0.4 mm and 2 km length is assumed.
- A combination of T1 + HDSL NEXT and -130 dBm/Hz AWGN is used for the bit-loading.
- Additionally, real measured impulse noise is introduced after bit allocation.

・ロン ・雪 と ・ ヨ と ・

3

- ADSL2*plus* with 512 subcarriers is considered for this channel.
- A wireline cable of diameter 0.4 mm and 2 km length is assumed.
- A combination of T1 + HDSL NEXT and -130 dBm/Hz AWGN is used for the bit-loading.
- Additionally, real measured impulse noise is introduced after bit allocation.

・ロ ・ ・ 同 ・ ・ 同 ・ ・ 日 ・

3

- ADSL2*plus* with 512 subcarriers is considered for this channel.
- A wireline cable of diameter 0.4 mm and 2 km length is assumed.
- A combination of T1 + HDSL NEXT and -130 dBm/Hz AWGN is used for the bit-loading.
- Additionally, real measured impulse noise is introduced after bit allocation.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- ADSL2*plus* with 512 subcarriers is considered for this channel.
- A wireline cable of diameter 0.4 mm and 2 km length is assumed.
- A combination of T1 + HDSL NEXT and -130 dBm/Hz AWGN is used for the bit-loading.
- Additionally, real measured impulse noise is introduced after bit allocation.

ヘロン ヘアン ヘビン ヘビン

э

Outline

Motivations

- Why Unequal Error Protection (UEP)?
- Why UEP Physical Transport?
- 2 UEP: Bit-Loading
 - Previous Work
 - Proposed UEP Bit-Rate Maximization
- 3 Channel Model
 - Noise Environment

4 Simulation Results

- UEP Performance: SER Analysis
- Bit and Power Loading

5 Conclusions

イロト イポト イヨト イヨト

Simulation Results UEP Performance: SER Analysis

SER for Stationary and Non-stationary Noise

SER for stationary noise

SER for non-stationary noise

UEP bit-loading and power-allocation:

SNR-Sorting Scheme

Inverse SNR-Sorting Scheme

Werner Henkel & Khaled Hassan OFDM (DMT) Bit and Power Loading for Unequal Error Protection

・ロット (雪) () () () ()

Э

Outline

Motivations

- Why Unequal Error Protection (UEP)?
- Why UEP Physical Transport?
- 2 UEP: Bit-Loading
 - Previous Work
 - Proposed UEP Bit-Rate Maximization
- 3 Channel Model
 - Noise Environment
- 4 Simulation Results
 - UEP Performance: SER Analysis
 - Bit and Power Loading

5 Conclusions

イロト イポト イヨト イヨト

Conclusions

- We described an UEP bit-allocation scheme as an extension of the algorithm by Chow et al..
- Allows arbitrary margin definitions and bit-rates according to the priorities.
- SNR-sorting will ensure that the high-priority class will still be well protected even under non-stationary noise.

Open points:

Possible mixed allocation and hierarchical modulation.

Modified bit-loading:

$$\begin{array}{lll} b_{k,j} &=& \log_2\left(1+\frac{\mathsf{SNR}_{k,j}}{\gamma_j}\right) \\ \hat{b}_{k,j} &=& \lfloor b_{k,j}+0.5 \rfloor_0^{b_{\max}} \\ \Delta b_{k,j} &=& b_{k,j}-\hat{b}_{k,j} \end{array}$$

ヘロン ヘアン ヘビン ヘビン

э

Conclusions

- We described an UEP bit-allocation scheme as an extension of the algorithm by Chow et al..
- Allows arbitrary margin definitions and bit-rates according to the priorities.
- SNR-sorting will ensure that the high-priority class will still be well protected even under non-stationary noise.

2304 bits/DMT frame - To = 128, T, =768, To = 1408 10 non-UEP (2304 bits) 10-2 γ. (1408 bits) 10 y, (128 bits ŝ .6 10 γ. (768 bits 10 non-LIEP IEP SNR-sorting EP inver, SNR-sorting 10 10 15 20 25 SNR [dB]

Open points:

Possible mixed allocation and hierarchical modulation.

ヘロト ヘヨト ヘヨト

Conclusions

- We described an UEP bit-allocation scheme as an extension of the algorithm by Chow et al..
- Allows arbitrary margin definitions and bit-rates according to the priorities.
- SNR-sorting will ensure that the high-priority class will still be well protected even under non-stationary noise.

SER with impulse noise 10 10 10.1 ti 10 🖸 y, SNR-sorting -v. SNR-sorting v., inver. SNR-sorting -x - y, inver. SNR-sorting pure Chow-Ciof 18 20 24 26 28 SND

Open points:

Possible mixed allocation and hierarchical modulation.

イロト イポト イヨト イヨト

Conclusions

- Allows arbitrary margin definitions and bit-rates according to the priorities.
- SNR-sorting will ensure that the high-priority class will still be well protected even under non-stationary noise.

Open points:

Possible mixed allocation and hierarchical modulation.

Werner Henkel & Khaled Hassan

イロト イポト イヨト イヨト

Conclusions

- We described an UEP bit-allocation scheme as an extension of the algorithm by Chow et al..
- Allows arbitrary margin definitions and bit-rates according to the priorities.
- SNR-sorting will ensure that the high-priority class will still be well protected even under non-stationary noise.

Open points:

Possible mixed allocation and hierarchical modulation.

イロト イポト イヨト イヨト

Thank you!

