
A Geometric Description of the Iterative Least-Squares Decod-
ing of Analog Block Codes
Fangning Hu and Werner Henkel
International University Bremen (IUB)
Campus Ring 1
D-28759 Bremen, Germany
Email: {f.hu, w.henkel}@iu-bremen.de

Abstract
This paper outlines that when decoding an arbitrary analog block codes, i.e., a block codes over the complex or
real numbers, in an iterative fashion by splitting the H-Matrix in two, leads to a least-squares estimate. Such a
Turbo-like algorithm represents iterative projections in Euclidean space. A step size controls the convergence speed.
The paper generalized an earlier result based on array codes (product codes) with analog parity-check component
codes. The results in here are considered to be an important step towards an intuitive understanding of iterative
decoding schemes of conventional Turbo and LDPC codes.

1 Introduction
Codes over real or complex numbers had first been
proposed in [1], [2]. These early studies, which were
further refined in [3], [4], were focusing on analog
RS codes, i.e., RS codes over complex numbers with
almost traditional Hamming-metric decoding. More re-
cent papers, e.g., [5], [6], [7] show applications in
multicarrier transmission. One may note that an OFDM
(Orthogonal Frequency Division Multiplex) or DMT
(Discrete MultiTone) signal is nothing else than an
analog RS code or BCH code, respectively, in case
some cyclically consecutive carriers are not used for
transmission. [6] also studies the use of pilot tones
which are scattered over the OFDM/DMT symbol.

In [8], authors described an iterative Turbo-like
decoding of analog product codes with parity-check
component codes and showed that this algorithm leads
to the least-squares solution. Their algorithm is slightly
different from standard Turbo decoding. In here, we
slightly modify their algorithm into standard Turbo
decoding.

Our decoding algorithm for the analog product code
can be regarded as a special case of the Gaussian
message passing (or Kalman filtering/smoothing) on
graphs. [9], [10] and [11] show that when the graph
represents many Gaussian distributed variables, it leads
to a least squares solution. In this paper, we prove the
convergence and propose a geometric description of our
algorithm. With this geometric description, the conver-
gence process of Turbo decoding for analog product
code can be clearly illustrated by iterative projections in
Euclidean space. A similar geometric description can be
applied to the algorithm of [8]. Based on this geometric
description, we further apply the same decoding scheme
to any analog block code by splitting the parity matrix

in two.
We first start with the analog product code. Let K =

k2 analog information symbols (∈ R) be arranged as
an k× k matrix. This information matrix is mapped to
the N = (k + 1)× (k + 1) code matrix X

X =




x1,1 · · · x1,k x1,k+1

...
. . .

...
...

xk,1 · · · xk,k xk,k+1

xk+1,1 · · · xk+1,k xk+1,k+1


 , (1)

such that
1T ·X = 0
X · 1 = 0 (2)

hold, where 1 is an (k +1)-dimensional column vector
of all ones. The equations represent column and row
constraints, respectively, i.e., the sum along each col-
umn/row equals zero.

In order to simplify the analysis, we define a column
vector x to contain the sequence of its columns. We
write

x = vec (X) .

2 Decoding Strategy
Given the received noisy codeword R(0), two kinds of
extrinsic informations are computed according to the
column and row constraints, respectively, as follows:

rcol
i,j = −

k+1∑

l=1,l 6=i

rl,j , i, j = 1, · · · , k + 1 ,

rrow
i,j = −

k+1∑

l=1,l 6=j

ri,l , i, j = 1, · · · , k + 1 ,

(3)

Turbo – Coding – 2006 · April 3–7, 2006, Munich

with ri,j denoting the (i, j)th entry of R(ν), ν =
0, 1, Equations (3) can be rewritten as the entries
of two update matrices

ĪR(ν) and R(ν)Ī (4)

where

Ī = E − I =




0 1 · · · · · · 1
1 0 1 · · · 1
...

.
...

...
. 1

1 · · · · · · 1 0




, (5)

E being an (k+1)×(k+1) matrix of all 1′s. Since these
two matrices are used to extract extrinsic information,
we call them extrinsic matrices. The decoding method
is an analog counterpart of the Turbo decoding for
binary product codes in [12] where the decoding by
column and row constraints is regarded as two inde-
pendent decoders. At each iteration step, we decode it
either according to the column constraints

R(ν) = R(ν−1)−w1ĪR(ν−1)

w1+1 , (6)

or the row constraints

R(ν+1) = R(ν)−w2R(ν)Ī

w2+1 , (7)

where ν denotes the iteration step index and w1, w2 are
weighting factors.

Let y = vec (R) contain the sequence of its
columns. The extrinsic matrices in Eqn. (4) can then
be rewritten as

M1y and M2y

with
M1 = I ⊗ Ī, M2 = Ī ⊗ I , (8)

where ⊗ denotes the Kronecker product. Then, the
iterative algorithm in equations (6) and (7) can be
reformulated as

y(ν) = (y(ν−1) − w1M1y(ν−1))/(w1 + 1) ,
y(ν+1) = (y(ν) − w2M2y(ν))/(w2 + 1) ,

(9)

which can be further simplified as

y(ν) =
= [I − w1(I ⊗ Ī)]y(ν−1)/(w1 + 1)
= [I − w1(I ⊗ (E − I))]y(ν−1)/(w1 + 1)
= [I − w1(I ⊗E − I)]y(ν−1)/(w1 + 1)
= [(w1 + 1)I − w1(I ⊗E)]y(ν−1)/(w1 + 1)
= y(ν−1) −

w1

w1 + 1
(I ⊗E)y(ν−1)

= y(ν−1) − y
(1)
(ν−1) = A1y(ν−1)

(10)

and
y(ν+1) = [I − w2(Ī ⊗ I)]y(ν)/(w2 + 1)
= [I − w2((E − I)⊗ I)]y(ν)/(w2 + 1)
= [I − w2(E ⊗ I − I)]y(ν)/(w2 + 1)
= [(w2 + 1)I − w2(E ⊗ I)]y(ν)/(w2 + 1)
= y(ν) −

w2

w2 + 1
(E ⊗ I)y(ν)

= y(ν) − y
(2)
(ν) = A2y(ν) ,

(11)

with

y
(1)
(ν−1) = w1

w1+1 (I ⊗E)y(ν−1) ,

y
(2)
(ν) = w2

w2+1 (E ⊗ I)y(ν)) ,
(12)

and

A1 = I ⊗ (I − w1
w1+1E) ,

A2 = (I − w2
w2+1E)⊗ I .

(13)

Substituting Eqn. (10) and Eqn. (13) into Eqn. (11), we
obtain

y(ν+1) = A2A1y(ν−1)

= [(I − w2
w2+1E)⊗ I]

·[I ⊗ (I − w1
w1+1E)] · y(ν−1)

= (I − w2
w2+1E)⊗ (I − w1

w1+1E) · y(ν−1)

= Φ · y(ν−1) = Φ(ν+1)/2 · y(0) .

(14)

for ν+1 even. The sufficient condition for the algorithm
to converge is the eigenvalue of Φ not to be greater than
one. By selecting T = F ⊗F where F is an k + 1 by
k + 1 DFT matrix, we diagonalize Φ to Λ = T HΦT
where the diagonal elements of Λ are the eigenvalues
of Φ. The following provides the derivation:

Λ = T HΦT
= (F H ⊗ F H) · [(I − w2

w2+1E)⊗ (I − w1
w1+1E)]

·(F ⊗ F)
= [F H(I − w2

w2+1E)F]⊗ [F H(I − w1
w1+1E)F]

= (I − w2
w2+1

[
k + 1 0

0 0k×k

]
)

⊗ (I − w1
w1+1

[
k + 1 0

0 0k×k

]
)

=
[

1−kw2
w2+1 0

0 Ik×k

]
⊗

[
1−kw1
w1+1 0

0 Ik×k

]
.

(15)

Thus, we have

diag(Λ) = [
(1− kw1)(1− kw2)
(w1 + 1)(w2 + 1)

,
1− kw2

w2 + 1
, . . . ,

1− kw2

w2 + 1︸ ︷︷ ︸
k

,

1− kw1

w1 + 1
, 1, . . . , 1

︸ ︷︷ ︸
k+1

,
1− kw1

w1 + 1
, 1, . . . , 1

︸ ︷︷ ︸
k+1︸ ︷︷ ︸

k

] (16)

1 eigenvalue equal to (1−kw1)(1−nw−2)
(w1+1)(w2+1)

k eigenvalues equal to 1−kw1
w1+1

k eigenvalues equal to 1−kw2
w2+1

k2 eigenvalues equal to 1

. (17)

For convergence, we require




| (1−kw1)(1−kw2)
(w1+1)(w2+1) | < 1

| 1−kw1
w1+1 | < 1
| 1−kw2

w2+1 | < 1
, (18)

which yields the conditions

0 < w1 <
2

k − 1
, 0 < w2 <

2
k − 1

. (19)

Turbo – Coding – 2006 · April 3–7, 2006, Munich

3 Geometric Description
In this section, we will give a geometric description of
this iterative algorithm. The column and row constraints
described in (2) can be rewritten as

vec (1T ·X) = 0 ⇒ (I ⊗ 1T) · x = 0 ,
vec (X · 1) = 0 ⇒ (1T ⊗ I) · x = 0 .

(20)

A parity-check matrix H,Hx = 0 for such analog
codes can be constructed from (20) as

H =
[

H1

H2

]
=

[
I ⊗ 1T

1T ⊗ I

]
. (21)

H1 and H2 are column and row constraints, respec-
tively. The parity-check matrix uniquely defines the
code space X .

X = {x : Hx = 0} .

The least-squares solution is the projection of a received
vector y onto the code space X . Furthermore, if we
define two superspaces corresponding to the column
and row constraints as

G1 = {x : H1x = 0} ,
G2 = {x : H2x = 0} ,

(22)

then X = G1 ∩ G2.
Lemma 3.1: y

(1)
(ν−1) is orthogonal to space G1 and

y
(2)
(ν) is orthogonal to space G2.

Proof: From (22), we know that any column of
HT

1 is orthogonal to the space G1. Then, any linear
combination of columns of HT

1 is also orthogonal to
G1. We show that y

(1)
(ν−1) is a linear combination of

columns of HT
1 as

y
(1)
(ν−1) = HT

1 α ,

where
α =

w1

w1 + 1
H1y(ν−1) .

We verify this by

HT
1 α = w1

w1+1HT
1 H1y(ν−1)

= w1
w1+1 (I ⊗ 1T)T (I ⊗ 1T)y(ν−1)

= w1
w1+1 (I ⊗ 1)(I ⊗ 1T)y(ν−1)

= w1
w1+1 (I ⊗ (1 · 1T))y(ν−1)

= w1
w1+1 (I ⊗E)y(ν−1)

= y
(1)
(ν−1) .

(23)

Similarly, y
(2)
(ν) = HT

2 β where β = w2
w2+1H2y(ν).

Lemma 3.2: When w1 = w2 =
1
k

, then y(ν−1) −
y

(1)
(ν−1) is the projection of y(ν−1) onto space G1 and

y(ν) − y
(2)
(ν) is the projection of y(ν) onto space G2.

Proof: Since y
(1)
(ν−1) is orthogonal to G1 by

Lemma 3.1, we only need to prove that y(ν−1)−y
(1)
(ν−1)

lies in G1 (see Fig. 1). With H1 = I ⊗ 1T and (12),

y(ν−1) − y
(1)
(ν−1)

0

G1 = {x : H1x = 0}

y(ν−1)

−y
(1)
(ν−1)

Fig. 1. The projection of y(ν−1) onto the space G1

we obtain

H1 · (y(ν−1) − y
(1)
(ν−1)|w1=

1
k
)

= H1y(ν−1) − 1
k+1H1(I ⊗E)y(ν−1)

= H1y(ν−1) − 1
k+1 (I ⊗ 1T)(I ⊗E)y(ν−1)

= H1y(ν−1) − 1
k+1 (I ⊗ (1T ·E))y(ν−1)

= H1y(ν−1) − k+1
k+1 (I ⊗ 1T)y(ν−1)

= H1y(ν−1) −H1y(ν−1) = 0 .

(24)

This means, y(ν−1)−y
(1)
(ν−1) lies in G1 by the definition

of G1 (cf. (22)). Similarly, y(ν−1) − y
(2)
(ν) lies in G2.

The dimension should be at least (k + 1)2 = 4.
However, in order to get an intuitive insight to this
projection process, we first consider a two-dimensional
case.

It is clear from Lemma 3.2 that w1, w2 control the
length of the vectors y

(1)
(ν−1) and y

(2)
(ν), respectively. The

larger w1, w2, the longer are the vectors y
(1)
(ν−1) and

y
(2)
(ν).
In the following, we show four cases with different

values of w1, w2, i.e., different projection lengths. The
first case is when w1 = w2 = 1/k. In this case,
exact projections occur according to Lemma 3.2. This
procedure can be described by projections in Euclidean
space illustrated in Fig. 2. At each iteration step ν, the
previous vector is projected onto G1 and G2 in turn.
From Fig. 2, we see that this process makes y(∞)

converge to G1 ∩ G2, the overall least-squares solution.

−y
(2)
(ν)

y(∞)
y(1)y(3)

y(2)

y(4)

−y
(1)
(2)

−y
(2)
(3) −y

(1)
(0)

y(0)

−y
(2)
(1)

G1

G2

−y
(1)
(ν−1)

y(ν−1)

Fig. 2. The convergence process by iterative projections in a two-
dimensional Euclidean space when w1 = w2 = 1/k

Turbo – Coding – 2006 · April 3–7, 2006, Munich

When w1, w2 achieve the convergence bound at
w1 = w2 = 2

k−1 as shown in Eqn. (19), we find that
the length of the projection vectors is exactly twice the
projection length and an oscillatory phenomenon oc-
curs. To simplify the description, we use two orthogonal
spaces G1,G2 to illustrate the oscillatory phenomenon
as shown in Fig. 3

−y
(1)
(3)

G2

G1−y
(1)
(1)

y(1) y(0)

yLS

−y
(2)
(2)

y(2) y(3)

−y
(2)
(4)

Fig. 3. The oscillatory phenomenon at the converging bound in a
two-dimensional Euclidean space when w1 = w2 = 2/(k − 1)

When w1, w2 < 2
k−1 , we see in Fig. 4 that the

process finally slowly converges to the least-squares
solution.

y∞

G1

G2

−y
(1)
(1) y(0)y(1)

y(5) y(4)

−y
(2)
(2) −y

(2)
(4)

y(3)y(2) −y
(1)
(3)

Fig. 4. The convergence process by iterative projections in a two-
dimensional Euclidean space when w1 = w2 < 2/(k − 1)

In the last case with w1, w2 > 2
k−1 , the iterative

algorithm will diverges as shown in Fig. 5.
Now consider the decoding algorithm in [8] with

R(ν) = R(ν−1)−wĪR(ν−1)−wR(ν−1)Ī

1+2w . (25)

It computes the current matrix as the weighted sum
of the intrinsic and extrinsic matrices. Their algorithm
differs from the Turbo scheme in updating the current
matrix by using both column and row extrinsic matrices
at the same time.

−y
(1)
(1) G1

y(3) y(4)

−y
(2)
(4)

y(0)

yLS

y(2)

y(5)

y(1)

y∞

G2

−y
(1)
(3)

−y
(2)
(2)

Fig. 5. The divergence process by iterative projections in a two-
dimensional Euclidean space when w1 = w2 > 2/(k − 1)

By a vector representation, we obtain:

y(ν) = (y(ν−1)−wM1y(ν−1)−wM2y(ν−1))/(1+2w) .
(26)

It has been proven in [8] that y(∞) converges to the
least-squares solution when 0 < w < 1/k. However
we found there is a slight error on their convergence
condition and the correct one should be 0 < w <
1/(k − 1). In the following, we will show how this
Turbo-like iterative method can also be illustrated by
projections in Euclidean space.

Substituting (8) into (26), we see that Iteration (26)
is equivalent to the following equations:

y(ν) =
= [I − w(I ⊗ Ī)− w(Ī ⊗ I)]y(ν−1)/(1 + 2w)
= [I − w(I ⊗ (E − I))
−w((E − I)⊗ I)]y(ν−1)/(1 + 2w)

= [I − w(I ⊗E − I)
−w(E ⊗ I − I)]y(ν−1)/(1 + 2w)

= [(1 + 2w)I
−w(I ⊗E)− w(E ⊗ I)]y(ν−1)/(1 + 2w)

= y(ν−1) −
w

1 + 2w
(I ⊗E)y(ν−1)

− w

1 + 2w
(E ⊗ I)y(ν−1) .

(27)

In order to simplify the description, we define

y
(1)
(ν−1) = w

1+2w (I ⊗E)y(ν−1) ,

y
(2)
(ν−1) = w

1+2w (E ⊗ I)y(ν−1) .
(28)

With a similar proof as in Lemma 3.1 and Lemma
3.2, we found that y

(1)
(ν−1),y

(2)
(ν−1) are orthogonal to

G1,G2, respectively. w controls the length of the two
projection vectors −y

(1)
(ν−1) and −y

(2)
(ν−1). When w =

1/(k − 1), y(ν−1) − y
(1)
(ν−1) and y(ν−1) − y

(2)
(ν−1) are

the projections of y(ν−1) onto spaces G1 and G2,
respectively. A geometric illustration of Eqn. (27) for
a two-dimensional case with w = 1

k−1 is given in
Fig. 6. At each iteration step ν, the previous vector

Turbo – Coding – 2006 · April 3–7, 2006, Munich

y(ν−1) is projected onto G1 and G2 in parallel which
delivers two projection vectors −y

(1)
(ν−1) and −y

(2)
(ν−1).

Both projection vectors are added to y(ν−1) resulting
in the current vector y(ν). From Fig. 6, we see that
this process makes y(∞) converge to G1 ∩ G2, the
overall least-squares solution. However, instead of one
projection in each step, there are two projections in
parallel at each iteration step.

y(ν−1)

y(0)

y(∞)

y(2)
y(1)

−y
(1)
(0)

−y
(2)
(0)

−y
(1)
(1)

−y
(2)
(1)

G1

G2

−y
(1)
(ν−1)

−y
(2)
(ν−1)

Fig. 6. The convergence process by iterative projections in a two-
dimensional Euclidean space with two-fold projections and with w =
1/(k − 1).

4 Iterative Decoding of Arbitrary
Linear Analog Block Codes

For any block analog code, its parity check matrix H
can be expressed as

H =
[

H1

H2

]
. (29)

Let G1,G2 be orthogonal spaces to H1, H2, re-
spectively. These orthogonal spaces are, of course,
spanned by the rows of the corresponding generator
matrices. From the described geometric interpretation,
our decoding approach is to find the projections of a
vector y(ν−1) onto G1,G2.

Assume that y(ν−1) − y
(1)
(ν−1) is the projection of

y(ν−1) onto space G1 and y(ν−1) − y
(2)
(ν−1) is the pro-

jection of y(ν−1) onto space G2. The iterative algorithm
can be written as

y(ν) = y(ν−1) − λy
(1)
(ν−1) − λy

(2)
(ν−1) . (30)

As long as λ ≤ 1, y(∞) will converge to the least-
squares solution.

According to Fig. 1, y
(1)
(ν−1) is orthogonal to G1, thus

can be expressed as a linear combination of columns
of HT

1 . Without loss of generality, suppose

y
(1)
(ν−1) = HT

1 α .

Since y(ν−1) − y
(1)
(ν−1) lies in G1, we have

H1 · (y(ν−1)−y
(1)
(ν−1)) = H1 · (y(ν−1)−HT

1 α) = 0 .

The solution for α is

α = (H1H
T
1)−1H1y(ν−1) .

The prerequisite for this solution is that H1 is a row
full-rank matrix, otherwise the inverse of (H1H

T
1)

would not exist. However, parity-checks can be con-
sidered to be linearly independent. Now, y

(1)
(ν−1) can be

expressed as

y
(1)
(ν−1) = HT

1 (H1H
T
1)−1H1y(ν−1) . (31)

Similarly,

y
(2)
(ν−1) = HT

2 (H2H
T
2)−1H2y(ν−1) . (32)

where H2 must also be a row full-rank matrix.
Equations (30), (31), and (32) represent the iterative

least-squares decoding of an arbitrary linear analog
code based on splitting the parity-check matrix in two.

5 Conclusions and outlook
Starting from a geometric illustration of the iterative
decoding of analog product codes, we determined a
Turbo-like iterative decoding procedure for arbitrary
linear analog block codes by splitting its parity-check
matrix in two and projecting received codewords onto
the Null spaces of these two matrices in an iterative
fashion. This provides us with an easy and intuitive
understanding what iterative decoding of block codes
over real or complex numbers is about, just iterative
projections finally reaching the least-squares solution.
We expect that further steps will guide us back to
codes over discrete number fields in the hope of a more
intuitive understanding of iterative decoding schemes
there, as well.

Acknowledgment
This work is part of the FP6 / IST project M-Pipe and
is co-funded by the European Commission.

References
[1] J.K. Wolf, “Analog Codes,” proc. IEEE Int. Conf. on Comm.

(ICC ’83), Boston, MA, USA, Vol. 1, pp. 310-12, June 19-22,
1983.

[2] J.K. Wolf, “Redundancy, the Discrete Fourier Transform, and
Impulse Noise Cancellation,” IEEE Tran. on Comm., Vol. COM-
31, No. 3, pp. 458-461, March 1983.

[3] W. Henkel, “Multiple Error Correction with Analog Codes,”
AAECC-6, Rome, and Springer Lecture Notes in Computer Sci-
ence 357, pp. 239-249, 1989, (http://trsys.faculty.iu-bremen.de).

[4] W. Henkel, Zur Decodierung algebraischer Blockcodes über
komplexen Alphabeten, VDI-Verlag, Düsseldorf, 1989. (in Ger-
man), (http://trsys.faculty.iu-bremen.de).

[5] Z. Wang and G. B. Giannakis, “Complex-Field Coding for
OFDM over Fading Wireless Channels,” IEEE Trans. on Inform.
Theory, Vol. 49, No. 3, March 2003.

Turbo – Coding – 2006 · April 3–7, 2006, Munich

[6] F. Abdelkefi, P. Duhamel, and F. Albgerge, “Impulsive Noise
Cancellation in Multicarrier Transmission,” IEEE Trans. on
Comm., Vol. 53, No. 1, pp. 94-106, Jan. 2005.

[7] W. Henkel and F. Hu, “OFDM and Analog RS/BCH Codes,”
proc. OFDM-Workshop 2005, Hamburg, Aug. 31 - Sept. 1, 2005.

[8] M. Mura, W. Henkel, and L. Cottatellucci, “Iterative Least-
Squares Decoding of Analog Product Codes,” IEEE Intern. Symp.
on Inform. Theory (ISIT 2003), Yokohama, June 29 - July 4, 2003.

[9] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal
Proc. Mag., pp. 28-41, Jan. 2004.

[10] Y. Weiss and W. T. Freeman, “On the optimality of the max-
product belief propagation algorithm in arbitrary graphs,” IEEE
Trans. Inform. Theory, Vol. 47, pp. 736-744, 2001.

[11] P. Rusmevichientong and B. Van Roy, “An analysis of belief
propagation on the turbo decoding graph with Gaussian densities,”
IEEE Trans. Inform. Theory, Vol. 47, pp. 745-765, Feb. 2001.

[12] J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of
Binary Block and Convolutional Codes,” IEEE Trans. on Inform.
Theory, Vol. 42, No.2, March 1996.

Turbo – Coding – 2006 · April 3–7, 2006, Munich

	Back to Contents
	A Geometric Description of the Iterative Least-Squares Decoding of Analog Block Codes
	Abstract
	1 Introduction
	2 Decoding Strategy
	3 Geometric Description
	4 Iterative Decoding of Arbitrary Linear Analog Block Codes
	5 Conclusions and outlook
	Acknowledgment
	References

