
Check-Irregular LDPC Codes for Unequal Error Protection
under Iterative Decoding
Lucile SASSATELLI1,2, Werner HENKEL1, David DECLERCQ2

1 International University Bremen, Campus Ring 1 28759 Bremen, Germany, w.henkel@iu-bremen.de
2 ETIS ENSEA/UCP/CNRS UMR-8051, 6 avenue du Ponceau 95014 Cergy, France,
sassatelli,declercq@ensea.fr

Abstract

In many optimization techniques of LDPC codes, the check node irregularity is usually considered as being fixed
because the profile must contain only two consecutive degrees in order to maximize the overall convergence speed
of the code. We show in this paper that it is possible to construct bit-regular codes with more than two different
degrees at check nodes side to speed up the convergence of some parts of the codeword, even if we may decrease
a little the global convergence. Then, we take advantage of the check irregularity to create unequal error protection
(UEP) codes, and present a very flexible method to achieve it. This method is based on pruning a mother code,
thereby creating different subcodes with different UEP properties, but decoded with the same decoder.

1 Introduction

This paper deals with unequal error protection (UEP)
LDPC Codes, achieved by irregularity on the check
node profile, the bit node profile is set to be regular. A
UEP coding scheme could be useful in the transmission
of multi-media content (voice, fixed image, or video)
whose characteristics have heterogeneous sensibility to
errors. The code stream of source-encoded blocks is
hierarchically structured and contains typically:

• headers to describe the type and parameters of
compression,

• control data for code-stream synchronization, po-
sition, or indexing,

• compressed data delivered from the source coder,
e.g., speech encoder coefficients, image texture,
or motion vectors.

For such data streams, errors on headers or control data
generally lead to a source-decoder failure since true
reconstruction parameters of the compression are miss-
ing. In contrast, errors on high frequency coefficients
of a DCT may be much less disturbing. Consequently,
uniform protection for such a code stream would be
sub-optimal. This highlights the interest of realizing
unequal error protection by modifying the structure
of a code. Well-known coding methods adapted to
heterogeneous sensitivity of data often focus on av-
erage performance over the whole codeword. UEP
could be achieved by puncturing or pruning (see [1])
convolutional codes to adapt the code rate without
changing the decoder. In our work, we make use of
LDPC codes [2] as a UEP coding scheme, because
more and more standards consider these codes thanks

This work is part of the FP6 / IST project M-Pipe and is co-funded
by the European Commission.

to their very good performance. We concentrated on
heterogeneously protecting some bits inside a codeword
by suitable selection of irregularities of the code. The
linear problem of hierarchical optimization of variable
node profile, assuming the check node profile to be
fixed, has been studied in [3]. We chose to focus on the
dual case of bit-regular check-irregular LDPC codes. To
do so, we will start by presenting asymptotical study
of new codes ensemble minutely represented, i.e., a
generalized density evolution [4], and we will show in
particular that a carefully chosen cost function could
lead to families of UEP LDPC codes which are bit-
regular. We discuss the optimization procedure and the
advantage of our approach in Section 3. Moreover, in
real systems, flexibility in terms of types of data that
can be protected is important, i.e., the parameters of
the protection should be adaptable dynamically with
minimum changes in the encoder and/or the decoder.
In order to achieve this flexibility of our UEP codes,
we propose a practical and flexible method based on the
pruning of a mother code. This procedure is presented
in Section 4. Finally the results are presented and a
conclusion given.

2 Detailed Representation of
Irregular LDPC Codes

A very useful parameterization for our work is the
detailed representation of irregular LDPC codes
presented by Kasai et al. in [4]. They constructed new
families of LDPC codes which are sub-ensembles of
conventional irregular LDPC code ensembles. The
detailed representation they adopted allows to design
optimal codes more accurately by restricting the

Turbo – Coding – 2006 · April 3–7, 2006, Munich

possible choices for the interleaver.

2.1 The Parameterization

These new codes ensembles are introduced by speci-
fying the fraction of edges connecting sets of variable
nodes and check nodes with given degree at the same
time. Let B and D be two sets or irregularity degrees
of variable and check nodes, respectively. A function
π : B × D → [0, 1] is said to be the joint degree
distribution of (B, D) if

∑

b∈B

∑

d∈D π(b, d) = 1.
This function describes the connections between the
different degrees of the code, and is called the detailed
representation of the code.
They also defined a marginal degree distributions of
variable and check blocks with respect to π, which are
the usual polynomials for conventional representation:

λ̂(x) =
∑

b∈B

λ̂bx
b−1 , ρ̂(x) =

∑

d∈D

ρ̂dx
d−1

with

λ̂b =
∑

d∈D

π(b, d) , ρ̂d =
∑

b∈B

π(b, d) .

For π(b, d), we define two fractions

λ(b, d) =
π(b, d)

ρ̂d

, ρ(b, d) =
π(b, d)

λ̂b

.

It can be verified that ρ(b, d) equals the fraction of
edges connecting nodes of degree b and d among all
edges of degree b. This detailed representation can be
used, for example, to describe the methods for different
Poisson constructions explored by MacKay et al. in [5].

2.2 Density Evolution with Detailed
Representation

In [4], the authors also present a generalized density
evolution for the newly proposed code ensembles. This
generalized density evolution can treat density evo-
lution for conventional code ensembles as a special
case. From Theorem 3 in [4], we can derive a detailed
evolution of the mutual information of messages on the
edges under Gaussian approximation. The description
is ”detailed” in the sense that we distinguish the mutual
information of messages coming from bit nodes or
checkodes from different degrees. Let s = 2/σ2 where
σ2 is the noise variance of the additive white Gaussian
noise (AWGN) channel. The function J is defined by

J(m) = 1 − Ex(log2(1 + e−x)), x ∼ N(m, 2m) .

Let x
(l)
cv (d) and x

(l)
vc (b) be the mutual information

between the input of the channel and the messages
from check nodes of degree d to any bit node at the lth
iteration, and from bit nodes of degree b to any check
node, respectively.

x(l)
cv (d) = 1−J

(

(d − 1)J−1

(

1 −
∑

b∈B

λ(b, d)x(l)
vc (b)

))

(1)

x(l)
vc (b) = J

(

s + (b − 1)J−1

(

∑

d∈D

ρ(b, d)x(l−1)
cv (d)

))

(2)
From Equation (1), we observe that the smaller d is, the
greater is the mutual information of messages coming
out of check nodes of degree d, i.e., the faster is the
local convergence. In contrast, we see on Equation (2)
that the mutual information of messages coming out of
bit nodes of degree b is larger when b is larger. This
is what we are going to exploit to optimize the local
convergence speeds of UEP LDPC codes.

3 Achieving UEP with
Check-Irregular LDPC Codes

3.1 A Cost Function for UEP
Let us define a sensitivity class by a set of information
bits in the codeword that will have the same protection,
i.e., approximately the same error probability at a
given number of iterations. In practice, the sensitivity
classes are defined by the source encoder. B and D can
either be the sets of the degrees over the whole graph,
and then Equation (1) describes the usual Gaussian
approximation of density evolution, or the sets of the
degrees inside the kth sensitivity class called Ck. A
check node will belong to a class Ck if it is linked
to at least one bit node of this class. Consequently, a
check node can belong to several sensitivity classes.
The average mutual information of messages coming
out of the check nodes of class Ck to the bit nodes of
this class can be expressed as

x(l)(Ck)

cv =
∑

b∈Ck

λ
(Ck)
b

∑

d∈Ck

ρ(Ck)(b, d)x(l)
cv (d) (3)

with ρ(Ck)(b, d) = π(b,d)

λ
(Ck)

b

and λ
(Ck)
b =

∑

d∈Ck
π(b, d),

then
∑

d∈Ck
ρ(Ck)(b, d) = 1. We denote by x

(l−1)
cv =

∑

d∈graph
ρdx

(l−1)
cv (d) the average over the whole graph

at the (l − 1)th iteration of the mutual information
of messages from check nodes to bit nodes, whereas

x
(l)
cv

(Ck)
(Equation (3)) is the average mutual informa-

tion only on the part of the codeword corresponding to
Ck , i.e., on edges that belong to Ck. We can express
the UEP criterion we have chosen by

x(l)(Ck)

cv − x(l−1)
cv . (4)

If the difference (4) is positive and large, it means that
the quality of messages arriving to the bit nodes of Ck

is much better than the average quality of the messages
in the whole graph. Note that this difference (4) is
necessarily negative for the least protected classes. In

Turbo – Coding – 2006 · April 3–7, 2006, Munich

our particular case of regularity over bit nodes (λ(x) =
x4), this criterion can be deduced from Equation (3)

x(l)(Ck)

cv − x(l−1)
cv = (5)

1 −
∑

d∈Ck

ρ(Ck)(d)J((d − 1)J−1(1 − x(l)
vc)) − x(l−1)

cv

Equation (5) can be lower bounded by

1 − J

(

(
∑

d∈Ck

ρ(Ck)(d)d − 1)J−1(1 − x(l)
vc)

)

− x(l−1)
cv

≤ x(l)(Ck)

cv − x(l−1)
cv (6)

We observe that the lower bound depends on the
average check connection degree of the class Ck:

ρ(Ck) =

d
(Ck)
max
∑

d=d
(Ck)

min

ρ(Ck)(d)d

To maximize the difference (4), we have to minimize
ρ(Ck). The most protected classes will have the lowest
average check degrees. ρ(Ck) will be our cost function,
that depends also on the minimum connectivity degree
d
(Ck)
min of check nodes of the class. Our algorithm

presented in Section 4 is directly derived from the
bound given in Equation (6). We sequentially decrease
d
(Ck)
min to be able to decrease ρ(Ck), and minimize ρ(Ck)

at each step.

3.2 Discussion on Breaking the Concentra-
tion of Check Degrees

Chung et al. have shown in [6] that a concentrated ρ(x)
check degree ρ(x) = ρxd +(1−ρ)xd−1 maximizes the
speed of convergence of the overall code. This also
means that concentrated check degrees minimize the
convergence threshold of the code, expressed in Eb/N0

for an AWGN channel. To achieve UEP properties by
irregularity in the check profile, we have to increase the
range of the check degrees, and then break the concen-
tration. Since not obeying concentration increases the
gap to capacity of the overall code, we must define a
tolerance on this gap before starting the optimization
process. The global UEP code will converge slower,
but its most protected classes faster than the ones
of the concentrated code. The first solution to limit
the degradation of the overall convergence threshold
is to limit the range of the check irregularity around
ρ(Ck) in the optimization. Or we could check after the
optimization process wether the non-concentrated code
has a threshold that is not too far from the optimum
(concentrated code) threshold. We have also verified
by simulations that for short block lengths, the UEP
designed codes have similar global performance as the
concentrated code.

4 A Practical Means to Achieve
UEP: Pruning a Mother Code

The problem in optimizing the check irregularity using
Equation (6) lies in the fact that the optimization is non-
linear due to the dependence between the irregularities
of the different sensitivity classes. In [3], the authors
have proposed a hierarchical procedure to overcome
this problem. In this section, we present a sequential
procedure based on ”code pruning” which has both the
advantage of providing UEP codes based on Equation
(6) and also leads to a practical and flexible scheme for
various UEP configurations.

4.1 General Presentation of Pruning
To achieve irregularity on check nodes, we chose to
prune a regular mother code in order to build a subcode
with UEP behavior. Pruning is a well-known method
for convolutional codes [1], but not so much for LDPC
codes, for which it has been applied to reduce the
influence of stopping sets [7]. Pruning away some bits
of the codeword means to consider them deterministic,
i.e., fixing the pruned bits, e.g., to zero. Consequently,
we do not transmit these bits that disappear from the
graph of the code since their messages are equal to in-
finity. Besides, since the edges connected to the pruned
bits disappear, the girth (minimum cycle length) of
the subcode can only be increased. Thus, the columns
of the parity matrix that correspond to these bits are
removed. Let Hm and Gm denote the parity-check
and generator matrices, respectively, of the mother
code of dimension K0 and length N0. To construct a
subcode of dimension K1, we prune away K0 − K1

columns of Hm, and obtain the parity-check matrix
Hs of the subcode. The subcode will have a length of
N1 = N0 − (K0 − K1). The next section deals with
our sequential pruning procedure.

4.2 The Sequential Pruning Procedure
Due to the chosen coding scheme, K1 and the mother
code are fixed at the beginning of the optimization,
therefore the code rate is fixed to R1 = K1

N0−K0+K1
.

The Nc sensitivity classes to be optimized are defined
by the proportions α(k) for k ≤ Nc − 1. The number
of info bits in the class Ck is α(k) · R1 · N1 if k =
1, ..., Nc − 1, and

∑Nc−1
k=1 α(k) = 1. The last class (the

Ncth class) contains the redundancy. The amount of
redundancy is the same in the mother code and in the
subcode, and equals (1−R1) ·N1 = (1−R0) ·N0. The
optimization focuses on the two important quantities in
the bound (6) : ρ(Ck) and d

(Ck)
min , and is composed of

two main stages. For a given class Ck:

• We choose the (αkK1) most protected bit nodes.
• For a given d

(Ck)
min , we try to put a maximum

number of degrees of the check nodes linked to
these bit nodes near to d

(Ck)
min in order to decrease

ρCk .

Turbo – Coding – 2006 · April 3–7, 2006, Munich

• The following constraints need to be fulfilled.
• any pruned bit must not be linked with a

check node of degree lower or equal to the
concentration constraint

• avoid unvoluntary pruning (a column of H

can become independent from all the others
and then does not define a code anymore)

• proportion constraint
• code rate constraint
• convergence constraint
• stability constraint

If these previous constraints are fulfilled:
• We decrease d

(Ck)
min by one if the tolerance that

we fixed regarding the concentration is not yet
reached, and start over again.

4.3 General Preprocess
In this section, our goal is to find the generator matrix
Gs of the subcode obtained by pruning the mother
code, given Hs which is Hm without the pruned
columns. Consequently, the generator matrix Gs must
fix the pruned bits to zero. A great advantage of the
pruning method is that it enables us to use the mother
decoder to decode any subcode created by pruning.
However, we assume that the encoder of the subcode
can be different from the encoder of the mother code.
We observe that for any matrix P of size K1 × K0,
we still have HmGm

T PT = 0(N0−K0)×K1
. Thus, we

look for a matrix P that is be used at the transmitter
side as Gs = PGm and such that forall binary vector i

of size K1, Gsi = c with elements of c corresponding
to the pruned bits must be equal to zero. Consequently,
the matrix P will be called preprocessing matrix, since
it can be considered as a kind of precode (see Fig.(1)).
But we now explicit all the conditions that must be
fulfilled by P, and how this matrix can be computed. In

Subcode

Mother code

G
P K0 × N0

length K1

Information Codeword
length
N0 − K0 + K1

K1 × K0

Fig. 1. Scheme of the subcode encoder

the following, Hmprun will denote Hm whose pruned
columns are replaced by zero columns. Then we have

Hmprun.Gm
T .PT = 0(N0−K0)×K1

(7)

We can reformulate Hmprun using a permutation ma-
trix Π1 on its columns:

Hmprun =
[

H1|0(N0−K0)×(K0−K1)

]

Π1

In order to reach the target code rate R1 = K1

N0−K0+K1

and to have P of full rank, H1 must be of full rank.
This implies to add a constraint at the end of the

optimization. We then assume that H1 is of full rank in
the following, which ensures that there exist a matrix
Q and a permutation Π2 such that:

[

H1|0(N0−K0)×(K0−K1)

]

= (8)

Q
[

I(N0−K0)|R(N0−K0)×K1
|0(N0−K0)×(K0−K1)

]

Π2

where I(N0−K0) denotes the identity matrix of size
N0 −K0 and R(N0−K0)×K1

any matrix of size (N0 −
K0) × K1. Using Equation (7), we have

Q ·
[

I(N0−K0)|R(N0−K0)×K1
|0(N0−K0)×(K0−K1)

]

· (9)

·Π2 · Π1 · Gm
T · PT

= 0(N0−K0)×K1

Let A = Π2Π1Gm
T and i be the information word

of length K1 of the subcode. The information part of
APT iT should be associated to R(N0−K0)×K1

while
the part of APT iT corresponding to pruned columns
should be associated to all-zero columns. P is therefore
computed such that

A(N0 −K0 + 1 : N0, :)PT =

[

IK1

0(K0−K1)×K1

]

(10)
We can show that if H1 is full rank then
A(N0 −K0 + 1 : N0, :) is invertible. With this pro-
cedure, we obtain a preprocessing matrix P which
is full rank. This method allows to achieve different
UEP configurations using different subcodes, only by
changing the preprocessing matrix at the transmitter
and knowing the indices of the pruned columns of the
mother code at the receiver. Our scheme thus offers
some flexibility. However, storing the preprocessing
matrices can represent a drawback since they are block
code matrices in front of LDPC encoder. In the next
section, we present a completely flexible particular case
of the pruning procedure.

4.4 A Flexible Particular Pruning Case
What has been previously explained allows to explore
all the reachable UEP configurations given the number
of pruned columns, but may be too complex for a real
system. An alternative is to restrict ourselves in choos-
ing the pruned columns and the information columns
of the subcode only among the information columns
of the mother code. Then Hs and Gs are obtained by
removing columns in Hm, and the corresponding ones
in Gm which are columns of the identity part of Gm.
The corresponding rows of Gm are also removed. Then
Hs and Gs are of size M0 × N0 − (K0 − K1) and
K1 × N0 − (K0 − K1), respectively. They are both of
full rank and the code rate of the subcode is the target
rate:

R1 = 1 −
rank(Hs)

N − (K0 − K1)
=

K1

N0 − (K0 − K1)

Despite the restriction, this is a very flexible approach
since we only need to know the indices of the pruned

Turbo – Coding – 2006 · April 3–7, 2006, Munich

columns of the mother code at the transmitter and at the
receiver, to encode and decode, so almost no memory is
required to reach different UEP configurations with the
same mother code. Thus, since the preprocessing matrix
P has not a neglectible size, if we accept a slight loss
in optimization, we would prefer the flexible case for
real-world applications.

5 Results
We present here the results we obtained using the
general pruning case, that says the optimization ran over
all the columns of the parity matrix. In the simulations,
we did not use the preprocessing matrix since we
worked with the all-zero codeword. We started from a
regular (3, 6) LDPC mother code of length N0 = 2000
and code rate R0 = 1/2. The subcode has a length of
N1 = 1500 and code rate R1 = 1/3. The optimization
is done for Nc = 3 classes with α(1) = 0.1, α(2) =
0.9. We compare the performances of optimized non-
concentrated (degrees of checks between 2 and 6) code
and almost concentrated (degrees of checks between 4
and 6) codes. The decoding is done by using only the
pruned parity-check matrix of the mother code.

TABLE I

COMPARISON OF DEGREE DISTRIBUTIONS ρ(Ck)(j) FOR THE

DIFFERENT CLASSES OF THE CONCENTRATED CODE.

Check profile of the almost concentrated code
j 2 3 4 5 6

C1 0 0 9.03e-01 9.61e-02 0
C2 0 0 6.66e-01 3.33e-01 0
C3 0 0 3.55e-01 4.86e-01 1.58e-01

TABLE II

COMPARISON OF DEGREE DISTRIBUTIONS ρ(Ck)(j) FOR THE

DIFFERENT CLASSES OF THE UNCONCENTRATED CODE.

Check profile of the non-concentrated code
j 2 3 4 5 6

C1 5.66e-01 2.60e-01 1.53e-01 2.00e-02 0
C2 6.44e-02 1.40e-01 3.76e-01 3.60e-01 5.77e-02
C3 1.33e-03 8.66e-03 1.60e-01 4.81e-01 3.48e-01

Figure (2) shows the EXIT curves defined in equation
(5) for each class of almost concentrated and non-
concentrated check irregularity codes. The more the
first class is protected, the more the less protected
ones are degraded: the best protected class has a
faster convergence for the non-concentrated code than
the corresponding one in the concentrated code. The
intermediate classes are quite equivalent whereas the
last class of the non-concentrated code has a slower
convergence than the corresponding one in the concen-
trated one. Figure(3) represents bit error rates of the
UEP almost concentrated and non-concentrated codes
after 30 decoding iterations. We observe that the check
irregularity is a mean to achieve UEP at low number of
iterations (accelerating the convergence), but also at a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

x
vc
(l)

x vc(C
k)(

l+
1)

conc k=1
conc k=2
conc k=3
unconc k=1
unconc k=2
unconc k=3

Fig. 2. EXIT curves of classes of almost concentrated and non-
concentrated check irregularity codes at Eb/N0 = 1.5dB.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
E

R
 o

f c
la

ss
 C

k

unconc k=1
unconc k=2
unconc k=3
conc k=1
conc k=2
conc k=3

Fig. 3. Bit error rates of classes of almost concentrated and non-
concentrated check irregularity codes after 30 iterations.

high number of iterations since the differences between
classes are still visible after 30 decoding iterations when
looking at the bit error rates. In particular, we still
have better performance at the 30th iteration for the
first class of the non-concentrated code than for the
concentrated one, whereas the last class is worse in the
non-concentrated code than in the almost concentrated
one. We can see that stretching the check degrees allows
a stronger difference in the error protection, without
degradation of total average bit error probability at this
code length, compared with the concentrated code.

6 Conclusion
In this paper, we have proposed a method to optimize
the UEP properties of a bit-regular code by optimizing
its check-irregularity. The so-called detailed representa-
tion of LDPC codes allowed us to define a cost function
which improves the local convergence of the messages,
thereby creating UEP behavior. We implemented the

Turbo – Coding – 2006 · April 3–7, 2006, Munich

cost function by a highly flexible pruning method, that
allows to have different UEP configurations with a same
mother code. The next step of this work would be
to combine bit and check irregularities to provide the
best possible UEP with LDPC codes under iterative
decoding.

References
[1] C.-H. Wang and C.-C. Chao. Path-Compatible Pruned Con-

volutionnal (PCPC) Codes: A New Scheme for Unequal Error
Protection. In ISIT1998, Cambridge, MA, USA, 1998.

[2] R.G. Gallager. Low-Density Parity-Check Codes. IRE Trans.
on Inform. Theory, pages 21–28, 1962.

[3] C. Poulliat, D. Declercq, and I. Fijalkow. Optimization of LDPC
Codes for UEP Channels. In ISIT 2004, Chicago, USA, June
2004.

[4] K. Kasai, T. Shibuya, and K. Sakaniwa. Detailedly Represented
Irregular Low-Density Parity-Check Codes. IEICE Trans.
Fundamentals, E86-A(10):2435–2443, October 2003.

[5] D.J.C. MacKay, S.T. Wilson, and M.C. Davey. Comparison
of Constructions of Irregular Low-Density Parity-Check Codes.
IEEE Trans. on Communications, 47(10):1449–1453, October
1999.

[6] S.Y. Chung, T. Richardson, and R. Urbanke. Analysis of Sum-
Product Decoding Low-Density Parity-Check Codes using a
Gaussian Approximation. IEEE Trans. on Inform. Theory,
47(2):657–670, February 2001.

[7] T. Tian, C. Jones, J.D. Villasenor, and R.D. Wesel. Construction
of Irregular LDPC Codes with Low Error Floors. In ICC2003,
Anchorage, Alaska, USA, 2003.

[8] J.C. Chen, A. Dholakia, E. Eleftheriou, M.P.C Fossorier, and X-
Y Hu. Reduced-Complexity Decoding of LDPC Codes. IEEE
Trans. on Communications, 53(8):1288–1299, August 2005.

[9] T. Richardson, A. Shokrollahi, and R. Urbanke. Design
of Capacity-Approaching Irregular Low-Density Parity-Check
Codes. IEEE Transactions on Communications, 47(2):619–637,
February 2001.

[10] I.M. Boyarinov and G.L. Katsman. Linear Unequal Error
Protection Codes. IEEE Trans. on Inform. Theory, 27(2):168–
175, March 1981.

Turbo – Coding – 2006 · April 3–7, 2006, Munich

	Back to Contents
	Check-Irregular LDPC Codes for Unequal Error Protection under Iterative Decoding
	Abstract
	1 Introduction
	2 Detailed Representation of Irregular LDPC Codes
	2.1 The Parameterization
	2.2 Density Evolution with Detailed Representation

	3 Achieving UEP with Check-Irregular LDPC Codes
	3.1 A Cost Function for UEP
	3.2 Discussion on Breaking the Concentration of Check Degrees

	4 A Practical Means to Achieve UEP: Pruning a Mother Code
	4.1 General Presentation of Pruning
	4.2 The Sequential Pruning Procedure
	4.3 General Preprocess
	4.4 A Flexible Particular Pruning Case

	5 Results
	6 Conclusion
	References

